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ABSTRACT
We construct a mean-field elastoplastic description of the dynamics of amorphous solids under arbitrary time-dependent perturbations,
building on the work of Lin and Wyart [Phys. Rev. X 6, 011005 (2016)] for steady shear. Local stresses are driven by power-law distributed
mechanical noise from yield events throughout the material, in contrast to the well-studied Hébraud–Lequeux model where the noise is
Gaussian. We first use a mapping to a mean first passage time problem to study the phase diagram in the absence of shear, which shows
a transition between an arrested and a fluid state. We then introduce a boundary layer scaling technique for low yield rate regimes, which
we first apply to study the scaling of the steady state yield rate on approaching the arrest transition. These scalings are further developed to
study the aging behavior in the glassy regime for different values of the exponent μ characterizing the mechanical noise spectrum. We find
that the yield rate decays as a power-law for 1 < μ < 2, a stretched exponential for μ = 1, and an exponential for μ < 1, reflecting the relative
importance of far-field and near-field events as the range of the stress propagator is varied. A comparison of the mean-field predictions with
aging simulations of a lattice elastoplastic model shows excellent quantitative agreement, up to a simple rescaling of time.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0033196., s

I. INTRODUCTION

Amorphous materials, ranging from granular materials to
foams and emulsions, show rich and complex behavior under defor-
mation and flow.1,2 An important step both for fundamental under-
standing and for practical applications has been the development of
elastoplastic models, which consider mesoscopic blocks of material,
large enough so that an elastic shear stress can be ascribed to them.
These local stresses have a dynamics that alternates between loading
by external shear and plastic relaxation. Each plastic stress relaxation
also affects stresses in the rest of the material through the Eshelby
stress propagator, potentially triggering other plastic events. In a
mean-field setting, this effect can be modeled as mechanical noise;
in the athermal regime, the strength of this noise is coupled directly
to the level of plastic activity in the system. In pioneering work by
Hébraud and Lequeux3 (HL), the mechanical noise was modeled as
Gaussian white noise, leading to a diffusive dynamics of the local

stresses. Despite its simplicity, the model manages to predict a tran-
sition between a fluid and an arrested state, reproducing in the latter
regime the Herschel–Bulkley law, which fits well the stationary flow
behavior of many yield stress materials.

To go beyond the HL approximation, one needs to take into
account the actual spatial decay of the stress field arising from an
isolated plastic event.4 Assuming that events occur randomly in
space gives then a mechanical noise distribution that is not Gaussian
but instead follows a power law.5,6 This, in turn, leads to anoma-
lous diffusive dynamics in stress. In the work of Lin and Wyart,7 a
mean-field model is developed along these lines. The results from
this study for the exponents associated with the yielding transi-
tion suggest that this is the “true” mean-field model in the sense
that it applies in large dimensions.7 However, so far, the model has
only been studied in quasistatic shear,7,8 and an extension to gen-
eral time-dependent aging and rheological phenomena is lacking.
Having this time-dependent model will be important to test the
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mean-field assumptions against a full range of rheological experi-
ments. The aim of the present work is to construct such an extension
and to explore its dynamical properties, focusing on scenarios with-
out external shear perturbation. These are relevant for studying to
what extent athermal aging (such as in Ref. 9) can be described in a
mean-field setting and a first step toward comparing with rheolog-
ical experiments where a perturbation is applied only after a given
waiting time.10–14

This paper is structured as follows: In Sec. II, we detail the con-
struction of the fully time-dependent mean-field elastoplastic model.
We then, in Sec. III, determine the phase diagram of the model, sepa-
rating the arrested (i.e., glassy) and flowing (liquid) states. In Sec. IV,
we introduce a boundary layer scaling technique for the regime of
low yield rates, building on the approach for the HL model.15 The
method is first applied to find the scaling of the yield rate above
the transition in Sec. V. Then, we deploy the boundary layer scaling
technique to study the aging behavior in Sec. VI. Finally, we compare
the mean-field predictions and asymptotic behavior to simulations
of a lattice elastoplastic model in Sec. VII and discuss the results and
outlook toward future research in Sec. VIII.

II. TIME-DEPENDENT MEAN-FIELD ELASTOPLASTIC
MODEL

Following the general philosophy of elastoplastic models, we
regard our system of interest as divided into N mesoscopic blocks
centered on the sites of a regular (e.g., square) lattice; to each block,
we assign a local shear stress. We begin with a description of the
stochastic rules governing the local stress dynamics. Considering ini-
tially dynamics in discrete time, we introduce the following update
rules. Take the time step Δt small enough so that there is at most one
yield event per time interval, and label the site where this event takes
place by l. The yielding rule is given by

σl(t + Δt) = 0 with probability
Δt
τpl

if ∣σl(t)∣ > σc. (1)

This means that a yield event, where particles rearrange plastically,
resets the local stress to zero.16 Such a plastic rearrangement takes
place at a fixed rate τ−1

pl once the local stress exceeds the local yield
threshold σc.

The stresses at all other sites {σi}, i ≠ l, evolve as

σi(t + Δt) = G0γ̇Δt + σi(t) + δσi. (2)

This incorporates a drift term due to the external shear rate γ̇, mul-
tiplied by the local shear modulus G0, and a stress “kick” δσi that
models the Eshelby stress propagation from the yield event at site
l; δσi of course depends on l, but we do not write this explicitly.
From the beginning, we consider here a mean-field description of
this mechanical noise, which can be derived from the full spatial
Eshelby stress propagator4,17 by treating the site of the yield event
as randomly chosen across the system. It is then straightforward to
show7 that for a stress propagator decaying as ∼r−β in dimension
d, the noise kicks will be distributed as ρ(δσ) ∼ |δσ|−μ−1 with an
exponent

μ = d
β

. (3)

For the physical propagator with β = d (Ref. 4), this leads to
μ = 1. We note though that recent works18,19 suggest that exponent
values in the range 1 < μ < 2 may also have physical relevance once
the description is coarse-grained further to study the aggregate effect
of avalanches of yield events that can potentially span a large num-
ber of sites. Studying this range is also important in itself due to the
marginal character of μ = 1, which will need to be approached as a
limiting case. Varying μ can be thought of as varying the range of
the stress propagation: larger μ corresponds to smaller β and hence
longer range propagation. In fact, for μ → 2, we will find that our
model reduces to the HL model with its effectively infinite interac-
tion range. Conversely, for μ < 1, stress propagation is essentially
local.

Besides the exponent μ, the second key parameter of the model
is the coupling A, related to the prefactor of the aforementioned
power-law behavior of ρ(δσ). We can distinguish here two differ-
ent approaches (see also the discussion, Sec. VIII). First, shown in
Appendix D is a derivation of the coupling in a 2D setting of ran-
domly distributed sites, leading to the result that the coupling A
depends both on the strength of the elastic interactions and on the
density of sites where events may take place [see Eq. (D13)]. In a
second approach (Sec. VII), where we consider instead the case of
sites fixed to positions on a lattice, we will derive the value of A by
fitting directly the histogram of stress increments {δσ}, this value of
A being fixed by geometry. To include both cases, we treat A as a
variable parameter in the following.

The power law behavior ρ(δσ) ∼ |δσ|−μ−1 derived above is exact
for small δσ, corresponding to the small effects of far-away yield
events, but must eventually be cut off at the largest |δσ| resulting
from yield events at neighboring sites. The explicit calculation in d
= 2 (Appendix D) that accounts for the full angular dependence of
the stress propagator gives a soft upper cutoff, where ρ(δσ) goes to
zero continuously.

For simplicity,20 we nonetheless use for the calculations a hard
upper cutoff δσu as proposed in Ref. 7, and a lower cutoff chosen
as δσuN−1/μ that goes to zero for N ≫ 1. This resulting simplified
mechanical noise distribution takes the form

ρ(δσ) = A
N
∣δσ∣−μ−1, δσuN−1/μ < ∣δσ∣ < δσu. (4)

By normalization, δσu is then related to the prefactor (coupling)
A by

δσu = (
2A
μ
)

1/μ

. (5)

It is important to note that the form (5) relies on a specific choice of
the ratio between upper and lower cutoffs. This was taken as N1/μ in
Ref. 7 but, in general, involves a geometrical factor that will depend
on the system. This means that (even within the assumption of a
hard upper cutoff) the value of δσu is not unambiguously fixed by A,
a fact that we will return to in Sec. VII.

From the noise distribution (4) we extract, after a yield event at
site l, independently and identically distributed (i.i.d.) stress incre-
ments δσi for all other sites (i ≠ l). We add to each δσi in (2) the term
−∑k≠ lδσk/(N − 1). This counterterm is formally necessary to ensure
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that stress propagation has a net zero effect on the total stress∑i≠ lσi
outside the block that yields. For large N, we will see that the coun-
terterm has a negligible effect because due to the symmetry of ρ(δσ),
∑k≠ lδσk/(N − 1) is of order N1/2/N = N−1/2.

We next transform the above dynamical rules into a master
equation for the joint time evolution of the stresses σ = (σ1, . . ., σN)
at all N sites. Given the above assumptions, the transition rate from
configuration σ′ to σ associated with a yield event at site l is

Kl(σ∣σ′) =
1
τpl
θ(∣σ′l ∣ − σc)δ(σl)

× ⟨∏
j≠l
δ
⎛
⎝
σj −
⎛
⎝
σ′j + δσj −

1
N − 1∑k≠l

δσk
⎞
⎠
⎞
⎠
⟩, (6)

where the factors in the first and second lines correspond to (1) and
(2), respectively. The brackets denote an average over the distribu-
tion of stress kicks δσi, which we recall are sampled independently
from the same distribution ρ(δσ). Bearing in mind that a yield event
can occur at any site l and incorporating the loading by external
shear in (2) gives then the master equation

∂tP(σ) = −G0γ̇∑
i
∂σiP(σ)

+∑
l
∫ (Kl(σ∣σ′)P(σ′) − Kl(σ′∣σ)P(σ))dσ′. (7)

We can now reduce this description to one for the distribu-
tion of local stresses, proceeding in a similar fashion to Ref. 21. We
assume a mean-field factorization P(σ) =∏

i
Pi(σi), which we expect

to become exact for N →∞ as each local stress couples to the others
only via the total number of yield events. From Eq. (7), one can then
obtain the time evolution of Pi(σi) by integrating out the remain-
ing N − 1 stresses (see Appendix A), which will include the effect
of stress kicks from yield events at other sites. The final form of the
master equation for the local stress distribution P(σ) = (1/N)∑i⟨δ(σ
− σi)⟩ = (1/N)∑iPi(σ) reads as

∂tP(σ, t) = −G0γ̇∂σP(σ, t)

+AΓ(t)∫
σ+δσu

σ−δσu

P(σ′, t) − P(σ, t)
∣σ − σ′∣μ+1 dσ′

− θ(∣σ∣ − σc)
τpl

P(σ, t) + Γ(t)δ(σ), (8)

where we have defined the yield rate

Γ(t) = 1
τpl
∫
∞

−∞
θ(∣σ∣ − σc)P(σ, t)dσ. (9)

In the following, we will generally consider the dimensionless
form of (8), setting the threshold stress σc = 1 and the plastic
timescale τpl = 1.

Equation (8) is our desired time-dependent mean-field model
for the elastoplastic dynamics of amorphous solids. It generalizes the
model originally proposed by Lin and Wyart,7 which was restricted
to steady state scenarios. This model was described in terms of an
accumulated plastic strain γpl. It can be recovered from general

formulation (8) by considering constant global stress ⟨σ⟩, i.e., a
stress-controlled protocol. From (8), we have then 0 = ∂t⟨σ⟩
= G0γ̇ − vΓ where the “velocity” v relating the shear rate and yield
rate is the average stress of yielding sites, i.e., the average over the
distribution θ(|σ| − 1)P(σ, t)/Γ(t). Using then that the plastic strain
increments with each yield event so that γ̇pl = Γ, one obtains Eq. (8)
of Ref. 7 for P(x, γpl), where x = 1 − σ.

The well-studied HL model3 may also be derived as a limit-
ing case of (8): it corresponds to the limit μ → 2, taken from below.
To see this, one can use a Kramers–Moyal expansion to express the
convolution with a power law kernel in the second line of (8) as an
infinite series of even-order derivatives (∂/∂σ)2nP. The prefactor of
the diffusive term (n = 1) then works out as αeffΓ with

αeff =
A

2 − μδσ
2−μ
u = A

2 − μ(
2A
μ
)

2/μ−1

. (10)

Keeping now αeff fixed while taking μ→ 2−, one finds that A ∼ 2 − μ
to leading order, with the consequence that all terms involving
higher-order derivatives of P [(∂/∂σ)4P, etc.] become negligible (see
Appendix A for details). The master equation then becomes that of
the HL model,3

∂P(σ, t)
∂t

= −G0γ̇
∂P
∂σ

+ αΓ(t)∂
2P

∂σ2 − θ(∣σ∣ − 1)P + Γ(t)δ(σ), (11)

where Γ(t) is the yield rate as defined above, while the stress propaga-
tion now takes the form of Brownian motion with diffusion constant
D(t) = αΓ(t). Note that for μ < 2, relation (10) can be used to approx-
imate our model (8) by an effective HL model, which as we will see
below gives a reasonable qualitative account of the phase diagram.

