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Abstract 10 

The Devonian experienced radiations of plants and animals, as well as a major mass 11 

extinction event during the Frasnian–Famennian (F–F) interval. Proposed triggers have 12 

been linked to volcanism, extraterrestrial impact, sea-level fluctuations, and climate 13 

cooling, etc. However, the nature of the wildfires and its role in the biotic evolution have 14 

been rarely investigated for the F–F interval. Here, we report organic geochemistry 15 

proxies (e.g., polycyclic aromatic hydrocarbons, PAHs) in three sections from New York 16 

(USA) to further investigate the wildfire activity and its potential link with the 17 

environmental and biotic perturbations around the F–F interval. The studied intervals are 18 

dominated by three-ring PAHs which display an increasing abundance stratigraphically 19 

towards the F–F boundary (FFB). An increase of 6-ring over 3-ring PAHs across the FFB 20 

is also observed for the studied sections, indicating elevated burning temperature. 21 

Additionally, slightly increased plant wax abundance and average chain length values and 22 

relatively constant Pr/Ph ratios are observed. Collectively, these results propose an 23 

increased burning frequency over the F–F interval caused by elevated pO2 level, rather 24 

than a change in aridity. Terrestrial input only slightly increased across the FFB, and there 25 

is limited evidence for ocean anoxia. This correlates with the hypothesis that pCO2 26 

drawdown and climate cooling could have been a driving mechanism of the F–F biocrisis. 27 

Keywords: atmospheric oxygen level; polycyclic aromatic hydrocarbons; F–F; terrestrial 28 

input; pCO2 drawdown; weathering   29 
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1 Introduction 30 

The Earth witnessed dramatic changes during the Devonian. Within these changes, 31 

the evolution and widespread rapid terrestrial invasion of plants increased the 32 

atmospheric levels of oxygen (pO2; Glasspool and Scott, 2010). The expansion of 33 

terrestrial plants provided the habitat and oxygen necessary for the terrestrial evolution 34 

of life on land and ultimately led to the appearance of larger body size animals that had a 35 

higher oxygen demand (Dahl et al., 2010). In addition to the radiation of life over this 36 

period, the Late Devonian also records one of the “big five” mass extinction events – the 37 

Frasnian–Famennian (F–F) biocrisis (Stanley, 2016). Possible causes of this catastrophic 38 

event have been attributed to, but not limited to, volcanism (Racki et al., 2018), 39 

extraterrestrial impact (Claeys et al., 1992, although this has since been refuted by 40 

multiple studies, e.g. Percival et al., 2018), ocean anoxia and/or euxinia (e.g., Bond et al., 41 

2004; Bond and Wignall, 2008; Carmichael et al., 2014), sea-level fluctuation (Copper, 42 

2002; Johnson et al., 1985), climate cooling (Joachimski et al., 2009; Huang et al., 2018), 43 

and orbital forcing (Lu et al., 2021). 44 

Wildfires played an important role in regulating the Earth’s environment (Glasspool 45 

et al., 2015). In the geological record, fire frequency is closely linked with pO2 and has 46 

been extensively studied for intervals with major climatic and biotic perturbations, such 47 

as the Permian–Triassic mass extinction (Shen et al., 2011). In contrast, a wildfire event 48 

has been rarely studied for the F–F interval. Previously, the F–F interval has been taken 49 
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to represent an interval during which wildfire events are sparse (Scott and Glasspool, 50 

2006; Rimmer et al., 2015). No fossil charcoal has been found in this interval, despite the 51 

availability of terrestrial plants to be burnt (Stein et al., 2012). This leads to the conclusion 52 

of a low pO2 level during the F–F interval such that wildfire activity cannot be sustained 53 

(Rimmer et al., 2015). Yet, more recently, fossil charcoal (inertinite) has been reported 54 

from five F–F sections in the western New York State (USA), thus providing support for 55 

a history of wildfires during the F–F interval (Liu et al., 2020). 56 

Despite the observation of inertinite in the New York State F–F sections, the trends 57 

in the inertinite abundance profiles are not uniform, which hampered the interpretation of 58 

the role of wildfires in the F–F mass extinction, and highlights the need for more 59 

comprehensive studies of wildfire events over the F–F interval. Here, we report PAHs 60 

data, coupled with Pr/Ph, plant wax abundance and average chain length data from three 61 

