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1 Introduction

Holography provides a powerful framework to study strongly coupled quantum field the-
ories [1] at finite temperature and chemical potential [2]. In particular, in the large N
limit, it allows us to perform exact computations which are impossible to carry out with
standard quantum field theory techniques.

Second order phase transitions are driven by an order parameter which becomes non
trivial in the broken phase. Depending on the nature of the system, the phase transition
can be accompanied by the breaking of a global symmetry. In such a case, new gapless
modes appear in the spectrum of the system in the form of Goldstone modes. The universal
feature is that the phase transition is always accompanied by the emergence of a gapped
mode which is exactly gapless at the critical point, the amplitude/Higgs mode (from now
on we will call it the Higgs mode). At infinite wavelengths, the corresponding mode1

is homogeneous and it is related to fluctuating degrees of freedom which are intimately
1Strictly speaking, the mode we are referring to is an amplitude mode for the order parameter of the

system.
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connected to the amplitude of the order parameter and which decouple from the entropy
and charge density.

The above highlights that the Higgs mode dominates critical phenomena as its decay
rate is parametrically small close to the critical point [3, 4]. Despite its fundamental
importance, the Higgs mode was observed in condensed matter systems only very recently.
For the case of superfluids see e.g. [5, 6]. In view of these results, it is very important to
obtain theoretical predictions on potentially universal properties of the critical dynamics.
In this paper, we will study aspects of the dynamics close to a second order phase transition
by exploiting the holographic principle.

In holography, continuous phase transitions can be realised through black hole insta-
bilities. With fixed deformation parameters and chemical potential, a unique black hole
solution dominates the phase diagram at high temperatures. Lowering the Hawking tem-
perature, certain bulk perturbations can become unstable below a critical temperature
Tc. Following the instability leads to new branches of black hole solutions corresponding
to the broken phase. In the context of applied holography, some of the most well stud-
ied examples are the holographic superfluids [7–9] and phases which spontaneously break
translations [10–12].

It is natural to ask how much we can learn about the Higgs mode by considering
holographic systems near their critical points. The Higgs mode has been identified in several
holographic studies in the past by using numerical techniques [13, 14] or analytically when
full solutions in the bulk can be obtained [15]. Given the power of holography in obtaining
exact results, the ultimate goal would be to construct an enlarged theory of hydrodynamics
which incorporates this universal nearly gapless mode in its description.

In this paper we will make a significant step in this direction by examining the dynamics
of holographic systems close to their phase transitions. More specifically, we will obtain
analytic expressions for the low frequency retarded Green’s functions of scalar operators.
As we show in section 5, these are entirely determined by the thermodynamic properties
of the system and a single transport coefficient which is fixed by the black hole horizon
data. The linear response of the system is dominated by a single pole which corresponds
to the Higgs mode which decays slowly near the critical point. Our main tool will be the
techniques which have been recently exploited in [16] to obtain a hydrodynamic description
of holographic superfluids at zero charge density. The main contribution was to write the
transport coefficients of [17] in terms of black hole horizon data.

In that construction, the basic ingredient is the symplectic current density of the
bulk theory [18]. This can be considered for any pair of perturbative solutions in the bulk.
Being a generalisation of Liouville’s theorem for classical mechanics, the symplectic current
is divergence free. This feature will be very important to us since it allows us to extract
useful information for an unknown perturbative solution when it is parametrically close to
a known one.

In our context, the role of the known solution will be played by the static solutions
we can construct by varying the thermodynamic parameters of the thermal state close to
the critical point. At exactly the critical point, this variation reduces to the static bulk
perturbative solution that emerges at the critical point and which leads to the broken
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phase black holes. This, is also the limit of the time dependent Higgs mode we are after
when the system is exactly at the transition point. This suggests that the bulk dual of the
Higgs mode is parametrically close to the solution generated by varying the thermodynamic
parameters and will therefore be the unknown solution in the symplectic current.

The paper is organised in five sections as follows. In section 2 we introduce the holo-
graphic framework in which we plan to study phase transitions driven by a scalar order
parameter. In this case, the phase transition is not accompanied by the breaking of a
continuous symmetry. In section 3 we analyse the time dependent perturbation which
captures the Higgs mode and we use our technique involving the symplectic current to
extract its gap. In section 4 we generalise our holographic model to describe the breaking
of a global symmetry on the boundary at finite chemical potential. This is particularly
interest since, as we will see, the lack of particle-hole symmetry mixes the Goldstone mode.
In section 5 we compute the Green’s functions of the scalar operators in our holographic
theory highlighting their domination by the pole relevant to the Higgs mode. Finally, in
section 6 we perform numerical checks of our analytic results for the gap and the Green’s
functions we compute in section 5. We conclude the paper with a summary of our main
results and outlook in section 7.

2 Setup

We will consider a bulk theory which can model the phase transition of a conformal field
theory at finite chemical potential and which has been deformed by a scalar operator Oφ
of dimension ∆φ with bulk dual φ. In addition to that, our bulk theory will contain the
metric gµν , gauge field Aµ and scalar field ρ which will spontaneously give a VEV to the
field theory dual operator Oρ.

Without loss of generality, we will consider the bulk action,

Sb =
∫
d4x
√
−g

(
R− V − 1

2 (∂φ)2 − 1
2 (∂ρ)2 − Z

4 F
2
)
, (2.1)

where F = dA is the field strength of Aµ. In general, the gauge coupling Z and potential
V can depend on the scalar fields φ and ρ. In order for the bulk equations of motion to
admit solutions which asymptote to unit radius AdS4, we will impose that for small values
of the scalar fields,

V ≈ 6− 1
2m

2
φ φ

2 − 1
2m

2
ρ ρ

2 + · · · ,

Z ≈ 1 + ζφ φ
2 + ζρ ρ

2 + · · · . (2.2)

Moreover, without any loss of generality, for small values of ρ we can assume that,

V ≈ v(φ)− 1
2m

2(φ) ρ2 − 1
4!λ(φ) ρ4 + · · · ,

Z ≈ ζ0(φ) + ζ1(φ) ρ2 + · · · . (2.3)
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The background black holes that can capture the different phases of our theory are
described by the background geometries with,

ds2 = −U(r) dt2 + dr2

U(r) + e2g(r)
(
dx2 + dy2

)
,

φ = φ(r), ρ = ρ(r), A = a(r) dt . (2.4)

The scalar ρ is identically zero in the normal phase, above the critical temperature Tc.
We will choose coordinates so that the event horizon with Hawking temperature T is

at r = 0. Near the horizon, regularity dictates the Taylor expansions,

U(r) ≈ 4πT r +O(r2), g(r) ≈ g(0) +O(r) ,

φ(r) ≈ φ(0) +O(r), ρ(r) ≈ ρ(0) +O(r) ,

a(r) ≈ a(0) r + · · · . (2.5)

At the other end of the geometry, where r → ∞, we want to impose AdS4 asymptotics
with unit radius,

U(r) ≈ (r +R)2 +O(r0), g(r) ≈ ln(r +R) +O(r−1) ,
φ(r) ≈ φ(s) (r +R)∆φ−3 + · · ·+ φ(v) (r +R)−∆φ + · · · ,
ρ(r) ≈ ρ(s) (r +R)∆ρ−3 + · · · ρ(v) (r +R)−∆ρ + · · · ,
a(r) ≈ µ− % (r +R)−1 + · · · . (2.6)

The conformal dimensions ∆φ and ∆ρ of the dual operators Oφ and Oρ are determined in
terms of the masses according to ∆φ(∆φ − 3) = m2

φ and ∆ρ(∆ρ − 3) = m2
ρ. The constants

of integration φ(s) and ρ(s) correspond to sources for the boundary operator Oφ and the
“modulus” of the operator Oρ. We will be mostly setting the latter to zero except for
section 5 where will turn it on perturbatively in order to extract a few of the retarded
Green’s functions of the system.

At this point, it is useful to note that the horizon charge density %(0) and entropy
density s satisfy,

%(0) = Z(0) e2 g(0)
a(0), s = 4π e2 g(0)

, (2.7)

where Z(0) denotes the value of the coupling function Z evaluated on the horizon values
of the background scalars φ and ρ. For normal fluids, the horizon charge density ρ(0)

coincides with the field theory charge density % = %(v) which can be extracted from the
asymptotics (2.6). For the superfluid phase that we will consider in section 4, this is no
longer true. In contrast, the entropy density can always be computed as a horizon quantity
from (2.7).

3 The Higgs mode from holography

In this section we will develop our tools that will lead to the main results of our paper. The
time dependent perturbation capturing the Higgs mode we are after will be constructed
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in an expansion of the thermodynamic and deformation parameters around the transition
point. In section 3.1 we will discuss the static perturbations we can obtain by varying
the thermodynamic and deformation parameters of the black hole solutions which are dual
to the thermal states of our system. These will prove particularly useful in constructing
the next to leading order terms in the expansion of the time dependent perturbation in
section 3.2. Finally, in section 3.3 we will make use of the symplectic current to fix the
frequency of the quasinormal mode as a function of our thermodynamics and black hole
horizon data.