III. PHASE DIAGRAM
The HL model3 was shown, despite its simplicity, to display a

dynamical arrest transition as the coupling α is varied. In particu-
lar, for α > αc = 1/2 (in the dimensionless form), there exists a steady
state distribution Pss(σ) with nonzero yield rate Γ even in the absence
of external shear, and the low shear rate rheology is that of a Newto-
nian liquid. In contrast, below the critical value αc, only frozen steady
states with Γ = 0 exist and the system exhibits a finite yield stress,
hence the description of it as being arrested.

In the present model, we expect a similar transition at a critical
coupling Ac, and working out the corresponding phase diagram will
be necessary to identify the correct parameter regime for studying
the aging behavior. In order to identify the critical valueAc(μ), which
will also depend on the exponent μ, it will be useful to consider the
steady state version of (8) divided by Γ,

A∫
σ+δσu

σ−δσu

Pss(σ′) − Pss(σ)
∣σ − σ′∣μ+1 dσ′ + δ(σ) − θ(∣σ∣ − 1)

Γ
Pss = 0. (12)

In the limit where A → Ac and correspondingly Γ → 0, the final
yielding term may be replaced by an absorbing boundary condi-
tion enforcing Pss(σ) = 0 for |σ| > 1. The critical boundary may
then be computed numerically (for details, see Appendix E 2),
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FIG. 1. Phase diagram in the A − μ plane. The numerically exact Ac(μ) in blue
separates the liquid regime (above) from the amorphous solid (below). Due to the
increase in numerical error as μ→ 2 (see Appendix E 2), we show the last segment
as an interpolation (blue dashed line). In addition, we show for comparison the dif-
fusive (orange dashed line) and infinite cut-off (green dashed line) approximations
to Ac(μ).

giving the phase diagram shown in Fig. 1. The resulting curve Ac(μ)
is bell-shaped, with a peak at μ ≃ 1.

Also shown is a “diffusive approximation” Adiff
c , which approx-

imates the power-law noise for μ < 2 with Gaussian noise of the
same variance. This is obtained by equating the αeff defined earlier
in (10) to αc = 1/2. This approach reproduces the general features
of the curve Ac(μ). It becomes exact as expected in the limit μ → 2,
where our model approaches the HL model. Conversely, the approx-
imation becomes worse (as can be seen by plotting, e.g., the ratio
Ac/Adiff

c ) as μ is decreased, especially in the region μ < 1 where the
dynamics is increasingly dominated by large stress kicks. Interest-
ingly, the approximation Adiff

c lies consistently below the true Ac(μ),
indicating that the power-law noise is actually less efficient in “lique-
fying” the system than Gaussian stress kicks with the same variance.
Intuitively, this can be rationalized from the large heterogeneity of
power-law mechanical noise, where the variance is dominated by
the large stress kicks, while most kicks are in fact negligibly small. In
studying the aging dynamics below, we will find a similar effect, with
the system aging toward an arrested state faster as μ is decreased.

We can develop a second approximation for Ac(μ) by exploit-
ing a reinterpretation of (12) as the steady state condition for what
is known as a Lévy flight22 with absorbing boundaries. Indeed, if we
think of the local stress σ as the position coordinate of an effective
particle, then this particle “diffuses” in power-law distributed steps,
i.e., subject to Lévy noise. This is the defining property of a Lévy
flight. The reinjection term δ(σ) effectively sets the initial condition
σ = 0 of the particle, from which it executes its Lévy flight until it
hits the absorbing region |σ| > 1. Calling the resulting time-decaying
distribution g(σ, t), the problem may be solved by separation of
variables, writing

g(σ, t) =∑
k
ψk(σ)e−t/τk ∫

1

−1
ψk(y)g(y, 0)dy (13)

in terms of the eigenmodes ψk(σ) and their decay times τk. These are
related by the eigenvalue equation ALψk(σ) = − 1

τk
ψk(σ), where L

denotes the propagator

Lψ(σ) = ∫
σ+δσu

σ−δσu

ψ(σ′) − ψ(σ)
∣σ − σ′∣μ+1 dσ′. (14)

The eigenfunctions ψk(σ) scale near the boundaries as23 ψk(σ) ∼ (1
− |σ|)μ/2. This singular behavior will be picked up by the critical dis-
tribution, defined as the limit of the steady state Pc(σ) = lim

A→Ac
Pss(σ)

as the critical coupling is approached (see Sec. V).24

Continuing with the Lévy flight argument above, the survival
probability of the effective particle at time t may be written as
S(t) = ∫1−1g(σ, t)dσ, and from this, in turn, we may derive the mean
first passage time τFP = ∫∞0 S(t′)dt′ until the particle is absorbed. To
obtain a normalized steady state distribution Pc(σ) at A = Ac, this
mean lifetime needs to balance the reinjection that occurs at rate 1
so that

τFP = 1. (15)

This condition then implicitly determines the value of Ac. In the HL
model, one can follow the same argument and write the equivalent of
Eq. (12). Applying the well-known result for a particle diffusing with
unit variance Brownian noise in a box, one finds τFP(α) = 1/(2α).
With condition (15), this then directly gives the critical coupling αc
= 1/2.

In our model with cut-off Lévy noise, the mean lifetime cannot
be obtained analytically, and Ac(μ) must be determined by finding
τFP numerically for a range of A and solving for the value of A—the
“Lévy flight intensity”—where (15) is satisfied. In the absence of a
cutoff, however, there is an analytical expression for the mean first
passage time,25 which applied to our model gives

A∞c (μ) =
1
π

sin(μπ
2
). (16)

This is also included in Fig. 1 for comparison. It shows again the
same bell-shaped form; however, as one would expect, it lies sig-
nificantly below the true Ac(μ): without a cutoff, the overall noise
intensity is higher, so the system stays liquid down to lower A.

IV. BOUNDARY LAYER EQUATION
To understand the scaling of the activity in steady state above

the dynamical arrest transition, as well as for our later analysis of
the aging behavior, we introduce here a boundary layer framework.
This is inspired by Ref. 15, where the HL model is studied in the
same spirit.

It will be useful to write the local stress distribution P(σ, t) in
terms of the yield rate as P(σ, Γ). In the steady state, the yield rate
Γ will be constant, whereas during the aging, we expect it to decay
in time. In either case, we will consider an expansion of the master
equation (8) for Γ≪ 1.

To motivate the approach below, consider the aging behavior
of P(σ, t). Without shear to load local sites elastically, one expects
that at long times, the stress dynamics (8) will be dominated by local
stress with values around the yield threshold σ = ±1, which we refer
to as the boundary layer. To estimate the thickness of this layer, we
note that once the local stress at a site crosses the threshold, it takes
a typical time τpl to be reset to zero by a yield event. In this time,
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FIG. 2. Distribution P(σ, t) at increasing (from blue to red) times t during aging,
obtained by numerical solution of (8), using as parameters μ = 1.7, A = 0.15 start-
ing from the reference steady state (see Sec. VI). Also shown is the frozen-in
distribution Q0(σ) (dotted line lying almost on top of distribution for t = 102.2).

it receives a number of kicks of order Γτpl, which in dimensionless
units is just Γ. The typical stress changes occurring during this time
are given by the Hurst exponent22 H = 1/μ so that we expect the
width of the boundary layer to scale as σ ∓ 1 ∼ ΓH = Γ1/μ. (The two
signs relate to yielding at +σc = + 1 and −σc = −1, respectively.)

To incorporate the presence of the boundary layer into our
analysis, we need to consider the behavior of P(σ, Γ) separately in
the interior (sub-threshold) region |σ| < 1, the exterior region |σ|
> 1, and the boundary layer. We consider symmetric distributions
P(σ, Γ) = P(−σ, Γ), which in an unsheared steady state is automatic,
while for the aging dynamics, it only requires a symmetric initial
stress distribution. To connect the interior or exterior part of the dis-
tribution with the boundary layer, we introduce a parameter ϵ such
that Γ1/μ ≪ ϵ≪ 1. This then allows us to split the ansatz for P(σ, Γ)
into three different regions as sketched in Fig. 2 and verified from
the numerical simulation data in Figs. 3–5:

FIG. 3. Boundary layer (zoomed-in region I of Fig. 2). In the upper curves,
we show Γ−1/2P̃(z, Γ), while in the lower curves, we show Γ−1/2P̃(z, Γ)
− q0(−z)μ/2θ(−z), with q0 fitted from the frozen-in distribution Q0(σ); recall that
z = Γ−1/μ(σ − 1). As t increases and Γ → 0, the lower curves approach R1(z),
which is obtained by solving (21) numerically (see Appendix E 3), while the upper
curves collapse onto R(z) from (19).

FIG. 4. External region (II) from Fig. 2. We show Γ−1P(σ, Γ), which for long times
collapses onto T1(σ) [Eq. (C3)]. Also shown (dashed line) is the expected power-
law behavior (σ − 1)−μ /2 for σ − 1≪ 1 (C4).

● In the interior region |σ| < 1 − ϵ (region III in Fig. 2), we
write P(σ, Γ) = Q0(σ) + ΓaQ1(σ), where Q0(σ) = lim

Γ→0
Q(σ, Γ)

and Q1 is the leading order correction for small Γ. We will
refer toQ0(σ) as the frozen-in distribution, and it will present
the (1 − |σ|)μ/2 singularity discussed in Sec. III. In the scaling
analysis for the steady state, it will correspond to the critical
distribution Pc(σ).

● The exterior tail for σ > 1 + ϵ (region II in Fig. 2), which is
symmetrically related to the left tail at σ < − 1 −ϵ. In the exte-
rior region, we write the distribution as P(σ, Γ) = ΓbT1(σ),
where b is the exponent of the leading order term.

● In the boundary layer region (region I in Fig. 2), for 1 − ϵ < σ
< 1 + ϵ (and similarly −1 − ϵ < σ < −1 + ϵ), we write the scal-
ing function in terms of a rescaled stress variable z = Γ−1/μ(σ
− 1) that from our argument above should be of order unity.
In the boundary layer, we therefore write P(σ, Γ) ≡ P̃(z, Γ)
with the form of P̃(z, Γ) to be determined below.

The task is now to substitute the above ansatz into the master
equation (8), separately for σ in the three different regions: interior,

FIG. 5. Interior region (III) from Fig. 2. We show Γ−1/μ(P −Q0), which at later times
collapses onto the analytical prediction for the leading order interior function Q1(σ)
from (C8).
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boundary layer, and exterior. We limit the discussion here to the
boundary layer, which will be the most important for the physics,
and leave further details for Appendix C.

In the boundary layer, there will be a contribution from the
frozen-in distribution. On the scale of the boundary layer, this will
be given by the singular behavior Q0(σ) ≃ q0(1 − σ)μ/2, which written
in terms of z is Γ1/2q0(−z)μ/2 with z < 0. We deduce that P̃(z, Γ)may
be split into a frozen part and a correction, which again we write at
the leading order,

P̃(z, Γ) = Γ1/2q0(−z)μ/2θ(−z) + ΓcR1(z). (17)

The exponent c can be determined by matching the boundary layer
function to P(σ, Γ) in the exterior region, which decays as (σ − 1)−μ/2

(see Appendix C 1), with the result c = 1/2 so that the two exponents
in (17) are equal and we can write (as before to the leading order
in Γ)

P̃(z, Γ) = Γ1/2R(z), (18)

R(z) = q0(−z)μ/2θ(−z) + R1(z). (19)

From the master equation in the boundary layer region, we can
obtain an equation for the unknown scaling function R1(z), which
we refer to as the boundary layer equation. Without delving into
details, three aspects are worth pointing out.

First, in the boundary layer, cut-off effects disappear and we are
left with pure power law behaviors. This is due to the rescaling intro-
duced. Considering, for example, the Lévy propagation on R1(z), we
have that

Γ1/2 ∫
1+ϵ

1−ϵ

R1(Γ−
1
μ (σ′ − 1)) − R1(Γ−

1
μ (σ − 1))

∣σ − σ′∣μ+1 dσ′

= Γ−1/2 ∫
ϵΓ
− 1
μ

−ϵΓ
− 1
μ

R1(z′) − R1(z)
∣z − z′∣μ+1 dz′. (20)

We can then take the limits±ϵΓ−1/μ of the integral to infinity because
of the way we have defined the boundary layer, with Γ1/μ ≪ ϵ and
therefore ϵΓ−1/μ ≫ 1.