New York sections to further constrain the timing of wildfire events. The concentrations 62 

of PAHs, unlike inertinites, do exhibit trends in changes of fire intensity across the F–F 63 

boundary. As such, we discuss the potential link between wildfire events and the biotic 64 

and climatic perturbations during the Late Devonian. 65 

2 Samples 66 

In this study, three outcrop sections (Beaver Meadow Creek, BMC; Irish Gulf, IG; 67 

Walnut Creek Bank, WCB) from western New York state were investigated (Fig. 1). 68 

These records represent slope to basin deposits within the northern Appalachian foreland 69 
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basin, and are interpreted to be proximal to distal deposits in terms of paleoceanography 70 

(see inserted map of Fig. 1) (Sageman et al., 2003). In all three sections, the studied 71 

interval is composed of the latest Frasnian–earliest Famennian Hanover Formation and 72 

the early Famennian Dunkirk Formation. The Hanover Formation is composed of light 73 

gray, silty shales (less than 1 wt. % total organic carbon, TOC) interbedded with black 74 

silty shales that are rich in organic matter (~ 1–6 wt. % TOC) and thermally mature (BRo 75 

~ 0.6 %, solid bitumen reflectance; Liu et al., 2020). Evidence of bioturbation is observed 76 

for the grey shale, and hosts poorly preserved brachiopods and bivalves (Over, 1997, 2002; 77 

Boyer et al., 2021). The black shales are finely laminated and rich in pyrite, an indication 78 

of deposition in an anoxic/dysoxic environment (Boyer et al., 2021; Lash, 2017; Sageman 79 

et al., 2003). Overlying the Hanover Formation, the Dunkirk Formation contains thick 80 

beds of black shale (Over, et al., 1997). In the stratigraphic records studied here, the F–F 81 

boundary is defined by the first occurrence of the conodont Palmatolepis triangularis 82 

(Fig. 2; Klapper et al., 1993; Over, 1997, 2002; see also Spalletta et al., 2017) and occurs 83 

as a regionally continuous bed of black shale that is taken to be equivalent to the Upper 84 

Kellwasser Horizon (Kelly et al., 2019; Cohen et al., 2021; Uveges et al., 2019). 85 

3 Methods 86 

Across the F–F boundary interval, black shales were sampled at a 2–5 cm 87 

stratigraphic resolution. Above and below the F–F boundary, the black shale units were 88 
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sampled at a lower resolution of approximately 5–10 cm. Samples were powdered (~200 89 

mesh) using a Zirconium dish and puck mill using a shatterbox. 90 

3.1 Total organic carbon and organic carbon isotope 91 

Total organic carbon (TOC) content and organic carbon isotope (δ13Corg) 92 

determinations were analysed at the State Key Laboratory of Organic Geochemistry at 93 

Guangzhou Institute of Geochemistry. Samples were acidified: ∼1 g of powder was 94 

mixed with 15 mL 2 N HCl and left for 24 h. Acid was decanted and then the samples 95 

were rinsed three times with DI water to neutralize the acid. Samples were then dried in 96 

an oven at 60 °C for 2–3 days until their weights are constant. The TOC measurements 97 

were conducted using a Leco CS230 carbon/sulfur analyser. The samples were further 98 

ground to fine powder using an agate pestle and mortar and loaded into tin capsules for 99 

carbon isotope measurement. Carbon isotope values (δ13Corg) were analyzed using a 100 

Thermo Delta XL Plus isotope ratio mass spectrometer. Data are reported in delta notation 101 

(δ) in per mil (‰) relative to the Vienna Peedee Belemnite (VPDB). The analytical 102 

uncertainty on internal standards throughout the analytical run was ± 0.09 ‰ (2σ, n = 10). 103 

3.2 Molecular organic geochemistry 104 

Polycyclic aromatic hydrocarbons (PAHs) and saturated hydrocarbons analyses 105 

were conducted in the State Key Laboratory of Organic Geochemistry at Guangzhou 106 