3.1 Expansions around the critical point

The gapped mode that we will study in the following sections corresponds to a time depen-
dent perturbation around the background geometry (2.4). We will be interested in studying
this perturbation very close to the critical point (Tc(µ, φ(s)), µ, φ(s)). For this reason, we will
introduce a parameter ε which parametrises a curve in the (T, µ, φ(s)) plane that originates
from the point (Tc(µ, φ(s)), µ, φ(s)). As we vary the parameter ε we move in the space of
thermodynamic parameters according to (Tc(µ, φ(s))+ δT (ε), µ+ δµ(ε), φ(s) + δφ(s)(ε)). To
make our notation clear we consider the curve for small values of the expanision parameter
with,

δT (ε) ≈ δT ε2

2 , δµ(ε) ≈ δµ ε
2

2 , δφ(s)(ε) ≈ δφ(s)
ε2

2 . (3.1)

For a general function Φ of the thermodynamic parameters, along the curve we can write
the variation δΦ = ε2

2 δΦ(2) + · · · with,

δΦ(2) = δT ∂TΦ + δµ ∂µΦ + δφ(s) ∂φ(s)Φ . (3.2)

Right at the critical point, there exists a static perturbative solution δρ∗(0) to the
equation of motion for the scalar ρ with source free boundary conditions, just like in (2.6)
for the non-linear problem. Our goal is to track this perturbative mode right below the
critical temperature where it acquires a gap δωg. As we will see later more explicitly the
gap is itself an expandable function of ε and we will have δωg ∝ ε2.

In studying our gapped mode, we will find useful to consider the expansion of the
background geometry itself in ε. Constructing this perturbative expansion is a rather non-
trivial task. However, here we will only need the fact that it exists and that it is analytic
in ε,

ρ = ε∗ δρ∗(0) + ε3
∗

3! δρ∗(2) + · · · ,

U = Uc + ε2
∗
2 δU∗(2) + ε4

∗
4! δU∗(4) + · · · , g = gc + ε2

∗
2 δg∗(2) + ε4

∗
4! δg∗(4) + · · · ,

φ = φc + ε2
∗
2 δφ∗(2) + ε4

∗
4! δφ∗(4) + · · · , a = ac + ε2

∗
2 δa∗(2) + ε4

∗
4! δa∗(4) + · · · . (3.3)

The leading terms in the above expansion represent the black hole solution (2.4) at the
critical point. For the curve of variation in the broken phase we define the variation
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parameter ε∗ according to,

δT (ε∗) ≈ δT∗(2)
ε2
∗
2 + · · · , δµ(ε∗) ≈ δµ∗(2)

ε2
∗
2 + · · · , δφ(s)(ε∗) ≈ δφ(s)∗(2)

ε2
∗
2 . (3.4)

Apart from the broken phase black holes, it is useful to consider the expansion of the
normal phase black hole solutions below Tc,

ρ = 0 ,

U = Uc +
ε2

#
2 δU#(2) +

ε4
#
4! δU#(4) + · · · , g = gc +

ε2
#
2 δg#(2) +

ε4
#
4! δg#(4) + · · · ,

φ = φc +
ε2

#
2 δφ#(2) +

ε4
#
4! δφ#(4) + · · · , a = ac +

ε2
#
2 δa#(2) +

ε4
#
4! δa#(4) + · · · . (3.5)

Similarly to the case of the broken phase, we will define the expansion parameter ε#
according to,

δT (ε#) ≈ δT#(2)
ε2

#
2 + · · · , δµ(ε#) ≈ δµ#(2)

ε2
#
2 + · · · , δφ(s)(ε#) ≈ δφ(s)#(2)

ε2
#
2 .

(3.6)

It is also useful to write thermodynamic quantities in terms of the perturbative expan-
sions of the horizon data. In particular, we can simply expand the charge and the entropy
densities of equation (2.7) in ε to obtain,

δT∗ = ε2
∗
2 δT∗(2) + · · · , δ%∗ = ε2

∗
2 e

2g(0)
c

(
δa

(0)
∗(2) + 2 δg(0)

∗(2) a
(0)
)

+ · · · ,

δs∗ = ε2
∗4π e2g(0)

c δg
(0)
∗(2) + · · · ,

δT# =
ε2

#
2 δT#(2) + · · · , δ%# =

ε2
#
2 e2g(0)

c

(
δa

(0)
#(2) + 2 δg(0)

#(2) a
(0)
)

+ · · · ,

δs# =ε2
#4π e2g(0)

c δg
(0)
#(2) + · · · . (3.7)

The above horizon constants come from e.g. the near horizon expansions

δU∗(n)(r) = 4π δT∗(n) r + · · · , δg∗(n)(r) = δg
(0)
∗(n) + · · · ,

δa∗(n)(r) = δa
(0)
∗(n) r + · · · , δφ∗(n) = δφ

(0)
∗(n) + · · · , (3.8)

and similarly for the normal phase ε expansion. Close to the conformal boundary we will
have the asymptotic expansions,

δU∗(n)(r) ≈ O(r0), δg∗(n)(r) ≈ O(r−1) ,
δφ∗(n)(r) ≈ δφ(s)∗(n) (r +R)∆φ−3 + · · ·+ δφ(v)∗(n) (r +R)−∆φ + · · · ,
δρ∗(n)(r) ≈ δρ(s)∗(n) (r +R)∆ρ−3 + · · · δρ(v)∗(n) (r +R)−∆ρ + · · · ,
δa∗(n)(r) ≈ δµ∗(n) − δ%∗(n) (r +R)−1 + · · · . (3.9)

We will mostly keep δρ(s)∗(n) = 0, except in section 5 where we will study the retarded
Green’s functions of our scalar operators. Note that similar expansions hold for the func-
tions appearing in the expansion around the normal phase black holes.

– 6 –
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For the VEVs of the scalar operators we can write the expansions,

δ〈Oρ〉∗ = ε∗ δ〈Oρ〉∗(0) + ε3
∗

3! δ〈Oρ〉∗(2) + · · · , δ〈Oφ〉∗ = ε2
∗
2 δ〈Oφ〉∗(2) + · · · ,

δ〈Oφ〉# =
ε2

#
2 δ〈Oφ〉#(2) + · · · . (3.10)

3.2 Time dependent perturbation

In this section we will consider perturbative solutions of the equations of motion around
the backgrounds (2.4). Since our background geometries possess spacetime translational
invariance, it makes sense to consider the Fourier decomposition of our perturbations. Since
we are only interested in extracting the gap, we will only consider Fourier modes with zero
wavenumber according to,

δF(t,x; r) = e−iω(t+S(r)) δf(r) , (3.11)

where F repsesents perturbations of the scalars as well as the metric and gauge field
components. The function S(r) is chosen so that it drops faster that O(1/r3) close to the
conformal boundary and it therefore doesn’t interfere with holographic renormalisation.
However, close to the horizon, it is chosen so that it approaches S(r) → 1

4πT ln r and the
combination t+ S(r) is regular and ingoing.

For the system we are interested in, it is consistent to set the component perturbations
δgti, δgri, δgxy and δai to zero. Moreover, due to the unbroken rotational symmetry in the
x-y plane we can set δgxx = δgyy. Imposing regular ingoing boundary conditions close to
the horizon, leads to the near horizon expansions,

δgtt(r) = 4πT r δg(0)
tt + · · · , δgrr(r) = δg

(0)
rr

4πT r + · · · ,

δgii(r) = δg(0) + r δg(1) + · · · , δgtr(r) = δg
(0)
tr + · · · ,

δat(r) = δa
(0)
t + δa

(1)
t r + · · · , δar(r) = 1

4πT rδa
(0)
r + δa(1)

r + · · · ,

δρ(r) = δρ(0) + · · · , δφ(r) = δφ(0) + · · · , (3.12)

which are compatible with the equations of motion. In order to achieve regularity, the
above conditions need to be supplemented by,

δg
(0)
tt + δg(0)

rr = 2 δg(0)
rt , δa(0)

r = δa
(0)
t . (3.13)

The time dependent perturbation which is capturing the Higgs mode can be expanded
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according to,2

ω = ε∗ ω[1] + ε2
∗ ω[2] + · · · ,

δg̃tt = −ε∗ δŨ(2) + · · · , δg̃rr = −ε∗
δŨ(2)
U2
c

+ · · · ,

δg̃ii = 2 e2gc (ε∗ δg̃2 + · · · ) , δãt = ε∗ δã(2) + · · · ,

δφ̃ = ε∗ δφ̃(2) + · · · , δρ̃ = δρ∗(0) + ε2
∗
2 δρ̃(2) + · · · . (3.14)

The above expansion makes clear that our perturbation has to go to the zero mode δρ∗(0)
at the critical point with ε∗ = 0. Notice that the choice of δg̃rr in the ansatz (3.14) fixes
the choice of the radial coordinate at order O(ε∗). The functions in equation (3.14) satisfy
the boundary conditions (3.12) and (3.13). For ε∗ = 0 the mode becomes exactly the static
mode which drives the transition. This is precisely the way the above expansion is singling
out the specific mode we wish to study from the rest of the tower of the quasi-normal
modes that we expect to exist in the lower half-plane.

As we will see later, the leading term in the frequency expansion ω[1] is equal to zero.
An important point in understanding the first non-trivial ε∗ correction in our perturba-
tion (3.14) is that the equations that the functions δŨ(2), δg̃(2), δã(2), δφ̃(2) and δρ̃(2) satisfy
are a superset of the equations saitisfied by the functions δU∗(2), δg∗(2), δa∗(2), δφ∗(2) and
δρ∗(2). The two extra equations are constraints and impose charge and energy conservation
from the field theory point of view. As such these constraints can be imposed on any con-
stant r surface. However, as we will see in section 4, this is no longer true for the equation
of motion of the 1-form field due to the fact that it becomes massive in the bulk. This
is directly related to the spontaneous symmetry breaking and the involvement of the field
theory Goldstone mode.