A second important aspect of the boundary layer equation is
that the interior and exterior scaling functions do not make any lead-
ing order contributions within the boundary layer; they only appear
indirectly through the condition that the tails of R1(z) must match
the behavior of T1(σ) and Q1(σ), respectively, as σ → 1, as required
for continuity of P(σ, Γ).

Finally, the terms arising from the time derivative ∂t , which
are from the beginning absent in the steady state case, will also be
irrelevant in the aging because Γ(t) will vary sufficiently slowly (see
Appendix C 2).

Overall, the boundary layer equation takes the form

A∫
∞

−∞

R1(z′) − R1(z)
∣z − z′∣μ+1 dz′ + AS(z) − θ(z)R1(z) = 0. (21)

The second term is a source S(z), which arises from applying
the Lévy propagator to the frozen part of the stress distribution.

Explicitly, it reads

S(z) = q0 B(μ
2

, 1 +
μ
2
)z−μ/2, z > 0, (22)

where B denotes the beta function. Physically, then, the bound-
ary layer equation describes how sites can have their local stress
increased into the unstable region (z > 0) by yield events elsewhere;
this is the source term AS(z). These sites can then yield as indicated
by the last term in (21), or their stress may change due to further
stress kicks (first term). The equation then simply states that these
effects must balance in a stationary or slowly aging system.

The boundary layer equation (21) admits different asymptotic
solutions in the regimes 1 < μ < 2, μ = 1, and μ < 1. This will be
the key to the distinct scaling and aging behaviors in the different
regimes. We defer a detailed analysis (in particular, for the case μ
= 1) to Appendix C 4 and only outline the main properties here.

Splitting R1(z) into Rext
1 (z) for z > 0 and Rint

1 (z) for z < 0, we
focus on the asymptotic forms of these functions for |z|≫ 1. As indi-
cated by the superscripts, Rext

1 (z) will have to match up with P(σ,
Γ) in the exterior region, while Rint

1 (z) will need to do so with the
interior function.

It is straightforward to deduce from Eq. (21) that the exterior
asymptote must balance the form of the source so that

Rext
1 (z) = Cextz−μ/2 for z ≫ 1. (23)

For the interior asymptotic behavior, we assume a power law form
Rint

1 (z) = Cint∣z∣−ϕ and find by appropriate rescaling of the integra-
tion variable that the boundary layer equation (21) in the regime |z|
≫ 1, z < 0 becomes

(∫
∞

0

x−ϕ − 1
∣x − 1∣μ+1 dx − 1

μ
)Cint∣z∣−ϕ−μ +∫

∞

0

Rext
1 (z′)
∣z − z′∣μ+1 dz′ = 0. (24)

There are then two possible solutions for the exponent ϕ. In the
regime 1 < μ < 2, one can show that the final integral term may be
neglected, and Eq. (24) can then be solved by using the property

∫
∞

0

x−ϕ − 1
∣x − 1∣μ+1 dx = 1

μ
for ϕ = −μ

2
or 1 − μ

2
. (25)

We choose the second value ϕ = 1 − μ/2 as we expect a decaying
power law for Rint

1 (z). We refer to this solution as the homogeneous
solution, given that it is obtained by neglecting the integral term,
which represents a source arising from jumps from the unstable
region z′ > 0. If this integral term were absent, the power law solution
for Rint

1 (z) would hold for ∀z < 0, not just asymptotically; it would
then correspond to one of the two alternative power law behaviors
[whose exponents are the two values of ϕ in (25)] of a Lévy flight in
front of an absorbing boundary.

In the regime μ < 1, we find that we require an inhomogeneous
solution of (24), where all terms are kept. Here, we take instead ϕ
= μ/2, which with an appropriate choice of Cint allows us to cancel
the source term from z′ > 0. Finally, in the marginal case μ = 1, where
the exponent crosses over from ϕ = 1 − μ/2 to ϕ = μ/2, one can show
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(Appendix C 4) that a superposition of both solutions gives the form
Rint

1 (z) = Cintz−1/2 ln (∣z∣), involving a log-correction to the power
law. Summarizing, the boundary layer function R1 on the interior
side has the asymptotic behavior

Rint
1 (z)

∣z∣≫1∼
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣z∣−(1−μ/2) for 1 < μ < 2
∣z∣−1/2 ln(∣z∣) for μ = 1
∣z∣−μ/2 for μ < 1.

(26)

The physical implications of these solutions will be discussed
further below. In brief, these will arise because as explained above,
the interior tail of the boundary layer function Rint

1 (z) has to match
the σ → 1− behavior of Q1(σ) and will therefore determine the scal-
ing of the interior correction with Γ, given by the exponent a defined
above. Explicitly, for the case 1 < μ < 2 in the asymptotic |z|≫ 1 tail,
one has Γ1/2Rint

1 (z) ∼ Γ1/2z−(1−μ/2), which has to match with Q1(σ)
∼ Γa(1 − σ)−(1−μ/2) so that a = 1/μ. Arguing similarly for μ < 1, one
finds a = 1. For the case μ = 1, if we expand the asymptotic behavior
of Rint

1 (z) in terms of σ, we find

Γ1/2Rint
1 (z) ∼ Γ(1 − σ)−1/2[∣ ln (Γ)∣ + ln (1 − σ)]. (27)

The matching must take place for 1 − σ ≳ ϵ, where ϵ was defined as
1 ≫ ϵ ≫ Γ1/μ so that the second term in the brackets may be
neglected. Overall, we then have that for σ → 1−, the interior func-
tion has to behave as Q1(σ) ∼ Γ| ln(Γ)|(1 − σ)−1/2 so that a = 1 with a
logarithmic correction.

V. STEADY STATE SCALING
We now apply the approach above to deduce the critical scaling

of the plastic rate above the transition. In the HL model [Eq. (11)],
the steady state distribution Pss(σ) can be found analytically for
any26,27 α > αc. In Fig. 6, we show the result for α = 1, together
with the steady state in the μ = 1 model, with the same yield rate Γ.
Although this value is well within the liquid regime, one may already

FIG. 6. Steady state stress distribution in the liquid regime for μ = 1 and the
HL model (μ → 2) for a fixed yield rate Γ = 0.134. Dotted lines mark the local
yield thresholds σc = ±1. Whereas in the HL limit the form is a combination
of exponentials and linear segments, for μ < 2, there is no simple analytical
expression.

note the differences between the two models: namely, the straight
line segments and exponential tails of the HL model become forms
with no simple analytical expression.

For the HL model, one can find an exact relation between α
and Γ, which comes out of the normalization condition on Pss(σ).
Writing α in terms of a rescaled distance to the transition α̃, this
relation reads

α̃ ≡ α − αc
αc

= 2(
√
αΓ + αΓ) (28)

so that

α̃ = O(Γ1/2) (29)

for Γ≪ 1.
For the present model, on the other hand, we lack an analyti-

cal expression of the steady state stress distribution and its norm in
terms of (A, Γ) and have to calculate the latter numerically in general.
To find the critical scaling of Γ above the transition analytically, we
then proceed by considering a perturbation of the critical distribu-
tion Pc(σ) defined in Sec. III. We defer the details to Appendix B,
where considering the steady state condition (12), we show that
one can again express the problem in terms of the boundary layer
equation (21). This leads to the following scalings:

Ã ≡ A − Ac

Ac
=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

O(Γ1/μ) for 1 < μ < 2
O(Γ ∣ln(Γ)∣) for μ = 1
O(Γ) for μ < 1.

(30)

In Fig. 7, we show our numerical results (see Appendix E 2 for
details) for the asymptotic scaling of Ã with Γ. The results are in
excellent agreement with the analytical prediction above (30) both
for μ = 1.5 and μ = 1. Note also that for μ→ 2, our prediction recovers
the scaling in the known HL case (29).

The analysis of the steady state regime also provides intuition
for the more complicated aging behavior that we study next. Follow-
ing the interpretation of the dynamics as that of an effective particle
diffusing from the origin, we show in Appendix B that Ã ∼ Δτext,
where Δτext is the extra time that a particle lives before yielding

FIG. 7. Critical scaling of plastic activity, obtained numerically for μ = 1.5 (left) and
μ = 1 (right). The dashed lines show the theoretical prediction according to (30).
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when Γ > 0. This extra time arises because yielding is no longer
effectively instantaneous for nonzero Γ, and from (30), it scales as
Δτext ∼ Ã ∼ Γ1/μ. Now, during the aging, the effective diffusion pro-
cess will take place at ever decreasing Γ. For Γ≪ 1, we then see that
Δτext ∼ Γ1/μ ≪ Γ1/2 for μ < 2. The extra time the particle lives before
yielding Δτext thus drops to zero faster for μ < 2 so that the system
will not be able to sustain so many yield events and will age toward
an arrested state faster than in the HL case. We will see this intuition
confirmed in the analysis below.

VI. AGING IN THE GLASSY REGIME
In Sec. III, the phase diagram of the model was presented, and

we distinguished between a liquid and a glassy phase depending on
the strength of the coupling A. In the liquid region A > Ac, there
is a steady state distribution Pss(σ) with a constant plastic activity
Γ > 0. As a representative for the liquid regime and a reference dis-
tribution for the following, we may take the Pss(σ) with the yield
rate corresponding to that of the HL model with α = 1 (Γ = 0.134).
This distribution (for μ = 1) is shown in Fig. 6, along with its HL
analog.

We are interested in the aging behavior in the glassy regime
A < Ac, where due to the absence of a steady state distribution
with Γ > 0, the plastic activity will decay as the system approaches
some, potentially initial condition dependent, frozen-in stress dis-
tribution Q0(σ). For the purposes of studying the slow decay of Γ(t),
we assume that the system starts in a configuration with unstable
sites, which may be the result of an initial preparation such as stir-
ring, and the system is then left to evolve at a value of the coupling
A < Ac. To simplify the analytical study, we focus here on symmetric
initial distributions. We have considered as the initial configura-
tion with unstable sites mainly the above Pss(σ) but also top hat and
Gaussian distributions, with qualitatively identical results (data not
shown). Asymmetric initial distributions could arise, e.g., by pre-
shear. Regardless of how the initial state is prepared, we study here
the form of the asymptotic decay of Γ(t), which we expect to be
qualitatively unaffected by the details of the initial distribution.28

The aging behavior considered here can be thought of as mod-
eling the dissipative decay in activity in an athermal system, which is
left to evolve in quiescent conditions after, for example, shear melt-
ing10 or a sudden increase in density in thermosensitive core–shell
microgel particles, whose size can be controlled by varying temper-
ature.12 In the ensuing dynamics, given the athermal nature of the
system, rearrangements may only be triggered by events taking place
elsewhere in the material. In a recent study of such relaxation in an
athermal system,9 rearrangements are found to be reminiscent of the
Eshelby events considered here.

A. Aging for 1 < μ < 2
To study the aging behavior, we turn again to the expansion in

Γ≪ 1 presented in Sec. IV. In contrast to the analysis of the steady
state scaling, however, we will now have a rate of rearrangements
that decreases in time. Nevertheless, one may still consider the same
boundary layer ansatz, now with Γ(t).

We defer the detailed analysis to Appendix C. The most impor-
tant step is establishing the equation of motion in the interior region.
Following the general ansatz presented in Sec. IV, the distribution is

to the leading order P(σ, Γ) = Q0(σ) + Γ1/μQ1(σ). The equation of
motion in this region can then be written as

∂tP =
1
μ
Γ1/μ−1Γ̇Q1 = AΓL(Γ1/μQ1 + Q0) + Γδ(σ), (31)

up to terms of higher order in Γ that we omit. We may now distin-
guish between two cases. First, in the critical case A = Ac (critical
aging), the combination ALQ0 + δ(σ) vanishes because of the lim-
iting (for Γ → 0) steady state condition so that the prefactors of the
remaining terms in (31) involving Q1 must be the same. This gives
Γ̇ ∼ Γ2 and hence Γ(t) ∼ 1/t. This is independent of μ, and so, one
would expect the same critical behavior to hold also for μ→ 2, i.e., for
the HL model. This can indeed be shown by extending the analysis
in Ref. 15; we omit the details.