Institute of Geochemistry. Before analyses, all the glassware, aluminum foil, silica gel, 107 

quartz sand and quartz wool were baked in an oven at 500 °C for 6 hours to remove 108 
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potential organic contaminants. Sample powders (~10 g) were extracted with mixture 109 

solvents of dichloromethane/methanol (9:1, v/v) in a Soxhlet extractor for 72 hrs. The 110 

extracts were then separated into saturated, aromatic, and polar fraction using silica gel 111 

column chromatography (~15 cm height). The volume of the silica gel column was 112 

determined by counting the liquid volume of n-hexane from the first aliquot loaded to the 113 

first volume eluted (dead volume, 1dv). Then the saturated fraction was eluted using three 114 

times column volume of n-hexane (3dv). The aromatic fraction was eluted with a 3dv 115 

dichloromethane/n-hexane (1:1, v/v) solution. The polar fraction was eluted with 116 

methanol (Song et al., 2020). The eluent fractions were then concentrated to a final 117 

volume of 0.3 mL. 118 

The PAHs were analyzed using a Shimadzu gas chromatography-mass spectrometry 119 

(GC/MS-QP2010) with an electron impact ion source at 70 eV. The chromatograph was 120 

equipped with a HP-5MS column (30 m × 0.25 mm, film thickness 0.25 μm). 121 

Approximately 1 μL of each aromatic fraction was injected in splitless mode and operated 122 

under electron ion source (-70 eV) in full scan mode (50–550 amu). High purity helium 123 

was used as the carrier gas at a flow rate of 1 mL/min. The temperature of transfer line, 124 

injector interface and ion source were set at 290 °C, 290 °C and 250 °C, respectively. The 125 

initial oven temperature was set at 70 °C for 3 min, then raised to 290 °C at a rate of 3 °C/ 126 

min, followed by a 30 min hold. The identification of compounds was based on the 127 

retention time with reference compounds and comparison of published data. 128 



 8 

Quantification of the PAHs were achieved by comparing the measured peak areas to those 129 

with known amounts of internal reference compounds (deuterated PAHs, including 130 

naphthalene-d8, acenaphethene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12) 131 

that were added to the samples before extraction. The blank control recorded only the 132 

reference material which recorded no significant contamination. 133 

The same GC-MS instrument was used for the saturated fraction. Approximately 1 134 

μL of each extract was injected in splitless mode and operated under electron ion source 135 

(-70 eV) in full scan mode (50–550 amu). High purity helium was used as the carrier gas 136 

at a flow rate of 1 mL/min. The temperature of transfer line, injector interface and ion 137 

source were set at 290 °C, 290 °C and 250 °C, respectively. The initial oven temperature 138 

was set at 70 °C for 3 min, then raised to 300 °C at a rate of 4 °C/ min, followed by a 20 139 

min hold. The n-alkanes, pristane and phytane were quantified against the internal 140 

standard n-C36. 141 

4 Results 142 

4.1 Organic carbon isotope stratigraphy 143 

A large positive carbon isotope excursion was detected in all three sections around 144 

the F–F boundary. At the BMC section, the 13Corg values increase from ~ -29.5 ‰ at the bottom 145 

of the section to a maximum value of -26.4 ‰ at the F–F boundary, and then decline to ~ -27.1 ‰ 146 

stratigraphically upwards. At the Irish Gulf section, 13Corg values gradually increase from -29.9 ‰ 147 

across the F–F boundary and reach a nadir of -27.3 ‰ about 70 cm above the F–F boundary, and 148 
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then the 13Corg values gradually drop to ~ -28.5 ‰ upwards. At the WCB section, 13Corg values 149 

average ~ -29.7 ‰ below the F–F boundary and rise dramatically to -27 ‰ across the F–F boundary, 150 

and then slowly drop to ~ -28.8 ‰ in the upper part of the section (Fig. 2). 151 

4.2 Polycyclic aromatic hydrocarbons 152 

In this study, phenanthrene (Phe), pyrene (Pyr), chrysene (Chy), benzofluoranthenes 153 