Returning to the case at hand, apart from the two constraints, this is an inhomogeneous
set of ordinary differential equations which are sourced by quadratic terms in δρ∗(0). An
important observation to make here is that the homogeneous part of these equations is
also solved by the perturbations δU#(2), δg#(2), δa#(2), δφ#(2) defined by normal phase
expansions of (3.5) defined by any choice of expansion parameter ε#. For such a solution
of the homogeneous part we will have a trivial contribution to δρ̃(2).

The final goal is the construction of a linear superposition of perturbations coming
from the first corrections of the broken phase branch (3.3) and normal branch (3.5) such
that it doesn’t carry any net charge or entropy density. More precisely, after setting the
value of the perturbative parametres equal ε∗ = ε#, we have,

δŨ(2) = δU∗(2) − δU#(2), δg̃(2) = δg∗(2) − δg#(2)

δã(2) = δa∗(2) − δa#(2) − δµ∗(2) + δµ#(2) ,

δφ̃(2) = δφ∗(2) − δφ#(2) , (3.15)
2Notice that we don’t discuss δg̃tr in the expansion (3.14) as this can be changed by a coordinate

transformation of the form t→ t+ δf(r) for a perturbatively small function δf(r) and can be freely chosen
as long as it satisfies the boundary conditions (3.12) and (3.13).

– 8 –
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with the parameters δT#(2) and δµ#(2) such that the total perturbation does not carry any
net charge or entropy density. Moreover, from the form of the solution (3.15), we can see
that the source for scalar field φ in the perturbation is,

δφ̃(s)(2) = δφ(s)∗(2) − δφ(s)#(2) . (3.16)

Therefore, when we look for quasi-normal modes when trying to compute the gap, we will
need to set δφ̃(s)(2) = 0 in the perturbation.

Notice that in order to obtain a source free perturbation for the gauge field, we also
performed a gauge transformation with parameter Λ = (−δµ∗(2) + δµ#(2)) (t+ S(r)) with
S(r) as in (3.11). This step will not be possible in section 4 where we will be dealing
with superfluids and the bulk 1-form field will become massive due to the spontaneous
symmetry breaking. As we will see, the non-trivial asymptotics of the bulk 1-form field
will be rather related to the field theory Goldstone which we expect to be involved in the
case of a superfluid at finite chemical potential, with no particle-hole symmetry.

In general we can write variations of the entropy, the charge densities and the scalar
VEV in terms of varations of the temperature, the chemical potential and the scalar source
according to, δs∗

δ%∗
δ〈Oφ〉∗

 = ε2
∗
2

T
−1
c c∗µ ξ∗ ν∗T
ξ∗ χ∗ ν∗µ
ν∗T ν∗µ ν∗φ


 δT∗(2)
δµ∗(2)
δφ(s)∗(2)

 = ε2
∗
2

(
Ξ∗ ν∗
νT∗ ν∗φ

) δT∗(2)
δµ∗(2)
δφ(s)∗(2)

 ,

 δs#
δ%#

δ〈Oφ〉#

 = ε2
∗
2

T
−1
c c#

µ ξ# ν#
T

ξ# χ# ν#
µ

ν#
T ν#

µ ν#
φ


 δT#(2)
δµ#(2)
δφ(s)#(2)

 = ε2
∗
2

(
Ξ# ν#
νT# ν#

φ

) δT#(2)
δµ#(2)
δφ(s)#(2)

 , (3.17)

where Ξ∗ and Ξ# are the thermodynamic susceptibility matrices along the broken and
normal phases correspondingly evaluated at the critical point. Using the above we can
express temperature and chemical potential variations in terms of scalar deformations and
entropy and charge densities according to,(

δT∗(2)
δµ∗(2)

)
= Ξ−1

∗

(
δΦ∗(2) − ν∗ δφ∗(s)(2)

)
,(

δT#(2)
δµ#(2)

)
= Ξ−1

#

(
δΦ#(2) − ν# δφ#(s)(2)

)
. (3.18)

In the above we have defined the vectors,

δΦ∗(2) =
(
δs∗(2)
δ%∗(2)

)
, δΦ#(2) =

(
δs#(2)
δ%#(2)

)
, (3.19)

which according to our earlier discussion, have to be equal to each other when constructing
the time dependent perturbation. Finally, using equations (3.17) and (3.18), the variations
of the scalar VEVs can be written as,

δ〈Oφ〉∗(2) = ν∗TΞ−1
∗ δΦ∗(2) +

(
ν∗φ − νT∗ Ξ−1

∗ ν∗
)
δφ∗(s)(2) ,

δ〈Oφ〉#(2) = ν#TΞ−1
# δΦ#(2) +

(
ν#
φ − ν

T
# Ξ−1

# ν#
)
δφ#(s)(2) . (3.20)
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The above allows us to relate the thermodynamic susceptibilities between the two different
ensembles through,∂s〈Oφ〉|%,φ(s)

∂%〈Oφ〉|s,φ(s)

 = νT Ξ−1, ∂φ(s)〈Oφ〉
∣∣∣
s,%

= νφ − νT Ξ−1 ν . (3.21)

From the horizon point of view, the zero net charge and entropy density translates to
the boundary conditions,3

δg̃
(0)
(2) = 0, e2g(0)

c

(
Z(0)
c δã

′ (0)
(2) + a′ (0)

c

(
2Z(0)

c δg̃
(0)
(2) + ∂φZ

(0)
c δφ̃

(0)
(2) + ∂ρ2Z(0)

c δρ
(0) 2
∗(0)

))
= 0
(3.22)

This will be useful in the next section where we employ the symplectic current to fix the
term ω[2] in the expansion (3.14) and also show that ω[1] = 0.

At this point, we understand the gapped mode in the bulk up to order ε∗ in the
perturbative expansion. The ingredients we need are the static solutions of the broken
and the normal phase bulk geometries. The final piece of information is the characteristic
frequency ω[2] which will be the task of the next subsection.

3.3 The symplectic current

In this section, we will employ the Crnkovic-Witten sympectic current to exract the final
piece of information we are after, the frequency of the gapped mode close to the phase
transition. To define it, we consider a generic classical Lagrangian field theory of a collection
ϕI of fields and two perturbative solutions δ1φ

I and δ2φ
I around a background φIb . If

the Lagrangian density L(ϕI , ∂µϕI) can be written in terms of the fields and their first
derivatives then the vector density,

Pµ = δ1φ
I δ2

(
∂L

∂∂µφI

)
− δ2φ

I δ1

(
∂L

∂∂µφI

)
, (3.23)

is divergence free,

∂µP
µ = 0 . (3.24)

The symplectic current (3.23) is antisymmetric in field space and as such, when the sec-
ond perturbative solution is infinitesimally close to the first one, the symplectic form is
expandable around zero.

As we will see, this observation is going to be particularly useful for us. In particular,
the role of the background will be played by the black hole solution in the broken phase.
We will take the first of the two perturbations in (3.23) to be the static perturbation which

3The reader might wonder about the fact that there is terms which involve different numbers of δ factors.
We note that δ itself is of order zero in ε∗ and that depending on the origin of each factor, it can come with
different powers of ε∗.
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is simply a derivative of the expansion (3.3) with respect to ε∗ giving,

δg∗tt = −ε∗ δU∗(2) −
ε3
∗

3! δU∗(4) + · · · ,

δg∗rr = −ε∗
δU∗(2)
U2
c

− ε3
∗

3!

(
δU∗(4)
U2
c

−
6 δU2

∗(2)
U3
c

)
+ · · · ,

δg∗ii = 2 e2gc

(
ε∗ δg∗(2) + ε3

∗
3!
(
6 δg2

∗(2) + δg∗(4)
)

+ · · ·
)
,

δa∗t = ε∗ δa∗(2) + ε3
∗

3! δa∗(4) + · · · , δρ∗ = δρ∗(0) + ε2
∗
2 δρ∗(2) + · · · ,

δφ∗ = ε∗ δφ∗(2) + ε3
∗

3! δφ∗(4) + · · · . (3.25)

The second perturbative solution will be the time dependent perturbation (3.14) and the
expansion parameter will naturally be given by ε∗.

In order to obtain the symplectic current for the theory of equation (2.1), we first need
to write it in a form where all the fields will appear with their first derivative at most. This
will yield an equivalent action S̃b such that,

S̃b = Sb + SGH =
∫
ddxL(ϕI , ∂µϕI) , (3.26)

where we have introduced the Gibbons-Hawking term,

SGH = 2
∫
∂M

d3x
√
−hK , (3.27)

and ϕI include the metric along with the rest of the matter fields of our bulk theory. As
usual, K = ∇µnµ is the trace of the extrinsic curvature of the conformal boundary ∂M

and n = dr/
√
N is its normal one-form of unit norm. The integration measure is with

respect to the induced metric hµν = gµν − nµnν .
For our bulk gravitational theory originating from (2.1), the sympectic current will

read,

Pµ = δ1gαβ δ2

(
∂L

∂∂µgαβ

)
− δ2gαβ δ1

(
∂L

∂∂µgαβ

)
+ δ1Aα δ2

(
∂L

∂∂µAα

)
− δ2Aα δ1

(
∂L

∂∂µAα

)

+ δ1φ δ2

(
∂L
∂∂µφ

)
− δ2φ δ1

(
∂L
∂∂µφ

)
+ δ1ρ δ2

(
∂L
∂∂µρ

)
− δ2ρ δ1

(
∂L
∂∂µρ

)
. (3.28)

In appendix A we evaluate the derivatives of the bulk action density with respect to the
partial derivatives of our fields.