In the generic case A < Ac, the sum ALQ0 + δ(σ) in (31) no
longer vanishes. As this sum appears in (31) with prefactor Γ, in
order to balance it and obtain a time-independent Q1, we also need
the left-hand side to be of order Γ. This leads to the conclusion that
Γ̇ ∼ Γ2−1/μ, from which one deduces that Γ(t) decays in time in a
power-law fashion as

Γ(t) = Bt−μ/(μ−1). (32)

Here, the prefactor B is related to the frozen-in distribution Q0(σ)
and like the latter is therefore expected to be dependent on initial
conditions. In the limit μ → 2−, this prediction is consistent with
the aging behavior Γ ∼ t−2 that was found independently for the HL
model.15

To test decay (32) numerically, we perform numerical tests
by using a pseudospectral method on a discrete grid of σ-values
(see Appendix E 1) to solve the equation of motion (8) for P(σ, t).
We choose as the initial condition the liquid steady state with Γ
= 0.134 (see above) and set A to a value below the dynamical arrest
transition.

The results are displayed in Figs. 9 and 10, where we choose
μ = 1.7 throughout; Fig. 8 gives an overview of where the (μ, A)-pairs
are located in the phase diagram. In the first plot (Fig. 9), we show
the behavior of Γ(t) in log–log scale for several values of A below the
transition, along with the corresponding predicted power law. We
see a good agreement, although reaching the asymptotic behavior
is challenging. Numerically, this is due to the fact that one can no
longer obtain reliable numerical data when the scale of the boundary
layer Γ1/μ becomes of the order of the discretization interval dσ. This
problem is accentuated as μ is decreased due to the scaling Γ1/μ that
implies a narrower boundary layer. In addition, lower values of A are
more challenging, given that the yield rate decays more quickly and
the above numerical limit is reached sooner. The limit can be seen in
Fig. 10 as the point where results for different σ-discretizations start
to differ (thin lines).

Physically, the convergence to the power-law asymptote is
affected by two crossover behaviors. To illustrate this, in the second
plot (Fig. 10), we show the log-derivative

b(t) = −d ln(Γ)
d ln(t) . (33)

This is an effective power law exponent that at long times should
converge to the value μ/(μ − 1). On the one hand, for larger A (see
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FIG. 8. Location in the phase diagram of the points where numerical results on the
aging behavior are shown: power law region (μ = 1.7, A = 0.2, 0.18, 0.17, 0.15,
and 0.13, purple; see Figs. 9 and 10), stretched exponential line (μ = 1, A = 0.55
and 0.5, green; see Figs. 11 and 12), and exponential decay (μ = 0.5, A = 0.35,
red; see Fig. 13). The green star indicates the parameters of the lattice model (μ
= 1, A = 0.32; see Sec. VII). This last position should be taken as a qualitative indi-
cation only, given that the stress kick distribution in the lattice model is not exactly
of the upper cutoff form (5); this form affects the precise location of the phase
boundary.

A = 0.2 in Fig. 10) closer to A = Ac, the convergence is affected by
a transient where the system behaves as in the critical case, with
the yield rate decaying as Γ ∼ t−1. For smaller A (see A = 0.13), on
the other hand, b(t) increases very rapidly in the transient. This is
because here we approach the limiting behavior for A → 0, where
there is no stress redistribution and Γ(t) decays as a pure exponen-
tial. This rapid increase in b(t) at low A is the reason why for A
= 0.13 and 0.15 in Fig. 10 the effective exponent converges to its limit
from above, while for the higher values A = 0.17 and 0.18, it does so
from below.

B. Aging for μ = 1
We next turn to the aging behavior in the marginal case μ

= 1. As outlined in Sec. IV, in this case, the homogeneous and the

FIG. 9. Decay of Γ(t) for μ = 1.7 at five different values of A below the dynamical
arrest transition, starting from the liquid steady state with Γ = 0.134. The lower
dashed line shows the predicted power law asymptote Γ ∼ t−μ /(μ−1), with μ/(μ
− 1) ≃ 2.428. The upper dashed line shows the asymptotic power law at
A = Ac , Γ ∼ t−1.

FIG. 10. Evolution of the log derivative b(t) of the yield rate, defined in the text,
for the same runs as in Fig. 9. The four upper curves (A = 0.13, 0.15, 0.17, 0.18)
converge toward the predicted exponent value μ/(μ − 1) ≃ 2.428 (dotted line).
The highest value of A = 0.2 is affected by the critical behavior Γ ∼ t−1 at A
= Ac . Dashed curves indicate runs on a coarser (by a factor of 2) σ-grid; the limit of
reliability of the numerical results is reached where these start to deviate (thinner
lines).

inhomogeneous solutions of the boundary layer equation merge,
resulting in a log-correction to the asymptotic power law on the inte-
rior side of the boundary layer function Rint

1 (z) ∼ ∣z∣−1/2 ln(∣z∣). This
now determines the form of the interior distribution, whose non-
frozen part has to match Γ1/2R1(z) for σ → 1. As described in Sec. IV,
using that z = (σ − 1)/Γ for μ = 1, one has Γ1/2|z|−1/2 ln(|z|) ≃ |σ
− 1|−1/2Γ| ln(Γ)| to leading order so that the distribution in the inte-
rior must take the form P(σ, Γ) = Q0(σ) + Γ| ln(Γ)|Q1(σ). Proceeding
as in the case μ > 1, the time dependence of Γ may now be derived
from the equation of motion in the interior, where the time decay of
the bulk of the probability distribution has to balance the jumps out
to the unstable region, leading to

∂t(−Γ ln(Γ)) = −C1Γ, (34)

where C1 > 0 is a constant. Solving this differential equation for Γ(t)
leads to

Γ(t)∼e−
√

2C1t . (35)

In the long-time regime, therefore, we obtain a stretched exponential
behavior. The prefactor of the power law (C1) is initial condition
dependent as it is again related to the frozen-in distribution Q0(σ).

In the following, we show the result of numerical simulations,
where starting from our reference steady state we study the evolu-
tion at two values of A below the transition, A = 0.55 and A = 0.5
(see Fig. 8). We choose these higher values of A for μ = 1 because
for smaller values, the yield rate becomes small very rapidly and
the stretching regime is then difficult to resolve clearly. In the first
plot (Fig. 11), we graph the yield rate in logarithmic scale against√
t and obtain a good agreement with the predicted straight line. In

the second plot (Fig. 12), we show instead (ln(Γ(t)))2, which makes
it easier to discern the asymptotic region with its linear increase in
time.
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FIG. 11. Decay of Γ(t) against
√

t at A = 0.55 and A = 0.5 starting at the steady
state with Γ = 0.134 for μ = 1. Dashed lines show the predicted exponential decay
with
√

t.

FIG. 12. Same data as in Fig. 11, with the same x and y ranges but now plotting
(ln(Γ(t)))2 against t. This shows more clearly the linear growth (dashed lines) as
predicted by Eq. (35).

FIG. 13. Yield rate decay at A = 0.35, starting from a liquid-like steady state, for μ
= 0.5. The dashed curve shows the exponential decay of Γ(t).

C. Exponential decay for μ < 1
In this regime, we have not carried out a full boundary layer

analysis. From a physical perspective, we expect it to be less relevant:
in contrast to μ = 1 (which is obtained directly from the elastoplastic
decay of the propagator) and 1 < μ < 2 (for which there are coarse-
graining arguments as in Refs. 18 and 19), there seems to be little
evidence for this kind of noise distribution in real systems. We there-
fore show here only the results of a numerical evaluation. These are
consistent with a purely exponential decay, as can be seen in Fig. 13
for μ = 0.5, where the system evolves at A = 0.35 starting from the
reference steady state (see Fig. 8).

VII. AGING IN A LATTICE ELASTOPLASTIC MODEL
In this final section, we compare our mean field results to

the aging behavior found in a lattice elastoplastic model. This is
important in order to test how well the mean field approximation,
which discards spatial correlations, can approximate the full spatial
dynamics.

The implementation of the elastoplastic model combines elas-
tic loading and stochastic relaxation of a single element on each
lattice site, with a spatially discretized fluid/continuum mechanical
approach to enforcing Eshelby stress propagation after each stress
drop, via the Stokes equation coupled to an additional elastic stress.
On a timescale that scales with η/G0, where η is the viscosity and
G0 is the elastic modulus of the local mesoscopic blocks, the Eshelby
quadrupole in 2d is recovered, of course here in the form appropri-
ate to a discrete square lattice with periodic boundary conditions.
To compare with our model, we therefore take a value of the vis-
cosity η/G0 ≪ 1, as we had assumed—in common with most elasto-
plastic models1—that stress propagation after yielding takes place
effectively instantaneously.

In order to connect our modeling approach with the lattice
model, we first extract the corresponding value of A. To do so, we
look at the list of L2 stress propagator elements {δσi} after a unit
stress drop at the origin in a square lattice of size L × L. Taking
the positive elements, we sort them from largest to smallest and
plot the ranking in the sorted list against the value of the element.
This is shown in Fig. 14 and corresponds to a cumulative count
of how many propagator elements are larger than a given δσ. For
small δσ, where the power law behavior (4) holds (see more below
on the distribution at large δσ), this unnormalized cumulative dis-
tribution behaves as P(x < δσ) ≃ A/δσ. Therefore, we can extract
A as the prefactor of the power law for small δσ in Fig. 14, giving
A ≈ 0.32.

We can now run our mean field dynamics for P(σ, t) with the
appropriate A = 0.32, starting from the same initial stress distribu-
tion as in the lattice model (Fig. 15). The lattice data (green) are from
a 4096 × 4096 system, where we can reliably measure yield rates
down to around Γ = 5 × 10−6; at this point, only O(102) unstable
sites remain and finite size fluctuations become noticeable. In a first
approach (red line), we compare this to the mean field model with
A = 0.32 with the definition of the upper cutoff in Sec. II. However,
as can be seen already in Fig. 14, the large near-field lattice propa-
gator elements are actually cut off at a smaller value on the lattice.
In the lattice data, fewer yield events are therefore triggered and the
plastic activity Γ(t) is lower, with a faster decay.
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FIG. 14. Cumulative count of the number of propagator elements larger than a
given δσ, which drops to zero at the maximum stress kick. The lattice elements
(blue solid line) are compared to the model defined here (red dashed line) and to
a power-law model with a modified cutoff (orange dashed line).

In a second approach, therefore, we consider the mean field
model with a modified cutoff chosen as the largest propagator ele-
ment on the lattice. This results in predictions (yellow line in Fig. 15)
that are rather closer to the simulation results but it obviously still
neglects some details of the distribution of near-field propagator ele-
ments. This includes the fact that the lattice propagator list is not
in fact entirely symmetric, e.g., because of the fact that the largest
positive propagator elements occur for nearest neighbors, while the
largest negative ones (in the±45○ directions on the lattice) arise from
next nearest neighbors. We therefore finally run (blue line in Fig. 15)
the mean field theory using as our stress kick distribution the actual
list of lattice propagator elements. This is implemented using a Gille-
spie algorithm that draws stress kicks randomly from this list.29 Such
an approach still gives a somewhat slower decay of the yield rate than
the full lattice run, in fact more so than the power law stress kick
distribution with the modified cutoff (yellow line in Fig. 15).

More remarkable than the quantitative differences between the
three implementations of the mean field description, however, is the
very good qualitative agreement with the simulation data. In fact,
with a simple rescaling of time for each mean field prediction, we can

FIG. 15. Yield rate decay for A = 0.32 starting from the same initial distribution for
the full lattice model and the three mean field approaches described in the text. In
the inset, the data are collapsed by rescaling time for each mean field prediction
and then fitted to a stretched exponential decay.

achieve a near-perfect overlap with the simulation data, as shown in
the inset of Fig. 15. The rescaling factors are modest (c = 1.7, 1.29,
1.12, respectively, for the three mean field approaches) but greater
than unity, showing that the mean field “reshuffling” of stress prop-
agation tends to trigger more yield events across the system than in
the underlying lattice model.

In the inset of Fig. 15, we plot the rescaled data in the same form
as in Fig. 12 to demonstrate that, importantly, the simulation data
conform to the predicted stretched exponential asymptote. Surpris-
ingly, though, even the pre-asymptotic yield rate decay is very well
captured by the mean field theory. These results support the idea that
the propagator, which decays as r−2 in d = 2, is long range enough
(see, e.g., the discussion in Ref. 18) for our mean field predictions for
the aging behavior to apply almost quantitatively.

VIII. DISCUSSION AND OUTLOOK
We have constructed in this paper a time-dependent mean-field

model of amorphous solids, incorporating the power-law mechan-
ical noise spectrum arising from localized plastic events.5–7 This
model allows the exploration of general time-dependences, includ-
ing aging and arbitrary rheological protocols. We have shown first
the phase diagram of the model (in the absence of external shear),
which separates the arrested (i.e., glassy) from the flowing (liquid)
states. We then developed a boundary layer scaling approach, with
the aim of studying the behavior of the model at very low yield rates,
as they appear, e.g., during aging. As a first application, this allowed
us to find the various scalings of the plastic rate in the (stationary)
liquid regime just above the dynamical arrest transition.