(BF), benzo[e]pyrene (BeP), benzo[ghi]perylene (BPery) and coronene (Cor) were 154 

chosen as wildfire proxies to track the biomass burning activity during the F–F interval 155 

(Fig. 2, Table S1). Phenanthrene and chrysene are the dominant PAHs at all three sections 156 

(generally over 75 % of the total PAHs abundance). Both the five and six ring PAHs 157 

(benzofluoranthenes, benzo[e]pyrene, benzo[ghi]perylene, and coronene) have similar 158 

trends with the three and four ring PAHs (phenanthrene, pyrene, chrysene). 159 

PAHs concentrations were normalized to the TOC for the assessment of 160 

contributions to sedimentary organic matter from forest fires (e.g., Killops and Massoud, 161 

1992; Jiang et al., 1998; Marynowski and Simoneit, 2009; Boudinot and Sepúlveda, 162 

2020). The detailed trends for the total PAHs concentrations were described below, and 163 

the trends with individual PAHs are plotted in Figure 2 (Table S1). At the Beaver Meadow 164 

Creek section, the total PAHs amounts increase from ~115 μg/g TOC to 143 μg/g TOC 165 

and then drop slightly to ~105 μg/g TOC, which then further increase to 135 μg/g TOC 166 

at ~15 cm below the F–F boundary. The total PAHs values then gradually drop across the 167 

F–F boundary to 51.2 μg/g TOC, and slowly increase to ~125 μg/g TOC in the upper part 168 
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of the section. At the Irish Gulf section, the total PAHs concentrations incease from ~102 169 

μg/g TOC to 134 μg/g TOC, and then decline to 95 μg/g TOC, which then gradually 170 

increase to ~128 ug/g across the F–F boundary. The values then gradually drop to ~87 171 

μg/g TOC, which then increase to higher values of ~121 μg/g TOC and remained at high 172 

levels upward. At the Walnut Creek Bank section, the total PAHs values increase from a 173 

low concentration of 42.6 μg/g TOC to 106.8 μg/g TOC immediately above the F–F 174 

boundary, which then drop to 83.6 μg/g TOC and further increase to 105.4 μg/g TOC. 175 

The total PAHs values then drop to slightly lower values upsection. 176 

At the Beaver Meadow Creek section, the 6/3-ring ratios increase from 0.038 to 177 

0.074 at the base of the section, which then decrease to 0.047 and remain relatively 178 

constant at ~0.045 upward through the F–F boundary interval. At the Irish Gulf section, 179 

the 6/3-ring ratios express a peak from 0.057 to 0.083 about 10 cm below the F–F 180 

boundary. The 6/3-ring values then increase to 0.102 above the F–F boundary, which then 181 

decrease to ~0.05 in the upper part of the section. At the Walnut Creek Bank section, the 182 

6/3-ring ratios decline from 0.08 to 0.024 below the F–F boundary, which then increase 183 

to 0.053 immediately above the F–F boundary. The 6/3-ring ratios values then decrease 184 

to ~0.04 upsection (Fig. 2). 185 

5. Discussion 186 

5.1 Evaluation of thermal maturity and weathering effect on PAHs 187 
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In nature, PAHs are generated by incomplete combustion of organic materials (Lima et al., 188 

2005). It has been used as a well-established wildfire proxy and applied in several climatic and biotic 189 

perturbation intervals in the Earth history (Finkelstein et al., 2005; Kaiho et al., 2021; Kaiho et al., 190 

2013; Marynowski and Filipiak, 2007). However, prior to interpreting of PAH data as a primary 191 

proxy for wildfire events, potential alteration from secondary processes such as weathering and/or 192 

thermal maturity need to be carefully evaluated (Marynowski et al., 2011). Previous thermal 193 

maturity proxies of solid bitumen reflectance (BRo, ~0.7 %) and Tmax values (~445 °C) suggest a 194 

low thermal maturity of the samples throughout these F–F sections (Liu et al., 2020). Furthermore, 195 

there is no correlation between PAHs concentrations and thermal maturity proxies from saturates 196 