The next step is to evaluate the symplectic current (3.28) for the pair of perturba-
tions (3.25) and (3.14) around the expanded broken phase background (3.3). Before we do
that, it is good to understand how we can benefit from considering the condition (3.24) in
our setup. Since we are Fourier expanding our time dependent modes, we will write the
non-trivial components as,

Pt = e−iω(t+S(r)) P t(r), Pr = e−iω(t+S(r)) P r(r) . (3.29)
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The continuity equation (3.24) then becomes,

−iω (P t + S′ P r) + P r′ = 0 . (3.30)

Considering now the expansion in ε∗, we can write,

P t = ε∗ P
t
(1) + ε2

∗ P
t
(2) + · · · ,

P r = ε∗ P
r
(1) + ε2

∗ P
r
(2) + · · · , (3.31)

from where we see that at leading order (3.30) implies,

P r′(1) = 0 . (3.32)

We therefore see that the term involving the time derivative in (3.24), is subleading in the
ε∗ expansion. Keeping up to order ε∗ in the radial component of the symplectic current
we obtain,

P r(1) = −iω[1] e
2gc Uc S

′ δρ2
∗(0) . (3.33)

After integrating (3.32) from the horizon up to infinity, we can show that ω[1] = 0, as
promised. This implies that after moving on to higher order in the perturbative expansion
we will have that,

P r′(2) = 0 , (3.34)

which will allow us to determine ω[2], as we will see shortly. Expanding the sympectic
current at next to leading order we obtain,

P r(2) = e2gc
(
−iω[2] Uc S

′ δρ2
∗(0) + Zc

(
δã(2) δa

′
∗(2) − δã

′
(2) δa∗(2)

))
+ 2e2gc

(
δg∗(2)

(
Zc δã(2) a

′
c − δŨ ′(2)

)
− δg̃(2)

(
Zc δa∗(2) a

′
c − δU ′∗(2)

))
+ 2Uc e2gc

(
δg̃(2)

(
2 δg′∗(2) + δρ∗(0) δρ

′
∗(0)

)
− δg∗(2)

(
2 δg̃′(2) + δρ∗(0) δρ

′
∗(0)

))
− 1

2e
2gc Uc

(
δρ′∗(0)

(
δρ̃(2) − δρ∗(2)

)
− δρ∗(0)

(
δρ̃′(2) − δρ

′
∗(2)

))
+ e2gc

(
−δU∗(2) δφ̃(2) + δŨ(2) δφ∗(2) + 2Uc

(
−δg∗(2) δφ̃(2) + δg̃(2) δφ∗(2)

))
φ′c

+ e2gc Uc
(
δφ∗(2) δφ̃

′
(2) − δφ̃(2) δφ

′
∗(2)

)
− e2gcδU∗(2)

(
2 δg̃′(2) + δρ∗(0) δρ

′
∗(0)

)
+ e2gc δŨ(2)

(
2 δg′∗(2) + δρ∗(0) δρ

′
∗(0)

)
− ∂φZc e2gc

(
δa∗(2) δφ̃(2) − δã(2) δφ∗(2)

)
a′c − ∂ρ2Zc e

2gc
(
δa∗(2) − δã(2)

)
δρ2
∗(0) a

′
c .

(3.35)

Integrating equation (3.34) from the horizon to infinity yields a term on the horizon and
a term evaluated at the conformal boundary which have to be equal to each other. The
expression we obtain reads,

− i ω[2] e
2g(0)
c δρ

(0) 2
∗(0) − 2 e2g(0)

c δg∗(2) δŨ
′ (0)
(2)

+ δã
(0)
(2) e

2g(0)
c

(
Z(0)
c δa

′ (0)
∗(2) + a′ (0)

c

(
2Z(0)

c δg
(0)
∗(2) + ∂φZ

(0)
c δφ

(0)
∗(2) + ∂ρ2Z(0)

c δρ
(0) 2
∗(0)

))
=

− (2∆φ − 3) δφ(s)∗(2)
(
δφ(v)∗(2) − δφ(v)#(2)

)
, (3.36)
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where we imposed the absence of scalar sources on the boundary by setting δφ(s)∗(2) =
δφ(s)#(2) in equation (3.16). After recognising the variations of the horizon charge and
entropy densities (2.7), we can write,

− i ω[2]
sc
4π δρ

(0) 2
∗(0) =

δs∗(2) (δT∗(2) − δT#(2)) + δ%∗(2) (δµ∗(2) − δµ#(2))− δφ(s)∗(2)
(
δ〈Oφ〉∗(2) − δ〈Oφ〉#(2)

)
,

(3.37)

with the variations of the scalar VEVs defined according to (3.10). After introducing
appropriate factors of ε∗, setting,

δΦ = ε2
∗
2 δΦ∗(2) , δφ(s) = ε2

∗
2 δφ(s)∗(2) . (3.38)

and using equations (3.18) and (3.20), the frequency of our Higgs takes the remarkably
simple form,

ω = i
8 ∆E
$

. (3.39)

In the above, we have defined the horizon quantity,

$ = sc ρ
(0) 2

4π , (3.40)

as well as

∆E =1
2δΦ

T
(
Ξ−1
∗ −Ξ−1

#

)
δΦ− δΦT

(
Ξ−1
∗ ν∗ −Ξ−1

# ν#
)
δφ(s)

− 1
2
(
ν∗φ − νT∗ Ξ−1

∗ ν∗ − ν#
φ + νT#Ξ−1

# ν#
)
δφ2

(s) . (3.41)

As we show in appendix B, ∆E is the energy density difference between the normal and
broken phase thermal states at entropy density s+ δs∗, charge density %+ δ%∗ and scalar
deformation parameter φ(s) + δφ(s)∗. As we would expect, the frequency of the Higgs
mode (3.41) is in the lower half of the complex plane as long as the energy of the broken
phase black holes is lower than then normal phase in the microcanonical ensemble.

As we will see later, apart from the energy, there will be other quantities which will
have to compare between the two phases. For this reason, if a thermodynamic quantity
O can be expressed in terms of the entropy density, the charge density and the scalar
deformation, ∆O will denote the difference,

∆O = O∗(sc + δs∗, %+ δ%∗, φ(s) + δφ(s)∗)−O#(sc + δs∗, %+ δ%∗, φ(s) + δφ(s)∗) , (3.42)

with O∗ and O# the values of O in the broken and normal phase respectively. Moreover,
sc is the entropy at the critical point and is set by ρ and φ(s). In our work we will only
need the leading order approximation in ε∗ where as we know δs∗ ∼ δ%∗ ∼ δφ(s)∗ ∼ O(ε2

∗).
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4 Charged superfluids

In this section, we will examine the case in which the broken phase describes a superfluid.
To achieve this, the bulk theory will need to contain a complex scalar field ψ with a U(1)
gauged symmetry which will drive the phase transition. For concreteness, we will consider
the bulk action,

Sb =
∫
d4x
√
−g

(
R− V − 1

2 (∂φ)2 − 1
2 (Dψ)2 − Z

4 F
2
)
, (4.1)

with Dµψ = (∇µ + i q Aµ) ψ.
In the superfluid phase, the operator Oψ which is dual to the bulk field ψ takes a non-

trivial VEV yielding a corresponding non-trivial bulk field ψ. In order to proceed, we will
perform a field transformation to write the complex scalar field in a polar decomposition
according to,

ψ = ρ ei q θ , (4.2)

with ρ > 0 and 0 ≤ θ < 2π/q. The above transformation brings the bulk action to the
form,

Sb =
∫
d4x
√
−g

(
R− V − 1

2 (∂φ)2 − 1
2 (∂ρ)2 − Z

4 F
2 − q2

2 ρ
2B2

)
, (4.3)

where we have set B = A + ∂θ and therefore F = dB. This form is very similar to the
bulk action (2.1) that we considered in the previous sections for neutral scalar fields which
are dual to real order parameters. The crucial difference is that in the broken phase, the
1-form field does not enjoy gauge invariance due to the Stueckelberg mechanism.

We would now like to consider the asymptotic expansion of 1-form field Bα fluctuations.
For the components along the conformal boundary directions we obtain,

δBα =
∂αδθ(s)

(r +R)3−2 ∆ρ
+ · · ·+ δAα + ∂αδθ(v) + · · ·+ δjα

r +R
+ · · · , (4.4)

with the radial component Br completely determined by this. The asymptotic expansion of
the 1-form field B is therefore fixed by a scalar function θ(s) and the two 1-forms Aα+∂α θ(v)
and jα.