Our main findings concern the long-time aging regime, the
mean-field predictions for which we summarize here. We obtained
three different regimes as the exponent μ = d/β characterizing the
noise spectrum was varied. We recall that β is a general decay expo-
nent of the propagator r−β so that varying μ can be thought of as
tuning the interaction range. We found that for 1 < μ < 2, the plastic
activity Γ(t) decays in a power-law fashion as ∼t−μ/(μ−1), reflect-
ing the dominance of far-field events in determining the long-time
dynamics. For μ < 1, on the other hand, near field events are dom-
inant, and the relaxation becomes exponential. This is encoded in
the boundary layer equation, where the crossing of the boundary is
dominated by “small” jumps in the first case and “large” jumps in
the second case, giving rise to the homogeneous and inhomogeneous
solutions, respectively, as described in Sec. IV. In the marginal case
μ = 1, where both near and far-field events are relevant, we found a
stretched exponential decay of Γ(t) that arises mathematically from
the superposition of the two types of boundary layer solution. We
compared this last case to simulations on a lattice elastoplastic model
and found a decay consistent with the predicted stretched exponen-
tial. In fact, even the pre-asymptotic decay of the plastic activity is
extremely well captured by the mean field predictions, up to a mod-
est rescaling of time. This lends strong support to our mean field
approach to the dynamics of amorphous solids.

We discuss next the meaning of the coupling constant A, which
in the absence of shear (as considered in this work) is the only con-
trol parameter of the model once μ is given. Following the analysis
of Sec. VII, where we extracted the value of A = 0.32 from the lat-
tice propagator elements, it may seem that the value of the coupling
is fixed for a given system by its geometry. This is indeed the case
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if we consider our mean field model as derived from an elasto-
plastic model defined on a lattice. In Appendix D, we provide an
alternative interpretation, based on Refs. 5 and 6. There, a two-
dimensional glassy system was studied under quasistatic shear, and
a phenomenology was presented in terms of “active” zones corre-
sponding to shear transformation zones, which are distributed ran-
domly throughout the system and can “flip,” leading to a plastic
event. With this picture in mind, one sees (Appendix D) that the
coupling A is in fact proportional to the area fraction (in d = 2) of
the system occupied by the active zones. Therefore, the coupling A
may in fact be thought of as being related to structural details of the
system, setting the effective coupling between mesoscopic elements
in a way that is reminiscent of the effective mechanical temperature
that appears in the shear-transformation-zone (STZ)30 or soft glassy
rheology (SGR)31 theories.

Related to the question of the meaning of A is the interpretation
of the unsheared (γ̇ = 0) steady state Pss(σ), which we have referred
to above as the liquid regime because its behavior under shear would
be Newtonian, without a yield stress. In the work cited above,6 dissi-
pative plastic events were studied in the athermal quasi-static (AQS)
regime, but it was speculated6 that such transformation zones may
also be present in the absence of shear and may be related to dynam-
ical heterogeneities. Other studies32 show that Eshelby-like stress
correlations are also present on the fluid side of the glass transition.
This is consistent with the mean field picture of a liquid having a
finite rate Γ of local yield events. In any case, the fact that a liquid
steady state Pss(σ) was chosen as the initial condition for the aging is
not essential: other initial states as generated, e.g., by oscillatory pre-
shear could be considered and would not affect the long-time aging
regime we have characterized here.

Ideally, one would like to go beyond mesoscopic models and
compare to particle-based numerical simulations or experiments.
Regarding the former, an interesting model athermal system to
consider would be the repulsive soft sphere model investigated in
Ref. 9. When this athermal system undergoes a quench, it was shown
to exhibit power law relaxation, with “hot spots” reminiscent of
Eshelby events. To compare the results quantitatively to ours would
require a method for extracting the rate of plastic rearrangements
Γ(t) from such simulation data. This method would, in particular,
have to be able to separate events that occur together in avalanches,
which is a significant challenge (see, e.g., the methods employed in
Ref. 33).

For quantitative comparisons with simulations or experiments,
further effects may need to be incorporated in a mean field model.
These may include the appearance of a growing length scale during
the aging dynamics: in the present model, we have considered for
simplicity a system of identical rearranging sites, whose properties
remain constant in time. Likewise, the yield threshold is consid-
ered uniform among the sites, while in reality the thresholds may
be heterogeneous. This effect could be modeled by extracting the
thresholds from a distribution, as previously studied within the HL
model.26,38 Another simplification of our model is that we consider
scalar stresses (shear component only), while of course in reality,
stresses are tensorial. The inclusion of normal stresses may affect,
e.g., the aging dynamics, although the good agreement we found
above with the lattice simulations—which do account for these nor-
mal stresses—suggests that such effects would only change the qual-
itative behavior. Furthermore, we have assumed throughout that

stress propagation after a yield event is instantaneous. This could be
included in a mean field model along the lines of the approach taken
in Ref. 34 for the HL model, where once a site becomes unstable,
it remains so during an additional finite (restructuring) timescale
before its stress is set back to zero. In the lattice elastoplastic model,
one could study a similar effect by investigating the dynamics at
different values of the viscosity. Finally, a possible extension of the
model would be to include thermally activated events, which could
be done following a recent approach35 inspired by depinning mod-
els. It would be interesting to see how this would affect the athermal
aging dynamics described here (which in the presence of a finite
activation rate would no longer be toward a frozen state, leading
instead to a steady state at very long times), possibly leading to
temperature-dependent exponents as was found in a Lennard-Jones
glass.36

A further interesting direction to explore will be the interplay
between aging and rheology. One could extend the analysis here
to investigate the aging of the linear shear response, studying the
stress decay after a small step strain while the system relaxes from a
state with high plastic activity. This was done for the HL model in
Ref. 15, where the stress relaxation was shown to decay incompletely
to a tw-dependent value, tw being the waiting time between the initial
system preparation and the time where the step strain is applied. In
the present model, we also expect an incomplete relaxation but with
a non-trivial time-dependence, which in the physical case μ = 1 will
arise out of the stretched exponential decay of the activity. In con-
trast to the problems described above concerning the measurement
of Γ(t), here, the stress and strain quantities are clearly defined and
measurable so that one could compare with simulations in, e.g., the
model athermal system of Ref. 9 or experimental results for microgel
particle suspensions,12–14 where linear viscoelastic moduli have been
measured in the aging regime.

Moving beyond the linear regime, with the time-dependent
model we have derived in this paper, we can also study general
rheological protocols such as creep response, where the system is
held at constant stress below or just above the macroscopic yield
stress. A mesoscopic elastoplastic approach to the creep problem
was taken already in Ref. 37, where the HL model was used to study
the response of “aged” configurations. Importantly, these initial con-
figurations were set up by hand as Gaussian stress distributions,
with their inverse width acting as a proxy for the system age. To
go beyond this, one would like a full model to capture both the
aging dynamics leading to the initial condition and the ensuing
creep response; this should be possible with our approach. Besides
the symmetric aging dynamics described here, one could consider
also the case of pre-shear within the time-dependent model we have
introduced. This preparation protocol is frequently used in exper-
iments, e.g., on creep in carbopol microgels.10,11 As these systems
are typically regarded as athermal, they would provide an interesting
experimental system to compare to.

APPENDIX A: DERIVATION OF TIME-DEPENDENT
MODEL
1. Reduction to stress distribution dynamics

We show here the details of the derivation of the dynamics
(8) for the local stress distribution from the full N-body master
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equation (7). In this master equation, the spatial structure of the
stress propagation has already been removed and replaced by i.i.d.
stress kicks. Correlations do remain in the transition kernel (6) for
finite N but will disappear as N →∞. We thus assume directly the
factorization

P(σ) =∏
i
Pi(σi). (A1)

We are then interested in finding the dynamics of the stress
distribution

P(σ) = 1
N ∑i

⟨δ(σ − σi)⟩ =
1
N ∑i

Pi(σ). (A2)

Each local Pi(σi) can be obtained by marginalizing out the remaining
variables,

Pi(σi) = ∫ {∏
j≠i

dσj}P(σ). (A3)

This is trivial to do with the drift term of the master equation (7).
From the transition rates K l, on the other hand, we will obtain two
terms, which we call I1 and I2. These correspond, respectively, to the
case when l = i (so that the site that is yielding is the site for which we
are finding the marginal distribution) and when l ≠ i. We thus have

∂tPi(σi) = ∫ {∏
j≠i

dσj}∂tP(σ)

= −γ̇∂σiPi(σi) + I1 + I2. (A4)

To simplify matters, we will at first carry out the calculations with-
out the counterterm enforcing zero net stress change. We will justify
this explicitly at the end, but intuitively, one may already expect
that this term gives sub-leading corrections for large N. Indeed, the
sum over random positive and negative increments will scale as
∑k≠l δσk ∼

√
N − 1

√
⟨δσ2⟩ so that we are considering in the end a

term of order
√
⟨δσ2⟩/

√
N − 1, which is negligible compared to a

typical stress kick δσ for N ≫ 1. Leaving out the counterterm and
exploiting that the stress kicks are i.i.d. random variables, we can
generically simplify the delta term in the rates (6) to

⟨∏
j≠l
δ(σj − (σ′j + δσj))⟩ =∏

j≠l
ρ(σj − σ′j ). (A5)

We begin now with the term I1, corresponding to the case l = i.
This is given by

I1 = ∫
⎧⎪⎪⎨⎪⎪⎩
∏
j≠i

dσj
⎫⎪⎪⎬⎪⎪⎭

dσ′[Ki(σ∣σ′)P(σ′) − Ki(σ′∣σ)P(σ)], (A6)

where the rate is simply

Ki(σ∣σ′) = θ(∣σ′i ∣ − 1)δ(σi)∏
j≠i
ρ(σj − σ′j ). (A7)

Carrying out the marginalization (A6), one obtains that

I1 = (∫ dσ′i θ(∣σ′i ∣ − 1)Pi(σ′i ))δ(σi) − θ(∣σi∣ − 1)Pi(σi). (A8)

Therefore, when the yielding takes place at the site i itself, we obtain
the yielding and the reinjection terms in the master equation, as one
would expect.

The other term, I2, which corresponds to yield events at sites
l ≠ i, must then give rise to the propagator in the master equation.
We need to compute

I2 =∑
l≠i
∫ {∏

j≠i
dσj}dσ′[Kl(σ∣σ′)P(σ′) − Kl(σ′∣σ)P(σ)]. (A9)

In both terms, the integrals over dσkdσk′ for k ∉ {i, l} just give fac-
tors of unity, while the integration over dσ ldσ l′ results in a factor
∫dσ lθ(|σ l| − 1)Pl(σ l). This leaves

I2 =∑
l≠i
(∫ dσlθ(∣σl∣ − 1)Pl(σl))

× ∫ dσ′i ρ(σi − σ′i )[Pi(σ′i ) − Pi(σi)]. (A10)

We divide and multiply this expression by N and add the l = i term
to the sum as it will only give a negligible O(1/N) correction,

I2 =
1
N ∑l

(∫ dσlθ(∣σl∣ − 1)Pl(σl))

× ∫ dσ′iNρ(σi − σ′i )[Pi(σ′i ) − Pi(σi)], (A11)

where

Nρ(σi − σ′i ) = N
A
N
∣σi − σ′i ∣−1−μ = A∣σi − σ′i ∣−1−μ. (A12)

This is the propagator in the master equation; the lower cutoff
∼N−1/μ of ρ(δσ) is immaterial here as it becomes negligible for N
≫ 1. Defining then the yield rate as the average

Γ = 1
N ∑l

∫ dσlθ(∣σl∣ − 1)Pl(σl) = ∫ dσ θ(∣σ∣ − 1)P(σ) (A13)

and inserting the results for I1 and I2, Eq. (A4) becomes

∂tPi(σi) = −γ̇∂σiPi(σi) + AΓ∫
σi+δσu

σi−δσu

Pi(σ′i ) − Pi(σi, t)
∣σi − σ′i ∣μ+1 dσ′i

− θ(∣σi∣ − 1)Pi(σi) + Γδ(σi). (A14)

Summing over i and dividing byN then gives the master equation (8)
in the main text.

We finally have to show that the term enforcing a zero net
stress change after the yield event is indeed negligible for N ≫ 1.
Instead of the simplified form (A5), we take into account now the
full form of the rates (6) including this enforcing term and look for
the corresponding contribution to I1 (A6) and I2 (A9). Carrying out
first the integrals over dσjdσ′j for j ≠ i, the delta terms over j ≠ i all
give factors of 1 as was the case previously. We are then left only
to deal with the term concerning site i. Introducing Fourier trans-
forms, we can rewrite the delta function defining this term in the
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following manner:

δ
⎛
⎝
σi −
⎛
⎝
σ′i + δσi −

1
N − 1∑k≠l

δσk
⎞
⎠
⎞
⎠

= ∫
dλ
2π ∏k≠l,i

eiλδσk/(N−1)eiλ(σi−σ
′
i −δσi(1−1/(N−1))). (A15)

This term now needs to be averaged over the i.i.d. stress increment
distributions. Doing so we find that

⟨δ
⎛
⎝
σi −
⎛
⎝
σ′i + δσi −

1
N − 1∑k≠l

δσk
⎞
⎠
⎞
⎠
⟩

= ∫
dλ
2π
ρ̂( λ

N − 1
)
N−2

eiλ(σi−σ
′
i )ρ̂(−λ(N − 2

N − 1
)) (A16)

in terms of the characteristic function

ρ̂(s) = ∫ d(δσ)ρ(δσ)eiδσs. (A17)

Expanding this characteristic function for small argument, one can
write

ρ̂(s) = 1 − 1
2
⟨δσ2⟩s2 + O(s4), (A18)

where the variance ⟨δσ2⟩ of the microscopic stress kick distribution
is given by

⟨δσ2⟩ = 2∫
δσu

δσuN−1/μ
d(δσ)ρ(σ)δσ2

= 2A
N(2 − μ)δσ

2−μ
u + O(N−2/μ) ≡ B

N
+ O(N−2/μ). (A19)

The first term involving ρ̂ in (A16) can now be shown to scale as

ρ̂( λ
N − 1

)
N−2

∼ 1 + O(Bλ
2

N2 ). (A20)

The final factor in (A16) can be expanded in a similar fashion,

ρ̂(−λ(1 − 1
N − 1

)) = ρ̂(−λ) +
λ

N − 1
ρ̂′(−λ) + O( 1

N2 ). (A21)

For large N, the correction terms can be neglected and (A16)
becomes simply

∫
dλ
2π
ρ̂(−λ)eiλ(σi−σ

′
i ) = ρ(σi − σ′i ), (A22)

as it would be if we had neglected the enforcing term from the begin-
ning. The above analysis shows that the leading corrections to this
result are O(1/N).

2. The Hebraud–Lequeux limit
We here show in detail how the HL diffusive model is obtained

in the limit μ→ 2− of Eq. (8) in the main text. This means specifically
that the stress propagation term in the second line must reduce to the
diffusive form αΓ(t)∂2

σP in (11). To demonstrate this, we apply to
this term the Kramers–Moyal expansion of a master equation, which

has the form

∂P(σ, t)
∂t

=
∞

∑
n=1

(−1)n
n!

∂n

∂σn
(an(σ)P(σ, t)). (A23)

The coefficients an(σ), which in general may depend on σ, are the
jump moments, i.e., the moments of the change in σ weighted by the
corresponding transition rate. In our case, these are independent of
the original stress and given by

an = ∫ (δσ)nΓρ(δσ)d(δσ) (A24)

(we have dropped the time-dependence of Γ here, for simplicity of
notation). In other words, the an are obtained as the moments of the
Levý kernel in (8), which explicitly reads as

Γρ(δσ) = AΓ
∣δσ∣1+μ . (A25)

Bearing in mind the upper cutoff δσu on |δσ|, the coefficients an then
take the following form for even n = 2, 4, 6, . . . (for odd n, they are
zero as the kernel is an even function):

an = 2 AΓ∫
δσu

0
δσn−1−μd(δσ) = 2AΓ

n − μ(
2A
μ
)
n/μ−1

. (A26)

We will fix the second jump moment to a constant by setting a2
= 2αΓ, where α is equal to the αeff introduced in the main text

α = A
2 − μ(

2A
μ
)

2/μ−1

. (A27)

Inverting this relation, one finds that for the second jump moment
to stay fixed, the prefactor A must vary with μ as

A(μ) = μ
2
(2α

2 − μ
μ
)
μ/2

. (A28)

Inserting this into Eq. (A26), we find that the coefficients of the
Kramers–Moyal expansion take the form

an = Γ
μ

n − μ(2α
2 − μ
μ
)
n/2

. (A29)

We can now take the limit μ → 2− at fixed α. One sees from the
previous expression that in this limit,

an ≃
2Γ

n − 2
αn/2(2 − μ)n/2 → 0 ∀n ≥ 4. (A30)

We have therefore shown that all coefficients of the Kramers–
Moyal expansion except the second one vanish for μ → 2. The
remaining n = 2 term then gives exactly the diffusive contribution
(1/2)∂2

σ(a2P) = αΓ∂2
σP that is used in the HL model to represent

stress propagation.

APPENDIX B: DERIVATION OF STEADY STATE
SCALING

Considering again the steady state condition (12), we view the
stress distribution as a perturbed version of the critical distribution

Phys. Fluids 32, 127104 (2020); doi: 10.1063/5.0033196 32, 127104-14

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

Pc(σ) defined in Sec. III, which to connect with the boundary layer
ansatz we write as Q0(σ) so that P(σ, Γ) = Q0(σ) + δP(σ, Γ). Inserting
this into (12) and using the steady state condition for Q0(σ) at A
= Ac, one finds for δP(σ)

ALδP(σ) − θ(∣σ∣ − 1)
Γ

δP(σ) − Ãδ(σ) + AS0(σ) = 0, (B1)

where we have defined

Ã ≡ A − Ac

Ac
(B2)

and S0(σ) is given by

S0(σ) = θ(∣σ∣ − 1)∫
1

−1

Q0(σ′)
∣σ − σ′∣1+μ dσ′. (B3)

To find the critical scaling, we consider as in the HL model the nor-
malization condition. Due to the linearity of Eq. (B1), we can split δP
into a negative part −Δorig(σ, Γ) from the (negative) source −Ãδ(σ)
at the origin and a positive part Δext(σ, Γ) from AS0(σ). One can then
write the normalization condition as a condition on the integrals of
these functions,

∫ δP(σ, Γ)dσ != 0 = −∫ Δorigdσ + ∫ Δextdσ. (B4)

To obtain the first of these integrals, we note that Δorig(σ) solves
exactly the standard steady state condition (12), except that the
source term is smaller by a factor Ã. Thus, ∫Δorig(σ)dσ is given by
Ã times the mean lifetime τFP(A, Γ) of an effective particle diffusing
from the origin. The lifetime τFP(A, Γ) may be approximated by the
value τFP(Ac, Γ→ 0) = 1 up to higher-order corrections in the small
quantities Γ and Ã. These can be neglected for the purpose of find-
ing the leading scaling relations, thus simplifying the normalization
condition to

∫ Δorig(σ, Γ)dσ ≃ Ã = ∫ Δext(σ, Γ)dσ. (B5)

We may now find the critical scaling by considering only the term
Δext(σ, Γ), which follows Eq. (B1) without the term at the origin.
Coming back to the interpretation in terms of first passage times,
one may think of the integral over Δext as a Δτext. This is the extra
time that a particle lives before yielding when Γ > 0, where yielding
is no longer instantaneous but happens (in the rescaled equation) at
a finite but large rate O(1/Γ)≫ 1.

We can now follow the ansatz introduced in Sec. IV [without
the frozen-in term Q0(σ)] to write Δext(σ, Γ) piecewise in the interior,
boundary layer, and exterior regions. First, for the exterior region,
where we write Δext = ΓT1(σ), we find from (B1) to the leading order
that T1(σ) = AS0(σ) (the first term is smaller by an order of Γ).

Proceeding to the boundary layer region, where Δext(σ, Γ)
= ΓcR1(z) (without the frozen part), we need to incorporate the
source S0(σ) in its limiting form that applies within the bound-
ary layer. To deduce this form, we introduce the scaling variable
y = (1− σ′)/(σ − 1) and use that for σ − 1≪ 1, the integral (B3) will be
dominated by the singular behavior Q0(σ′) ≃ q0(1 − σ′)μ/2 near the
boundary,

S0(σ) = q0(σ − 1)−μ/2 ∫
2/(σ−1)

0

yμ/2

(1 + y)μ/2 dy (B6)

≃ q0 B(μ
2

, 1 +
μ
2
)(σ − 1)−μ/2 (B7)

= Γ−1/2q0 B(μ
2

, 1 +
μ
2
)z−μ/2. (B8)

Comparing with (22) we see that this is precisely Γ−1/2S(z). On the
other hand, because of the matching between ΓcR1(z) and T1(σ)
for z ≫ 1 and σ − 1 ≪ 1, we find that c = 1/2, as in Sec. IV.
Writing the propagation in terms of rescaled variables as in (20),
and together with the yielding term, we obtain finally that R1(z)
as defined above for the boundary layer behavior of Δext(σ) follows
precisely the original boundary layer equation (21).

Considering the solution of the boundary layer equation on the
interior as described in Sec. IV, one can now deduce the scaling with
Γ of Δext(σ) in the interior region. The integral ∫Δext(σ, Γ)dσ is dom-
inated by this interior region so that via Eq. (B5) we are eventually
led to the critical scaling of the plastic activity (30).

APPENDIX C: SCALING OF P (σ,Γ)
In this appendix, we give further details on the expansion for

Γ ≪ 1 of the distribution P(σ, Γ). As outlined in the main text, the
basis of the analysis is the boundary layer ansatz, whereby P(σ, Γ)
is expressed in a piecewise manner in the different regions (see also
below). This ansatz must then be inserted into the master equation
in order to obtain equations for the scaling functions. Restricting
ourselves to the first order in the expansion, these are R1(z), T1(σ),
and Q1(σ) for the boundary layer (from now on BL), exterior, and
interior regions, respectively. The frozen-in distribution Q0(σ) cor-
responds to the critical distribution Pc(σ) in the steady state scaling
analysis (Sec. V), whereas in the aging, it is fixed indirectly by the
initial condition. We further restrict the analysis to the symmetric
case. In the aging setting, parity is conserved by the time evolution,
so the stress distribution will be symmetric if the same is true of the
initial distribution, i.e., P0(−σ) = P0(σ). We can then just focus on
the bulk (−1 + ϵ ≤ σ ≤ 1 −ϵ) and the right-hand side BL (1 − ϵ < σ
< 1 + ϵ) and tail (σ ≥ 1 + ϵ).

We will concentrate on the regime 1 < μ < 2, from which the
marginal case μ = 1 may be obtained as a limiting case. The BL ansatz
for P(σ, Γ) is

P(σ, Γ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Q0(σ) + Γ1/μQ1(σ) for −1 + ϵ ≤ σ ≤ 1 − ϵ
Γ1/2R(z) for 1 − ϵ < σ < 1 + ϵ
ΓT1(σ) for σ ≥ 1 + ϵ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (C1)

where the scaling function in the BL is written in terms of the re-
scaled stress variable z = Γ−1/μ(σ − 1).

There are some comments to be made on the ansatz above. In
particular, we have already inserted the final values a = 1/μ, b = 1,
and c = 1/2 of the exponents introduced in the main text:

● The b = 1 exponent for the external tail is clear from the
analysis below of the external equation [in (C1)], where the
external part of P(σ, Γ) will be shown to be given by Q0
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convolved with the Lévy kernel and thus proportional to the
intensity AΓ of this Lévy propagator.

● The exponent c = 1/2 comes from matching the asymptotic
power law of the BL function on the exterior, Rext

1 (z) for z
≫ 1, with the exterior tail,T1(σ) for σ − 1≪ 1. In this regime,
ΓT1(σ) ∼ Γ(σ − 1)−μ/2, which has to match with ΓcR(z)
∼ Γcz−μ/2, thus entailing c = 1/2.

● As already pointed out in Sec. IV, the exponent a = 1/μ sim-
ilarly stems from the match-up of the asymptotic power law
of the BL function on the interior, Rint

1 (z) for |z| ≫ 1, with
the interior function, Q1(σ) for 1 − σ ≪ 1.

As already explained in the main text, the BL function R(z)
can be split further into a frozen contribution from Q0(σ) and
a nontrivial piece we denote by R1(z). We recall Eq. (19), R(z)
= q0(−z)μ/2θ(−z) + R1(z).

We can now proceed by writing the full equation of motion,
separately for the three different regions in σ.