The function θ(v) and the parameter ρ(v) that appears in the expansion (2.6) of the
modulus ρ of the complex field ψ combine together to parametrise the VEV,

〈Oψ〉 = 1
2(2∆ρ − 3) ρ(v)e

i q θ(v) , (4.5)

from which we obtain the perturbative epxression

δ〈Oψ〉 = 〈Oψ〉b i q δθ(v) + ei arg(〈Oψ〉b) δ|〈Oψ〉| , (4.6)

in terms of the VEV of the thermal state 〈Oψ〉b. The combination δAα + δ∂αθ(v) is then a
gauge invariant combination of the perturbative external source δAα and the phase of the
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VEV δθ(v). In the absence of external sources, the constants of integration jα are directly
related to VEV of the boundary charge density 〈J〉α satisfying the continuity equation
∂αj

α = 0.
The treatment of the gapped mode is identical to that of the neutral scalar field with

the gauge field A replaced by the massive 1-form B. The whole argument would go through
apart from one technical point of particular physical significance. This is related to the
gauge transformation that we dicuss below equation (3.15) and which removes the sources
from the asymptotic of the gauge field A. Since we cannot perform gauge transformations
to B, the same treatment is not possible in this case. However, as we can see from the
expansion (4.4), a non zero value for B on the conformal boundary can be treated as the
Goldstone mode δθ(v) as long as it is an exact form i.e. it can be expressed as the derivative
of the function δθ(v). This is certainly possible for the perturbations we are studying in this
paper since only the time and the radial components of the 1-form B will be involved. The
constant on the boundary coming from the time component can then always be expressed
as a partial derivative of a phase δθ(v) with respect to time.

To proceed, we introduce the Fourier modes of equation (3.11) according to,

δBµ = e−iω(t+S(r)) δbµ(r) . (4.7)

Another important ingredient in order to construct the perturbation of order ε∗ for the
1-form field is the discussion below equation (3.14). We can indeed form zero total charge
linear combinations of the static perturbations δa∗(2) and δa#(2) as we did in the case
of the neutral order parameter in order to obtain solutions of the time component of the
equations of motion. The important difference now is that the radial component is no longer
a constraint which can be solved everywhere in the bulk by imposing charge continuity on
the boundary.

This is a signal that, in addition to our previous considerations, the phase δθ in the
bulk is going to get involved in the perturbation at order ε. More concretly, we can expand
the bulk phase in ε∗ according to,

δθ̃ = ε−1
∗

(
δθ̃(0) + ε2

∗ δθ̃(2) + · · ·
)
, (4.8)

where δθ̃(0) is constant everywhere in the bulk and δθ̃(2) an analytic function of the radial
coordinate. The above implies that at order ε∗ the bulk perturbation for the one form field
takes the form,

δb̃t(2) = δa∗(2) − δa#(2) − iω[2] δθ̃(0) ,

δb̃r(2) = −i S′ ω[2] δθ̃(0) + δθ̃′(2) . (4.9)

A crucial point to note here is that the terms related to δθ̃(0) and δθ̃(2) enter the time
component of the equation of motion of δB at order ε3

∗. This shows that the above solves
the time dependent equation at order ε∗ even after the addition of the terms which are an
exact form.

On the other hand, as one can easily see, both δθ̃(0) and δθ̃(2) will enter the radial
component of the equation of motion of δB at order ε3

∗. Expanding this equation close to
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the horizon with the boundary conditions given in (2.5), (3.12) and (3.13) we obtain,

δθ̃(0) = 1
q2 δρ

(0) 2
∗(0)

(
Z(0)
c δã

′ (0)
(2) + a′ (0)

c

(
2Z(0)

c δg̃
(0)
(2) + ∂φZ

(0)
c δφ̃

(0)
(2) + ∂ρ2Z(0)

c δρ̃
(0) 2
(0)

))
(4.10)

= 4π
sc q2 δρ

(0) 2
∗(0)

(
δ%

(0)
∗(2) − δ%#(2)

)
= 4π
sc q2 δρ

(0) 2
∗(0)

(
δ%

(0)
∗(2) − δ%∗(2)

)
.

To obtain the first equality in the second line of (4.10), we used equation (2.7) which
relates the charge density perturbation of the normal phase δ%#(2) to the flux density of
the gauge field at the horizon. At the same time, we have defined δ%(0)

∗(2), the perturbation
of a horizon charge density related to the 1-form field B in the broken phase. In the case
of superfluids, an important point is that this is not equal to the charge density of the
dual field theory which needs to be read off from the bulk fields after expanding close
to the conformal boundary. Finally, to obtain the last equality, we have used that the
two perturbations that we obtain from the static backgrounds have to be chosen so that
δ%#(2) = δ%∗(2). We see that the bulk constant δθ̃(0) is directly proportional to the difference
between the horizon and the conformal boundary charge densities.

We now turn our attention to the symplectic current built from the background solu-
tion and the time dependent perturbation of our gapped mode. We follow the same logic
as in section 3.3 for the neutral case. In fact, the bulk actions (2.1) and (4.3) have iden-
tical kinetic terms and they will therefore yield the same form for the symplectic current.
Keeping terms up to order ε2

∗ yields the same form (3.35) for the radial component.
Following the argument of section 3.3, we equate the value of the radial component

P r(2) on the horizon to its value at the conformal boundary. In this case however, there is a
non-zero contribution from the conformal boundary due to the non-trivial asymptotics of
the vector field component δb̃t(2). This allows us to write,

− i ω[2] e
2g(0)
c δρ

(0) 2
∗(0) − iω[2] δθ̃

(0)
(
δ%

(0)
∗(2) − δ%∗(2)

)
= δs∗(2) (δT∗(2) − δT#(2)) + δ%∗(2) (δµ∗(2) − δµ#(2))− δφ(s)∗(2)

(
δ〈Oφ〉∗(2) − δ〈Oφ〉#(2)

)
.

(4.11)

After using equation (4.10) for the zero order perturbation of the phase δθ̃(0), we obtain
the simple result,

ω = i
8 ∆E
$

, (4.12)

where we have defined the transport coefficient,

$ = sc ρ
(0) 2

4π + 16π
sc q2 ρ(0) 2

(
%(0) − %

)2
, (4.13)

and ∆E remains the energy difference of equation (3.41). This transport coefficient is
intimately connected to the dynamics of the Higgs mode. A certain way to understand it is
through the decay rate of equation (4.12). Finally, by using the equation of motion for the
bulk one form field, it is easy to show that close to the phase transitions %(0)−% ∼ δρ2 ∼ ε2

giving that $ ∼ ε2.
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5 Green’s functions of scalar operators

In this section we wish to study the effect of the Higgs mode we constructed in the previous
section on the linear response of the system near the critical point. For this reason, we will
need to introduce boundary sources for the scalar fields in the time dependent perturbation
that we constructed in section 3.2.

As we will see shortly, the scalar sources will have to be turned on at orders δρ(s) ∼
O(ε2

∗) and δφ(s) ∼ O(ε∗) in the ε∗ expansion of equation (3.14). Including sources does
not change the arguments around the construction of sections 3.2 and 4. As we have seen
there, at next to leading order in ε∗, the perturbation can is simply a linear combination
of a variation of the broken and the unbroken phase black hole backgrounds. The former
variation is fixed by how we move on the phase diagram and does not allow us to introduce
new sources in the perturbation.

This shows that the only way to introduce perturbative source for the scalar φ, which
are not present in the background thermal state, is through the variation of the normal
phase branch of the black holes δφ#(2) in equation (3.15). However, for the scalar which is
relevant to the amplitude of the order parameter 〈Oρ〉, the source will need to be introduced
in the O(ε3) term of equation (3.14). This can be achieved through the asymptotics of the
bulk function δρ̃(2).

We will start our treatment by considering a source δρ̃(s) for the operator Oρ. As
described above, this appears as a constant of integration in the asymptotic expansion,

δρ̃(2) = δρ̃(s)(2) (r +R)∆ρ−3 + · · ·+ δρ̃(v)(2) (r +R)−∆ρ + · · · . (5.1)

for the function δρ̃(2) defined through equation (3.14). This proves our earlier statement
that the source for Oρ should be of order ε2

∗ with δρ̃(s) = ε2
∗
2 δρ̃(s)(2). By equating the value

of the radial component of the symplectic current (3.35) on the horizon and the conformal
boundary we obtain,

− i ω[2] e
2g(0)
c δρ

(0) 2
∗(0) − iω[2] δθ̃

(0)
(
δ%

(0)
∗(2) − δ%∗(2)

)
= δs∗(2) (δT∗(2) − δT#(2)) + δ%∗(2) (δµ∗(2) − δµ#(2))− δφ(s)∗(2)

(
δ〈Oφ〉∗(2) − δ〈Oφ〉#(2)

)
+ 1

2 δρ̃(s)(2) δ〈Oρ〉∗(0) . (5.2)

with δθ̃(0) given once again by equation (4.10). The above allows us to relate the frequency
ω = ε2

∗ ω[2] to the source δρ̃(s). On the other hand, the expansion (3.10) for the VEVs of
the operators Oρ and Oφ is enough to fix the retarded Green’s function,

GOρOρ(ω) = δ ˜〈Oρ〉
δρ̃(s)

= δ〈Oρ〉2∗
$ (−i ω + ωgap)

= (∆〈Oρ〉)2

$ (−i ω + ωgap)
, (5.3)

where the symbol ∆ is as defined in equation (3.42). Once again, our ε∗ of equation (3.14)
has singled out the pole which is relevant to the dominant Higgs mode. We expect a whole
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tower of quasi-normal modes with much larger decay rates and which will not influence the
low energy dynamics of our system. In the above, we have defined the transport coefficient
$ and gap frequency ωgap according to,

$ = sc ρ
(0) 2

4π + 16π
sc q2 ρ(0) 2

(
%(0) − %

)2
, ωgap = −8 ∆E

$
. (5.4)

This is the first Green’s function we determine and as we anticipated it is dominated by
a single simple pole at ω = −i ωgap agreeing with the gap of equation (4.12). Notice, that
equation (5.3) allows us to write the expressions,

ωgap = (∆〈Oρ〉)2

χOρOρ
$−1 ,

χOρOρ = −(∆〈Oρ〉)2

8 ∆E . (5.5)

where χOρOρ is the susceptibility of the operator Oρ. The above allows us to write the
Kubo formula,

$

(∆〈Oρ〉)2 = 1
χ2
OρOρ

lim
ω→0

ImGOρOρ(ω)
ω

, (5.6)

noting that the left hand side remains finite at the critical point, given the fact that $ ∼ ε2.
This ratio is very closely related to the coefficient Γ of [4] which the authors assume to
remain finite at the critical point.