1. External tail
The equation of motion (8) in the (positive) external region for

T1(σ), which for convenience we divide once by Γ, reads (from now
on, we do not write the upper cut-off on the stress changes and leave
this implicit in the power law kernel)

1
Γ
∂tP(σ, Γ) = Γ̇

Γ
T1(σ) = A(∫

1−ϵ

−1+ϵ

Γ1/μQ1(σ′) + Q0(σ′)
∣σ − σ′∣μ+1 dσ′

+∫
1+ϵ

1−ϵ

Γ1/2R1(Γ−1/μ(σ′ − 1))
∣σ − σ′∣μ+1 dσ′

+ Γ1/2 ∫
1

1−ϵ

q0(−z′)μ/2
∣σ − σ′∣μ+1 dσ′

+ ∫
∞

1+ϵ

Γ(T1(σ′) − T1(σ))
∣σ − σ′∣μ+1 dσ′

− ΓT1(σ)∫
1+ϵ

−∞

1
∣σ − σ′∣μ+1 dσ′) − T1(σ). (C2)

The leading order terms in this equation are O(1), and accordingly,
we have omitted incoming terms from the other side of the domain,
i.e., σ′ < −1 + ϵ, which vanish as Γ → 0. The term from the time
derivative Γ̇/Γ is also of lower order for any Γ(t) decaying slower
than an exponential (this is true for both the power-law decay for
1 < μ < 2 and the stretched exponential at μ = 1).

Taking into account the asymptotic power-law forms of the
interior Rint

1 (z) and exterior Rext
1 (z) boundary layer functions, one

sees that the integral involving R1(z) is dominated by the upper and
lower ends. The dominance of the integral by its power-law asymp-
totes means that the shape of R1(z) inside the boundary layer is
irrelevant here; thus, we can simply extrapolate T1 from the out-
side and Q1 from the inside into the boundary layer (i.e., consider
ϵ→ 0). Likewise, the contribution from the μ/2 power-law term can
be seen as just being the extension of the integral over the frozen-in
distribution Q0(σ) all the way up to the boundary.

Collecting the leading order terms, one therefore has

T1(σ) = A∫
1

−1

Q0(σ′)
(σ − σ′)μ+1 dσ′. (C3)

So, the external function is simply given by the convolution of the
frozen-in distribution Q0(σ) with the Lévy kernel. Physically, this
means that local stresses above the yield threshold typically arise
when sub-threshold elements, with stresses following the frozen-in
distribution Q0(σ), are perturbed by a single stress kick. We can eval-
uate the convolution explicitly in the limit where σ − 1≪ 1, which
will have to match up with the BL function R1(z) for z≫ 1. Chang-
ing variable to y = (1 − σ′)/(σ − 1) and using that Q0(σ′) ∼ q0(1
− σ′)μ/2, we can rewrite (C3) as

T1(σ) = Aq0(σ − 1)−μ/2 ∫
2

σ−1

0

yμ/2

(1 + y)μ+1 dy

≃ Aq0 B(μ
2

, 1 +
μ
2
)(σ − 1)−μ/2, (C4)

which decays in the ∼(σ − 1)−μ/2 fashion stated in the main text.

2. Contributions to the boundary layer
The equation of motion (8) (again divided once by Γ) in the

boundary layer region reads as

1
Γ
∂tP̃(z, Γ) = 1

2
Γ−1/2 Γ̇

Γ
R1(z) − Γ−1/2 Γ̇

Γ
R′1(z)

z
μ

= A(∫
1−ϵ

−1+ϵ

Γ1/μQ1(σ′) + Q0(σ′)
∣Γ1/μz − (σ′ − 1)∣μ+1

dσ′

+ ∫
∞

1+ϵ

ΓT1(σ′)
∣Γ1/μz − (σ′ − 1)∣μ+1

dσ′

+ Γ−1/2 ∫
ϵΓ−1/μ

−ϵΓ−1/μ

R1(z′) − R1(z)
∣z − z′∣μ+1 dz′

+ Γ−1/2q0 ∫
ϵΓ−1/μ

−ϵΓ−1/μ

(−z′)μ/2θ(−z′) − (−z)μ/2θ(−z)
∣z − z′∣μ+1 dz′

− Γ1/2R1(z)∫
out

1
∣Γ1/μz − (σ′ − 1)∣μ+1

dσ′)

− θ(z)Γ−1/2R1(z), (C5)

where we have already rewritten the integrals inside the BL in
terms of the scaling variable z′ = Γ−1/μ(σ′ − 1) and correspondingly
expressed σ in terms of z as σ = zΓ1/μ + 1. As in Appendix C 1, we
again omit the lower order incoming terms from σ′ < −1 + ϵ. We
have also introduced the notation ∫out to denote the integration over
the region (−∞, 1 − ϵ) ∪ (1 + ϵ, +∞).

The BL equation (21) for R1(z) stated in the main text now
follows from (C5) using two arguments:

● First, the left-hand side terms stemming from the time
derivative are of lower order than the leading order terms
O(Γ−1/2) in the equation. For the case 1 < μ < 2, where
we will find that Γ(t) decays in a power-law fashion as Γ(t)
∼ t−μ/(μ−1), one has Γ̇/Γ = − μ

μ−1Γ
(μ−1)/μ and the time deriva-

tive terms are smaller by this factor than the leading Γ−1/2

terms. In the case μ = 1, where we will find a stretched expo-
nential, we also have that Γ̇Γ−3/2 ≪ Γ−1/2, and so, the time-
derivative part is again of lower order and can be discarded
in the final leading order equation for R1(z).
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● Due to the way the boundary layer is defined, namely, the
fact that ϵΓ−1/μ ≫ 1, it is simple to show that the terms
propagating the bulk and exterior functions Q0, Q1, and T1
into the boundary layer [z = O(1)] are negligible. The bulk
and exterior functions therefore only appear as matching
conditions for the asymptotic power laws of R1(z).

Overall, the left-hand side of (C5) can be discarded to the
leading order, as can be the first and second terms on the right;
in the third and fourth terms, the integration limits become (−∞,
+∞), and the fifth term is again subleading. Evaluating the R1-
independent fourth term explicitly then gives exactly (21) in the
main text.

3. Equation in the interior
The equation of motion (8) (divided once by Γ) in the inte-

rior region, where we write to the leading order P(σ, Γ) = Q0(σ)
+ Γ1/μQ1(σ), reads as

∂tP =
1
μ
Γ

1
μ−1 Γ̇

Γ
Q1(σ) = A(∫

∞

1+ϵ

ΓT1(σ′)
∣σ − σ′∣μ+1 dσ′

+ ∫
−1−ϵ

−∞

ΓT1(−σ′)
∣σ − σ′∣μ+1 dσ′ + ∫

1+ϵ

1−ϵ

Γ
1
2 R1(Γ−

1
μ (σ′ − 1))

∣σ − σ′∣μ+1 dσ′

+ ∫
−1+ϵ

−1−ϵ

Γ
1
2 R1(Γ−

1
μ (−1 − σ′))

∣σ − σ′∣μ+1 dσ′

+ Γ
1
μ ∫

1−ϵ

−1+ϵ

Q1(σ′) −Q1(σ)
∣σ − σ′∣μ+1 dσ′ + ∫

1

−1

Q0(σ′) −Q0(σ)
∣σ − σ′∣μ+1 dσ′

− (Γ
1
μQ1(σ) + Q0(σ))∫

out

1
∣σ − σ′∣μ+1 dσ′) + δ(σ), (C6)

where we again use the notation ∫out, this time to denote the integra-
tion over the region (−∞, −1 + ϵ) ∪ (1 − ϵ, +∞). It is clear to see
in (C6) that the leading order terms on the right-hand side are O(1)
and are given by

A(∫
1

−1

Q0(σ′) −Q0(σ)
∣σ − σ′∣μ+1 dσ′ −Q0(σ)∫

out

1
∣σ − σ′∣μ+1 dσ′) + δ(σ).

(C7)
This term is nonzero for any A < Ac. To balance it and obtain a time-
independent Q1, we need the left-hand side of (C6) to be also of
order O(1), thus leading to the conclusion that Γ̇/Γ = O(Γ(μ−1)/μ).
This implies that Γ(t) decays in time in a power-law fashion as Γ(t)
= Bt−b, with b = μ

μ−1 , as stated in the main text. In particular, one has

Γ̇/Γ = −bt−1 = −bΓ1/bB−1/b, where B represents the prefactor of the
power-law decay and can be extracted from the numerical solution
of the dynamics. We therefore obtain an equation for Q1(σ),

Q1(σ) = −(μ − 1)B(μ−1)/μ(A(∫
1

−1

Q0(σ′) −Q0(σ)
∣σ − σ′∣μ+1 dσ′

−Q0(σ)∫
out

1
∣σ − σ′∣μ+1 dσ′) + δ(σ)). (C8)

An example for this function is shown in Fig. 5.

4. R int
1 (z ) for μ = 1
For the μ = 1 case, we will take the limit μ→ 1+ of Eq. (C5) and

perform an analysis similar to the one carried out in Ref. 8. As men-
tioned above, the time derivative part on the left will be neglected,
which will turn out to be consistent at the end, given the decay of
Γ(t).

We therefore have again the equation

A∫
∞

−∞

R1(z′) − R1(z)
∣z − z′∣μ+1 dz′ + S(z) − θ(z)R1(z) = 0 (C9)

and write the source S(z) as

S(z) = CSz−μ/2, CS = q0 B(μ
2

, 1 +
μ
2
). (C10)

For large positive z, the first (propagator) term is always subleading
compared to R1 itself, so asymptotically R1 has to exactly balance the
source term,

Rext
1 (z) = Cextz−μ/2, (C11)

with Cext = CS. Next, we consider the BL equation (C9) for large neg-
ative z (z < 0, |z| ≫ 1). We split the propagator term in (C9) into
three parts, which correspond, respectively, to jumps within the sta-
ble z < 0 region, jumps out to the unstable z > 0 region, and incoming
jumps from the unstable region (this term was negligible for large
negative z in the μ > 1 case),

∫
∞

−∞

R1(z′) − R1(z)
∣z − z′∣μ+1 dz′ = ∫

0

−∞

Rint
1 (z′) − Rint

1 (z)
∣z − z′∣μ+1 dz′

− Rint
1 (z)∫

∞

0

1
∣z − z′∣μ+1 dz′

+ ∫
∞

0

Rext
1 (z′)
∣z − z′∣μ+1 dz′. (C12)

Using the asymptotic behavior of Rext
1 (z′) for large positive z′, the

last term with the jumps from the exterior part of the BL can be
evaluated for large negative z as

CextB(1 − μ/2, 3μ/2)∣z∣−3μ/2 ≡ C+∣z∣−3μ/2. (C13)

Given that we want to balance this term and the convolutions with
the power law kernel always reduce the power law exponent by μ, we
write an ansatz for the interior BL behavior as

Rint
1 (z) = Cint∣z∣−μ/2. (C14)

With this, all terms in Eq. (C9) scale as |z|−3μ/2 for large negative z.
After appropriate rescalings, this equation then becomes

(Cint ∫
∞

0

x−μ/2 − 1
∣1 − x∣μ+1 dx − 1

μ
Cint + C+)∣z∣−3μ/2 = 0. (C15)

From here, we can find Cint, which will be given by

Cint =
C+

1
μ − ∫

∞

0
x−μ/2−1
∣1−x∣μ+1 dx

. (C16)

Phys. Fluids 32, 127104 (2020); doi: 10.1063/5.0033196 32, 127104-17

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

Given that this is the solution to the BL equation taking into account
the source generated by jumps from the z > 0 region (C13), we call it
the inhomogeneous solution and write it as

Rint i
1 (z) = Ci

int∣z∣−μ/2, (C17)

where Ci
int is given by Eq. (C16).

In Sec. IV, the exponent of the homogeneous solution was
worked out [the second exponent in Eq. (25)]. The full solution
(always in the regime of large negative z) may then be written as
a superposition

Rint
1 (z) = Rint h

1 (z) + Rint i
1 (z) = Ch

int∣z∣−(1−μ/2) + Ci
int∣z∣−μ/2. (C18)

For the purposes of taking the limit μ→ 1+, we introduce δ = μ − 1 so
that the limit becomes δ → 0+. In this limit, the (negative) denom-
inator of (C16) goes to zero linearly in δ (the exact prefactor from
numerics is consistent with π2/2; we absorb this into a rescaled ver-
sion Ĉ+ of C+). We can therefore write the solution when δ ≪ 1 in
the following form:

Rint
1 (z) = Ch

int(δ)∣z∣−(1−δ)/2 −
Ĉ+

δ
∣z∣−(1+δ)/2. (C19)

In order for this to stay finite as δ→ 0, the diverging last term has to
be canceled to the leading order. This entails, from Eq. (C19), that

Ch
int = CBL +

Ĉ+

δ
, (C20)

and so, the prefactor of the homogeneous solution picks up a pos-
itive divergence in order to balance the negative divergence in the
inhomogeneous one.