The next Green’s function we can compute after having turned on the source for Oρ is,

GOφOρ(ω) = δ ˜〈Oφ〉
δρ̃(s)

= 2 δ〈Oρ〉∗ (δ〈Oφ〉∗ − δ〈Oφ〉#)
$ (−i ω + ωgap)

, (5.7)

where once again we used the relation (5.2) for the source δρ̃(s). In the current situation,
we are not turning on the source δφ̃(s) for the scalar operator. Therefore, in this case we
simply have,

∆〈Oφ〉 = δ〈Oφ〉∗ − δ〈Oφ〉# , (5.8)

allowing us to write,

GOφOρ(ω) = 2 ∆〈Oρ〉∆〈Oφ〉
$ (−i ω + ωgap)

. (5.9)

Once again, we see that the retarded Green’s functions are determined by the transport
coefficient $ and thermodynamic properties of the broken and normal phases.

We now turn our attention to the source of the scalar operator Oφ. Introducing a
source δφ̃(s)(2) as in equation (3.16) allows us to express the scalar source variation for the
normal phase as,

δφ(s)# = δφ(s)∗ − δφ̃(s) . (5.10)
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The final ingredient left in order to compute the retarded Green’s function is a relation
that we can obtain from the symplectic current (3.35). By evaluating it on the horizon and
the conformal boundary we obtain the relation,

− i ω[2] e
2g(0)
c δρ

(0) 2
∗(0) − iω[2] δθ̃

(0)
(
δ%

(0)
∗(2) − δ%∗(2)

)
= δs∗(2) (δT∗(2) − δT#(2)) + δ%∗(2) (δµ∗(2) − δµ#(2))− δφ(s)∗(2)

(
δ〈Oφ〉∗(2) − δ〈Oφ〉#(2)

)
+ δφ̃(s)(2) δ〈Oφ〉∗(2) . (5.11)

After using equations (3.18) and (3.20) as well as the definitions (3.42) and (5.4), the above
takes the form,

2 ε∗ δφ̃(s) ∆〈Oφ〉 = −$ (i ω − ωgap) . (5.12)

The combination of this and relation (3.10) allows us to compute the retarded Green’s
functions,

GOφOφ(ω) = δ ˜〈Oφ〉
δφ̃(s)

= 2 δ〈Oφ〉∗ − δ〈Oφ〉#
ε∗ δφ̃(s)

= 4 (∆〈Oφ〉)2

$ (−i ω + ωgap)
+ ∂φ(s)〈Oφ〉#

∣∣∣
s,%

, (5.13)

where the last term is computed in the normal phase, at the critical point. To see this
relation, we have combined equations (3.20) and (3.21) along with (5.10). Finally, we can
use the result of equation (5.12) to compute,

GOρOφ(ω) = δ ˜〈Oρ〉
δφ̃(s)

= δ〈Oρ〉∗
ε∗ δφ̃(s)

= 2 ∆〈Oφ〉∆〈Oρ〉
$ (−i ω + ωgap)

. (5.14)

From the form of the Green’s functions in equations (5.9) and (5.14), it is trivial to check
the validity of the Onsager relation GOρOφ(ω) = G∗OφOρ(−ω).

It is interesting to examine the behaviour of the boundary theory Goldstone mode
which is represented by the angle δθ(v) of equation (4.6). This can be read off from the
asymptotics of the time component of the 1-form field δb̃t and interpreting the constant
term as the time derivative ∂tδθ(v). This gives,

δθ̃(v)(0) = δθ̃(0) + 2 i
ω

(δµ∗ − δµ#) , (5.15)

with the variation of the normal phase chemical potential δµ#(2) being fixed by equa-
tion (3.18).

The VEV of the operator Oρ is related to the amplitude of the order parameter,
according to the decomposition of fluctuations (4.6). More specifically, in the broken phase,
where the polar coordinate decomposition (4.2) makes sense, we have,

δ〈Oρ〉 = 2 δ|〈Oψ〉| =
1

|〈Oψ〉b|

(
〈Oψ̄〉b δ〈Oψ〉+ 〈Oψ〉b δ〈Oψ̄〉

)
. (5.16)
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It is interesting to also consider the operator OY which is related to the phase of the order
parameter and therefore the Goldstone mode of the theory. For the fluctuations of this
operator we can write,

δ〈OY 〉 = q 〈Oρ〉b δθ(v) = 1
i |〈Oψ〉b|

(
〈Oψ̄〉b δ〈Oψ〉 − 〈Oψ〉b δ〈Oψ̄〉

)
. (5.17)

Given the expression (5.15) for the phase, we can easily compute the retarded Green’s
functions measuring the response of the operator OY against sources for the operators 〈Oρ〉
and 〈Oφ〉,

GOY Oφ(ω) = δ ˜〈OY 〉
δφ̃(s)

= 2 q∆〈Oρ〉∆〈Oφ〉
ω

ω ϑ+ 2 i∆µ
$ (−i ω + ωgap)

+ 2 q∆〈Oρ〉
i ω

∂µ#
∂φ(s)

∣∣∣∣∣
s,%

,

GOY Oρ(ω) = δ ˜〈OY 〉
δρ̃(s)

= q∆〈Oρ〉2

ω

ω ϑ+ 2 i∆µ
$ (−i ω + ωgap)

. (5.18)

In the above we have set,

ϑ = 8π
sc q2 ρ(0)2

(
%(0) − %

)
. (5.19)

An obvious remaining question regards turning on a source δs̃Y for the operator OY .
As explained in [16], in the spontaneous case this is achieved by considering a non-trivial
source term δθ(s) in the UV expansion (4.4) for the bulk vector field. However, as shown
in [16], turning a source λ for the complex operator Oψ would imply the non-conservation
of electric charge through the Ward identity,

∇α〈Jα〉 = iq
(
〈Oψ〉λ∗ − 〈O∗ψ〉λ

)
. (5.20)

Applying this for the case of our perturbative setup gives,

∇α〈Jα〉 = q 〈Oρ〉b δs̃Y . (5.21)

Having it mind that the frequency is of order O(ε2
∗) and the leading correction to the

charge density is of order O(ε∗), we see that the source δs̃Y should be of order O(ε2
∗) and

we will write δs̃Y = ε2
∗
2 δs̃Y (2) + · · · . Combining the above ingredients leads us to the charge

imbalance,

−iω[2]
(
δ%∗(2) − δ%#(2)

)
= q

2 δ〈Oρ〉∗(0) δs̃Y (2) , (5.22)

when linearly superposing the static perturbations obtained from the broken and the nor-
mal phase black holes.

We see that this source implies a slight modification of our previous derivations to
account for the non-zero difference between the charge densities. One of the crucial steps
concerns equation (4.10) which now gets modified to,

δθ̃(0) = 4π
sc q2 δρ

(0) 2
∗(0)

(
δ%

(0)
∗(2) − δ%∗(2) +

i q δ〈Oρ〉∗(0)
2ω[2]

δs̃Y (2)

)
. (5.23)
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Given the conditions (5.21), (5.22) and (5.23), evaluated the radial component of the sym-
plectic current (3.35) yields,

δs̃Y = −$ (−iω + ωgap)
ε∗∆〈Oρ〉

ω

ω ϑ+ 2 i∆µ . (5.24)

We are now in the position to evaluate the retarded Green’s functions,

GOY OY (ω) =
q 〈Oρ〉 δθ̃(v)

δs̃Y

= −q
2 ∆〈Oρ〉2 (ω ϑ+ 2 i∆µ)2

ω2$ (−i ω + ωgap)
+ i q2 γ∆〈Oρ〉2

ω
− 2 q2 ∆〈Oρ〉2

ω2
∂µ#
∂%

∣∣∣∣
s,φ(s)

,

GOφOY (ω) = δ ˜〈Oφ〉
δs̃Y

= 2 ∆〈Oφ〉
ε∗ δs̃Y

+ 2 i q∆〈Oρ〉
ω

∂〈Oφ〉#
∂ρ

∣∣∣∣
s,φ(s)

= −2 q∆〈Oρ〉∆〈Oφ〉
ω

ω ϑ+ 2 i∆µ
$ (−i ω + ωgap)

+ 2 i q∆〈Oρ〉
ω

∂〈Oφ〉#
∂ρ

∣∣∣∣
s,φ(s)

,

GOρOY (ω) = δ ˜〈Oρ〉
δs̃Y

= −q∆〈Oρ〉2

ω

ω ϑ+ 2 i∆µ
$ (−i ω + ωgap)

, (5.25)

after fixing,

γ = 4π
sc q2 ρ(0)2 = 1

$

(
ϑ2 + 1

q2

)
. (5.26)

The last equality can be used to show that our expression for GOY OY leads to positive
spectral weight. Moreover, the double pole in the same Green’s function is due to the
presence of the Goldstone mode, directly related to the phase of the condensate.

After noting that OY transforms as a pseudoscalar operator under time reversal, our
expressions for the retarded Green’s functions satisfy the Onsager relations.4 Finally, our
Green’s function GOY OY agrees5 with our previous result in [16] at zero chemical potential
and when we take the near critical point and zero pinning limit of the result presented
in [16].

6 Numerical checks

The aim of this section is to provide numerical evidence in support of the analytic expression
for the gapped mode given in equation (3.39) and (4.12). We consider the model (2.1)
and (4.3) respectively, together with,

V = −6 +
m2
ρ

2 ρ2 + λρ
2 ρ4 +

m2
φ

2 φ2 + λφ
2 φ4 + λ ρ2φ2

τ = 1 + ζρρ
2 + ζφφ

2 (6.1)

4In order to check this, it is useful to note the Maxwell type of relation ∂〈Oφ〉
∂%

∣∣∣
s,φ(s)

= − ∂µ
∂φ(s)

∣∣∣
s,%

coming

from the enlarged first law (B.2)
5In order to see the agreement, one has to write the transport coefficient Ξ of [16] as Ξ ≈ γ χ2

QQ/2 in
the near critical point limit. Moreover, at zero chemical potential we have that ∂µ∗

∂%
= χ−1

QQ. Note also that
there is a mismatch of a factor of 2 due to the different normalisation of the kinetic term of the complex
scalar in our bulk action (4.1).
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and m2
ρ = −2 ,m2

φ = −2. As described in section 2, we choose to deform our boundary
theory by a chemical potential µ = 1 and a relevant operator, Oφ, with scaling dimension
∆φ = 2; in particular we pick the source for φ to be given by φs = 1. The corresponding
backreacted solution will then be given by black holes supported by a non-trivial profile
for the scalar field φ, while the scalar field ρ remains trivial. These solutions correspond
to the normal phase of the system.

6.1 Ungauged model

For the ungauged model with ζρ = 1, ζφ = 0, λφ = 1, λρ = 1, λ = −1, the normal phase
black holes exhibit a second order phase transition at temperature Tc = 0.115 to a configu-
ration supported by a non-trivial scalar field ρ. The latter describe the broken phase that
we are interested in.

With these broken phase black holes at hand, we now turn our attention to studying
perturbations around them. In order to check numerically the validity of the analytic
expressions for the gap, we need to construct the quasinormal modes. In particular, we
consider the following perturbations,

δgµν = e−iω v(t,r)
(
−Uδgtt(r) + e2g(r)δgxx(r)(dx2 + dy2)

)
δA = e−iω v(t,r)δat(r) dt ,

δφ = e−iω v(t,r)δφ(r) ,

δρ = e−iω v(t,r)δρ(r) , (6.2)

where v is the infalling Eddington-Finkelstein coordinate defined as,

v(t, r) = t+
∫ r

∞

dy

U(y) . (6.3)

These perturbations satisfy three first order and two second order differential equations,
which we solve using a shooting method subject to appropriate boundary conditions. In
particular, in the horizon (located at r = 0) we impose,

δgtt = c1 r + . . . ,

δgxx = c2 r + . . . ,

δat = c3 r + . . . ,

δρ = δρh + . . . ,

δφ = δφh + . . . , (6.4)

where c1, c2, c3 are fixed, while close to the boundary we impose,

δgtt = δg
(s)
tt + . . . ,

δgxx = δg(s)
xx + . . . ,

δat = δa(s) + . . . ,

δρ = δρs
r

+ δρv
r2 + . . . ,

δφ = δφs
r

+ δφv
r2 + . . . , (6.5)
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For the computation of quasinormal modes, we need to ensure that we remove all the
sources from the UV expansion up to a combination of coordinate reparametrisations and
gauge transformations,

[δgµν + Lζgµν ]→ 0 ,
[δA+ LζA+ dΛ]→ 0 ,

[δφ+ Lζφ]→ 0 ,
[δρ+ Lζρ]→ 0 . (6.6)

where the gauge transformations are of the form,

xµ → xµ + ζµ ζ = e−iωt ζµ ∂µ ,

Aµ → Aµ + ∂µΛ Λ = e−iωt λ , (6.7)

for ζ, λ constants. This requirement boils down to the sources appearing in (6.5) taking
the form,

δg
(s)
tt = 2iω ζ1 − 2ζ2 ,

δg(s)
xx = −2 ζ2 ,

δa(s) = iω(µ ζ1 + λ) ,
δρs = 0 ,
δφs = φs ζ2 . (6.8)

Overall, in addition to the frequency ω, we have two constants in the IR (δρh, δφh) and
five constants in the UV (ζ1, ζ2, λ, δρ

(v), δφ(v)). This gives a total of eight free constants,
out of which one can be set to unity due to the linearity of the equations. The remaining
seven parameters match exactly the integration constants of the problem, giving rise to a
single (discrete set) solution. In figure 1, we compare the results for gap coming from the
direct calculation of the quasinormal modes and from the analytic expression (3.39) for ζρ =
1, ζφ = 0, λφ = 1, λρ = 1, and λ = −1. In particular, we plot the ratio ωanalytic/ωnumerics
as a function of T/Tc. We see good quantitative agreement as T → Tc.

6.2 Superfluid model

For superfluids with ζρ = 1, ζφ = 0, λφ = 1, λρ = 1, λ = −1, the critical temperature is
Tc = 0.128 and it also corresponds to a second order phase transition. The broken phase
is supported by a non-trivial charged condensate, ρ. Given these backreacted black holes,
we now turn our attention to studying perturbations around them.

Similarly to above, to check the validity of the analytic expressions for the gap, we
construct the quasinormal modes. In particular, we consider the following perturbations,

δgµν = e−iω v(t,r)
(
−Uδgtt(r) + e2g(r)δgxx(r)(dx2 + dy2)

)
δB = e−iω v(t,r)(δbt(r) dt+ δbr(r)dr) ,

δφ = e−iω v(t,r)δφ(r) ,

δρ = e−iω v(t,r)δρ(r) , (6.9)
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Figure 1. Plot of the ratio of the analytic result for the gap coming from 3.39 and the gap
computed numerically through the calculation of quasinormal modes as a function of T/Tc. We see
good quantitative agreement close to the critical temperature. Here φs = 1, µ = 1, ζρ = 1, ζφ =
0, λρ = 1, λφ = 1 and λ = −1.

where v is the infalling Eddington-Finkelstein coordinate. These perturbations satisfy three
first order and three second order differential equations, which we solve using a shooting
method subject to the following boundary conditions. Close to the horizon (located at
r = 0) we impose,

δgtt = c1 r + . . . ,

δgxx = c2 r + . . . ,

δbt = δbht + . . . ,

δbr = δbht
4π T r + . . . ,

δρ = δρh + . . . ,

δφ = δφh + . . . , (6.10)

where c1, c2 are fixed, while close to the boundary we require that,

δgtt = δg
(s)
tt + . . . ,

δgxx = δg(s)
xx + . . . ,

δbt = δb
(s)
t + . . . ,

δbr = 0 + . . . ,

δρ = δρs
r

+ δρv
r2 + . . . ,

δφ = δφs
r

+ δφv
r2 + . . . , (6.11)
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Figure 2. Comparison of the analytic and numerical result for the gap for superfluids. Here
φs = 1, q = 1, µ = 1, ζρ = 1, ζφ = 0, λρ = 1, λφ = 1 and λ = −1.

Demanding the absence of sources, the sources appearing in (6.11) take the form,

δg
(s)
tt = 2iω ζ1 − 2ζ2 ,

δg(s)
xx = −2 ζ2 ,

δb
(s)
t = iω(µ ζ1 + λ− δθ(v)) ,
δρs = 0 ,
δφs = φs ζ2 , (6.12)

Overall, in addition to the frequency ω, we have three constants in the IR (δρh, δφh, δbht ) and
six constants in the UV (ζ1, ζ2, λ, δρ

(v), δφ(v), δθ(v)). Due to the linearity of the equations,
one out of these ten free constants can be set to unit. One is then left with nine parame-
ters which match exactly the integration constants of the problem, giving rise to a single
(discrete set) solution. Just like above, in figure 2, we plot the ratio ωanalytic/ωnumerics
coming from the analytic expression (4.12) and from the direct calculation of the quasi-
normal modes for ζρ = 1, ζφ = 0, λφ = 1, λρ = 1, and λ = −1. We see good quantitative
agreement as T → Tc.