We now take the limit δ → 0+ in Eq. (C19) and work out the
form of the boundary layer function R1(z) in the limit z → −∞.
Inserting the form of Ch

int we have just derived, this becomes

Rint
1 (z) = ∣z∣−1/2((CBL +

Ĉ+

δ
)∣z∣δ/2 − Ĉ+

δ
∣z∣−δ/2). (C21)

We now expand in the exponent

∣z∣δ/2 = eδ/2 ln(∣z∣) = 1 +
δ
2

ln(∣z∣) + O(δ2) (C22)

and plug this expansion back into Eq. (C21) to obtain

lim
δ→0

Rint
1 (z) = ∣z∣−1/2(CBL + Ĉ+ ln(∣z∣)) ∣z∣≫1≈ Ĉ+∣z∣−1/2 ln(∣z∣).

(C23)
We therefore see that the interior tail of the boundary layer function
acquires a logarithmic correction at μ = 1.

APPENDIX D: DERIVATION OF ρ(δσ) FOR A CIRCULAR
GEOMETRY

In this appendix, we perform the explicit derivation of the
mechanical noise spectrum ρ(δσ) in the 2D case considering a

circular geometry. In 2D, the stress field caused by a local plastic
event at the origin reads in polar coordinates as

δσ(r, θ) = G0a2 cos(4θ)
r2 . (D1)

We then consider a circular geometry so that the cluster of rearrang-
ing particles at the origin occupies a radius r0, while the rest of the
mesoscopic elements lie uniformly within the ring around this, i.e.,
at a distance r0 < r < R, R being the radius of the total system. The
distribution over site positions then reads as

ρ(r, θ) = r
π(R2 − r2

0)
drdθ. (D2)

In order to obtain the distribution over stress increments ρ(δσ), we
need to perform the transformation (r, θ)→ δσ on distribution (D2),
using relation (D1),

ρ(δσ) = 1
π(R2 − r2

0)
∫

R

r0

dr∫
2π

0
dθ r δ(δσ −G0a2 cos(4θ)

r2 ). (D3)

We set θ′ = 4θ so that the angular integration becomes (1/4)∫8π0 dθ′;
because of the periodicity of cos(θ′), we can then equivalently restrict
the integration to 2∫π0 dθ′. We now focus first on the positive half of
the distribution (δσ > 0), which corresponds to θ′ < π/2; the nega-
tive half may be obtained by symmetry. Performing then the variable
change x = cos(θ′), we have for δσ > 0

ρ(δσ) = 2
π(R2 − r2

0)
∫

R

r0

dr∫
1

0
dx

r√
1 − x2

δ(δσ −G0a2 x
r2 ). (D4)

Using the properties of the delta function, we can then rewrite

δ(δσ −G0a2 x
r2 ) =

r3

2G0a2x
δ
⎛
⎝
r −
√

G0a2x
δσ
⎞
⎠

. (D5)

We can now perform the integral over r in (D4),

∫
R

r0

r4δ
⎛
⎝
r −
√

G0a2x
δσ
⎞
⎠

dr = (G0a2x
δσ
)

2

, (D6)

provided that

δσr2
0

G0a2 < x < min(1,
δσR2

G0a2 ); (D7)

otherwise, the integral vanishes. Therefore, the full integral (D4)
becomes

ρ+(δσ) = G0a2

π(R2 − r2
0)
δσ−2 ∫

min(1, δσR
2

G0a2 )

δσr20
G0a2

x√
1 − x2

dx. (D8)

Performing the last integral and making use of the symmetry ρ(−δσ)
= ρ(δσ), the final expression for the stress kick distribution reads as

ρ(δσ) = G0a2

π(R2 − r2
0)
δσ−2

×
⎛
⎜
⎝

¿
ÁÁÀ1 − ( δσr

2
0

G0a2 )
2

−

¿
ÁÁÀ1 − (min(1,

∣δσ∣R2

G0a2 ))
2⎞
⎟
⎠

. (D9)
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This distribution has two main features with respect to the pure
power law distribution used in the main text. First, it goes to zero
continuously as δσ approaches the highest possible stress kick in the
system G0a2/r2

0 , instead of presenting a hard cutoff (see Fig. 16). Sec-
ond, the system size-dependent lower cutoff is also no longer sharp;
instead, ρ(δσ) drops smoothly to a nonzero value as |δσ| decreases
belowG0a2/R2. In the limitR→∞ and for δσ below, the upper cutoff
one recovers the expected δσ−2 power law decay.

Finally, we discuss the result (D9) in connection with the form
of ρ(δσ) used in the main text, defined by (4) and (5). To explore
this, we replace the physical r−2 propagator decay (D1) by G0aβ

cos(4θ)/rβ, with a general decay exponent β. If we then carry out the
same steps as described above, we obtain in the power-law region

ρ(δσ) = cμμ(G0aβ)μ

π(R2 − r2
0)
∣δσ∣−1−μ, (D10)

where we have defined μ = d/β = 2/β as in the main text. The constant
cμ arises from the angular integration and is equal to

cμ = ∫
1

0

xμ√
1 − x2

dx =
√
π Γ( μ+1

2 )
2Γ( μ2 + 1)

(D11)

so that c1 = 1, while in the limit case μ = 2, one has c2 = π/4.
We now need to relate the area of the system to the num-

ber of mesoscopic elements or zones N. To do so, we introduce a
dimensionless packing density

φ = Nr2
0

R2 (D12)

so that the distribution (D10) may be written as

ρ(δσ) = A
N
∣δσ∣−μ−1 with A = cμφμ

π
⎛
⎝
G0aβ

rβ0

⎞
⎠

μ

. (D13)

The maximum stress change in the system δσu can also be written in
terms of the coupling A as

FIG. 16. Comparison of the hard cutoff expression (4) with the soft cutoff form (D9).
A = 0.32 in the hard cutoff form; parameters in the soft cutoff version were chosen
to have the same upper cutoff and power-law prefactor.

δσu =
G0aβ

rβ0
= ( Aπ

cμφμ
)

1/μ

. (D14)

We see from (D13) that the strength of the coupling constant A
depends crucially on the packing density φ. On a lattice, the coupling
A will be fixed once and for all by the geometry of the underlying
grid. However, if one takes the view in Ref. 6 of a variable density of
“active” zones, which may be related to an effective mechanical tem-
perature regulating the activity in the system, it becomes meaningful
to think of a tunable coupling constant A depending on the state of
the system.

APPENDIX E: NUMERICAL METHODS
1. Pseudospectral method

In integrating the master equation (8) numerically, the main
challenge is the treatment of the stress propagation term. This Lévy
propagator takes a simpler form in Fourier space,

∫
σ+δσu

σ−δσu

P(σ′) − P(σ)
∣σ − σ′∣μ+1 dσ′ FÐ→ −∣k∣μHμ(k δσu)P̂(k), (E1)

with

Hμ(y) = ∫
y

0

1 − cos t
tμ+1 dt. (E2)

For a Lévy flight without a cutoff, i.e., δσu→∞, Hμ(k δσu) converges
to Iμ = −cos(μπ/2)Γ(−μ) for μ ≠ 1 and π

2 for μ = 1. On the other hand,
P̂(k) is just the Fourier transform of the stress distribution

P̂(k) = ∫
∞

−∞
e−ikσP(σ)dσ. (E3)

To evolve the master equation (8) numerically, we can therefore pro-
ceed in the following manner. First, we set up a stress grid {σi} (i = 1,
. . ., M) of M points in a domain (−l, l), along with the corresponding
M points {ki} in Fourier space. The domain width 2l has to be wide
enough to avoid the effect of periodic images; for the aging simula-
tions, l = 4 was used. To set up the discrete Fourier components of
the propagator, we evaluate the integral (E2) numerically at each ki,
using an adaptive quadrature to account for the diverging power law
in the integrand.

We can then employ a pseudospectral method, where we evolve
alternately in stress and in Fourier space, using the FFT algorithm
to switch between the two. Namely, the Lévy propagator is applied
in Fourier space, while all the other updates are realized in stress
space. Finally, we note that in the aging simulations, where the
dynamics slows down at long times, we use an adaptive time step,
which is fixed so that the maximum relative change in the system
max

i
ΔP(σi)/P(σi) stays within the range (5 × 10−4, 1 × 10−3). In

this way, the time step grows as the dynamics becomes progressively
slower.

2. Discrete matrix
For calculating, e.g., the mean first passage time that we

employ to determine the phase diagram, we used an alternative
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numerical approach that allows us to implement absorbing bound-
ary conditions.

For this, we follow Ref. 25 and write down a discretized transi-
tion matrix of the propagator

A∫
l

−l

P(σ′) − P(σ)
∣σ − σ′∣1+μ dσ′. (E4)

We will start by considering the off-diagonal formally divergent inte-
gral; the second term, which corresponds to the diagonal, will be
incorporated later by imposing probability conservation.

We define again a stress grid {σi} (i = 1, . . ., M + 1) of M + 1
points in a domain (−l, l) (including now both boundaries), with a
corresponding stress discretization Δσ = 2 l/M. For the off-diagonal
term, it will be useful to represent the kernel as a discrete derivative,

∣σ − σ′∣−μ−1 ≃ K(σ, σ′)

≡ 1
μΔσ
[∣σ − σ′∣−μ − ∣σ − σ′ + Δσ∣−μ]. (E5)

We can then write the integral in the discretized form as

AΔσ∑
j
P(σj)K(σi, σj). (E6)

To implement the cutoff, we set K = 0 for |σi − σj| > δσu. The
diagonal term is then

K(σi, σi) =
2

μΔσ
[−(Δσ)−μ + (δσu + Δσ)−μ]. (E7)

This is the same discretization as used in Ref. 25, except for the modi-
fication in order to account for the presence of the upper cutoff in the
propagator δσu. Absorbing boundary conditions are implemented
by considering the discrete matrix of size (M + 1) × (M + 1), which
effectively sets to 0 all other elements outside so that whenever the
stress at a site is “kicked” out of the region (−l, l), it is removed.23

In Sec. III, we use l = 1 so that we can implement the absorbing
boundary conditions at σ = ±σc = ±1. To obtain the points in the
phase diagram (Fig. 1), for a fixed μ, we compute τFP(A) and bisect
in A until we find τFP(Ac) = 1. τFP(A) is computed in the way detailed
in Ref. 25, where the discretization above is introduced precisely to
tackle the problem of the mean first passage time of a Lévy flight in a
domain with absorbing boundaries. It is worth commenting on the
discretization error. As we commented in Fig. 1, this error becomes
larger as μ→ 2−. As worked out in Ref. 25, in the limit M →∞, the
error decays as Mμ−2 for 1 < μ < 2, whereas for μ < 1, this crosses over
toM−1. From the scaling withMμ−2, one sees that the method breaks
down when μ → 2−. Intuitively, this may be expected as one would
be attempting to approximate what is effectively a (local) second
derivative by a power law.

To obtain the data in Fig. 7 (Sec. V), we solve for Δext(σ) numer-
ically, making use again of the above discrete matrix. In this case,
however, where we are considering a small but finite Γ≪ 1, we use
l = 2 > 1 in order to capture the external loss term in Eq. (B1). We
implement as above absorbing boundary conditions at l = ±2, but
this does not affect the result as Γ≪ 1 and we have checked that the
distribution decays to zero well within the σ ∈ (−2, 2) region.

FIG. 17. Convergence of the solution of the BL equation (21) with increasing size l
of the computational domain; parameter values are μ = 1, A = 0.58 and the source
prefactor is q0 = 1.

3. Boundary layer equation
We discuss in this section the numerical solution of the BL

equation (21) in the main text. This is required to obtain the full
form of R1(z) for finite z, beyond the asymptotic power laws for large
|z| that we determine analytically in the main text.

The major difficulty in solving Eq. (21) is that one a priori needs
to consider an infinite domain z ∈ (−∞,∞). To overcome this, we
proceed in the following manner. We cut the infinite domain down
to a finite interval (−l, l) by exploiting the knowledge we have on the
tails of R1(z). That is, we split the incoming term of the propagator
as

∫
∞

−∞

R1(z′)
∣z − z′∣μ+1 dz′ = ∫

l

−l

R1(z′)
∣z − z′∣μ+1 dz′ + tail1(z) + tail2(z), (E8)

where the two tails correspond, respectively, to the integrals over
∫−l−∞ and∫∞l . In the two domains z < −l and z > l, we assume the
asymptotic forms of R1(z), which are power laws with prefactors
proportional to R1(±l). Overall, one can therefore include the two
tail terms into the first and last columns of the discrete transition
matrix K(σi, σj).

To check the convergence of the method, we can increase l and
M (the number of grid points) while keeping the stress discretiza-
tion Δσ fixed. This is shown in Fig. 17 for μ = 1, where we have
assumed the asymptotic forms |z|−1/2 ln(|z|) on the left and z−1/2 on
the right. We can see that the method indeed converges as l and M
are increased.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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