For this model with ζρ = 0, ζφ = 0, λφ = 1, λρ = 1/4, λ = −3/4, and Tc = 0.0484121, we
also compute the Green’s functions for the scalar fields for T/Tc = 0.999957, corresponding
to ωgap = 4 · 10−5. In this case, the IR and UV expansions stay unchanged. For the metric
and gauge field sources we impose absence of sources just like above. For the scalar field
sources, we impose,

δρs = s1 ,

δφs = s2 + φs ζ2 , (6.13)
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Figure 3. Real and Imaginary part of the Green’s functions. Analytic results are displayed in
dashed lines, while numerical results are show with black dots. Here φs = 1, q = 1, µ = 1, ζρ =
0, ζφ = 0, λφ = 1, λρ = 1/4, λ = −3/4 and T/Tc = 0.999957.

and we set either (s1, s2) = (1, 0) or (s1, s2) = (0, 1) depending on which correlator we
want to compute. Note that under the reparametrisation (6.6), the VEVs for the scalars
transform as

δρv → δρv − 2ρv ζ2 ,

δφv → δφv − 2φv ζ2 + iω φs ζ2 , (6.14)

Overall, for fixed s1, s2, we have nine constants in the expansion δρh, δφh, δbht , ζ1,
ζ2, λ, δρ

(v), δφ(v), δθ(v) in addition to the frequency ω. Given that the problem is fixed
in terms of nine integration constants, we conclude that we expect to find a one parameter
family of solutions labeled by ω. In figure 3 and 4, we plot the real and imaginary parts
of the four Green’s functions in terms of the frequency: the red dots correspond to the
numerical results, while the solid blue lines indicate the analytic expressions of the previ-
ous section. We see excellent quantitative agreement. Note that the agreement is expected
to improve as one approaches the critical temperature. The location of the peak in the
imaginary part of the Green’s functions corresponds to the location of the gap.

7 Discussion

We considered the perturbative dynamics of holographic systems which are parametrically
close to a thermal phase transition. In particular, we focused on gravitational fluctuations
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Figure 4. Real and Imaginary part of the Green’s functions. Analytic results are displayed in
dashed lines, while numerical results are show with black dots. Here φs = 1, q = 1, µ = 1, ζρ =
0, ζφ = 0, λφ = 1, λρ = 1/4, λ = −3/4 and T/Tc = 0.999957.

capturing the Higgs mode which universally emerges in the broken phase of all second order
phase transitions.

One of the crucial ingredients in our construction is the utilisation of the Crnkovic-
Witten symplectic current. In the case of the source free quasinormal mode, dual to the
Higgs mode, this allowed us to obtain the gap of equations (3.39) and (4.12). In the case
of section 5, where the frequency was fixed by an external source, the Crnkovic-Witten
symplectic current allowed us to relate the external source to the VEVs of our scalar
operators, fixing the form of the Green’s functions. The second important ingredient
was the construction of the terms which are next to leading order in the ε expansion of
equation (3.14). As we explained in section 3.2, these are simply linear combinations of
the static perturbations that can be obtained by varying the thermodynamic parameters
of the broken and normal phase black holes.

The results of section 5 confirm that the Higgs/amplitude mode dominates the linear
response of the scalar operators in the infinite wavelength limit. At finite wavelengths,
the Higgs mode will mix with the charge and current densities of theory, affecting the
hydrodynamics. It is natural to consider holographic techniques in order to derive an
enlarged hydrodynamic description which includes the dynamics of the Higgs mode. This,
would increase the range of validity of hydrodynamics close to the critical point.

A different physical situation in which a parametrically small gap exists is when a
symmetry is broken pseudospontanesouly. This is the case when apart from the sponta-
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neous breaking, a small explicit parameter that breaks the symmetry is introduced in the
system. Our recent work [16] makes clear that our techniques are applicable in the case of
superfluids with the internal broken pseudosponaneously. It would be interesting to apply
our techniques in setups where the weakly broken symmetry is translations [19–21].

In this paper, we have considered phase transitions which preserve the spacetime sym-
metries of the boundary theory. However, over the past few years a plethora of gravitational
instabilities which spontaneously break translations have been discovered in the context of
holography [10, 11, 22, 23]. These have been shown to lead to second order phase transi-
tions in general [24–28]. It is interesting to examine the dynamics of the Higgs/amplitude
mode for the order parameter of density waves.

From a slightly different angle, in [16] we used the Crnkovic-Witten current to obtain
the dissipative terms in the constitutive relations for the electric current in the superfluid
phase at zero charge density. Even though that setup is simple due to the non-mixing of the
normal and the superfluid components, it can be seen as a proof of principle in extracting
the transport coefficients of holographic theories.We expect that the techniques we have
developed here and in [16] will be central in the directions outlined above and we wish to
report more on these in the near future.

Finally, it is necessary to make the connection between our results and the field theory
approach on critical phenomena e.g. [4, 29, 30]. In particular, it would be very interesting
to understand the role of our transport coefficient $ in the framework of field theory.
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A Symplectic current contributions

Here we list all the relevant terms that enter in the construction of the symplectic cur-
rent (3.28). After writing the bulk action (4.3) in terms of first derivatives of the metric,
we obtain,

∂L
∂∂µφ

= −
√
−g ∂µφ, ∂L

∂∂µρ
= −
√
−g ∂µρ, ∂L

∂∂µAα
= −
√
−g Z Fµα ,

∂L
∂∂µgαβ

=
√
−g Γµγδ

(
gγα gδβ − 1

2 g
γδgαβ

)
−
√
−g Γκκλ

(
gµ(α g β)λ − 1

2 g
µλgαβ

)
, (A.1)

where Γαβγ are the Christoffel symbols compatible with our perturbed metric.

B The energy difference ∆E

In this appendix we will show that equation (3.41) gives the energy difference of the broken
and the normal phase at fixed scalar deformation, entropy and charge density. The energy
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density is,

E = F + T s+ µ%, (B.1)

satisfying the First Law of thermodynamics,

δE = T δs+ µ δ%− 〈Oφ〉 δφ(s) , (B.2)

given that the gravitation free energy F is the appropriate potential for the grand canonical
ensemble,

δF = −s δT − % δµ− 〈Oφ〉 δφ(s) . (B.3)

As we would expect the above suggests that energy should be considered as a function of
s, % and φ(s).

We could think of expanding the energy at the critical point along the broken and the
normal phases. Instead of doing that separately, we will do this collectively for both the
broken and the normal phase and specialise in the end, when we take the difference. Doing
so we obtain,

δE = T δs+ µ δ%− 〈Oφ〉 δφ(s) + 1
2 δΓ

T


∂2E
∂s2

∂2E
∂s ∂%

∂2E
∂s ∂φ(s)

∂2E
∂s ∂%

∂2E
∂%2

∂2E
∂% ∂φ(s)

∂2E
∂s ∂φ(s)

∂2E
∂% ∂φ(s)

∂2E
∂φ2

(s)

 δΓ + · · · , (B.4)

where we have set,

δΓ =

 δs

δ%

δφ(s)

 =
(
δΦ
δφ(s)

)
. (B.5)

Equation (B.4) can be written as,

δE =T δs+ µ δ%− 〈Oφ〉 δφ(s)

+ 1
2 δΦ

T

(
∂2E
∂s2

∂2E
∂s ∂%

∂2E
∂s ∂%

∂2E
∂%2

)
δΦ + δΦT

 ∂2E
∂s ∂φ(s)
∂2E

∂% ∂φ(s)

 δφ(s) + 1
2
∂2E

∂φ2
(s)
δφ2

(s) + · · ·

=T δs+ µ δ%− 〈Oφ〉 δφ(s)

+ 1
2 δΦ

T

(
∂T
∂s

∂T
∂%

∂µ
∂s

∂µ
∂%

)
δΦ− δΦT

(
∂
∂s〈Oφ〉
∂
∂%〈Oφ〉

)
δφ(s) −

1
2 δφ

2
(s)

∂

∂φ(s)
〈Oφ〉+ · · ·

=T δs+ µ δ%− 〈Oφ〉 δφ(s)

+ 1
2 δΦ

T Ξ−1 δΦ− δΦT Ξ−1 ν δφ(s) −
1
2 δφ

2
(s)

∂

∂φ(s)
〈Oφ〉+ · · · , (B.6)

where in the last line we recognised the matrix of susceptibilities as the Jacobian of the
transformation when passing from (s, %) to (T, µ). For the last term we will consider the
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chain rule,

∂

∂φ(s)
〈Oφ〉

∣∣∣∣∣
s,%

= ∂

∂φ(s)
〈Oφ〉

∣∣∣∣∣
T,µ

+ ∂T

∂φ(s)

∣∣∣∣∣
s,%

∂

∂T
〈Oφ〉

∣∣∣∣
µ,φ(s)

+ ∂µ

∂φ(s)

∣∣∣∣∣
s%

∂

∂µ
〈Oφ〉

∣∣∣∣
T,φ(s)

= νφ − νT Ξ−1 ν . (B.7)

where in the last line we used equation (3.18) to compute the partial derivatives of T and
µ at fixed s and %. Putting everything together we have that,

δE =T δs+ µ δ%− 〈Oφ〉 δφ(s)

+ 1
2 δΦ

T Ξ−1 δΦ− δΦT Ξ−1 ν δφ(s) −
1
2
(
νφ − νT Ξ−1 ν

)
δφ2

(s) + · · · , (B.8)

The above shows that after expanding along the broken and the normal phases and taking
the difference, the terms linear in the variations will cancel out and the quadratic ones will
give the result of equation (3.41).
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