(e.g., Ts/[Ts + Tm] and 22S/[22S + 22R]C31homohopane; Fig. 3), and highly pericondensed 197 

compounds like benzofluoranthenes, benzo[e]pyrene, benzo[ghi]perylene and coronene are 198 

minimally susceptible to thermal alteration and biodegradation (Jiang et al., 1998; Schmidt and 199 

Noack, 2000). Further, early studies have demonstrated that pyrene, benzo[ghi]perylene, and 200 

coronene are dominant types of PAHs derived from forest fires (Venkatessen and Dahl, 1989; 201 

Killops and Massoud, 1992; Masclet et al., 1995; Arinobu et al., 1999), and their condensed 202 

structures make them resistant to degradation (Killops and Massoud, 1992). Weathering processes 203 

have been demonstrated to be able to alter the PAHs record (Marynowski et al., 2011). However, 204 

in this study, fresh outcrop samples were collected and extra care has been taken to remove the 205 

potential weathered surface. Furthermore, other geochemistry analyses such as osmium isotope 206 

(187Os/188Os, or Osi), which is extremely sensitive to weathering, have yielded geologically 207 
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meaningful Osi values that are identical to Osi values from core records (see Fig. 7 in Liu et al., 2020) 208 

and are equivalent to Osi values from other sections (Gordon et al., 2009; Harris et al., 2013; Jaffe 209 

et al., 2002; Turgeon et al., 2007). Therefore, we consider the trends of PAHs compounds in the F–210 

F strata to reflect a primary depositional signature and might suggest enhanced frequency of wildfire 211 

activity towards the F–F (Fig. 2). The appearance of inertinite from these sections further 212 

demonstrate that the PAHs are of fire origin, although the inertinite and PAHs profiles do not 213 

correlate (Fig. 2; Liu et al., 2020). The maximum concentrations of PAHs occur before the maximal 214 

inertinite content (Fig. 2). This may be in a direct response to sea-level fall at the F–F boundary. 215 

Thus, possibly more inertinite was transported to the sea due to the shorter transport distance. In 216 

contrast, PAHs were transported via aerosols. 217 

5.2 Wildfires across the F–F Interval 218 

Although all PAHs are shown to have a combustion source (Lima et al., 2005), the distribution 219 

of PAHs in the surrounding sediments are linked to the specific burning conditions, e.g., the burning 220 

of plant community material combined with the combustion temperature (Lima et al., 2005). 221 

Moreover, the distribution of PAHs in the sedimentary record could be affected by the distance of 222 

transportation and the form (particulate/gas) of the transportation (Masclet et al., 1988; 1995). For 223 

example, benzo[e]pyrene and coronene are enriched in the particulate phase, whereas pyrene and 224 

fluorene are dominant in the gas phase (Masclet et al., 1988; 1995). The precipitation of PAHs 225 

during the transportation might also affect the final PAHs deposition/composition in the 226 

sedimentary record (Masclet et al., 1988; 1995). Previous investigations have suggested that the 227 
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forest fire type during the F–F interval was a surface fire with burning temperature estimated 228 

between 400 and 500 °C, rather than an intensive crown fire, based on inertinite reflectance value 229 

of 1.74–3.16 %. The burning material is inferred to be herbaceous and shrubby material (Liu et al., 230 

2020). The heterogenous trends for each individual type of PAHs, and the different PAHs trends 231 

for each of the investigated sections may be linked to the special heterogeneity of wildfires and their 232 

burning temperatures, as well as the sections' distance from the land that the PAHs in the gas phase 233 

may migrate further than those in the particulate phase (Fig. 2). 234 

At the Walnut Creek Bank section, the PAHs generally show an increase in concentration 235 

towards the F–F boundary, and the coronene concentration firstly decreases below the F–F and then 236 

increases across the F–F boundary (Fig. 2). At the Irish Gulf section, most of the PAHs show an 237 

increasing trend towards the F–F boundary, with phenanthrene, chrysene and coronene 238 

expressing a small peak below the F–F boundary (Fig. 2). The increase in the concentrations of 239 

pyrene, benzo[ghi]perylene, and coronene towards the F–F boundary at the Irish Gulf and Walnut 240 

Creek Bank sections might suggest increased wildfire burning frequency during the F–F interval, 241 

although the Beaver Meadow Creek section show a relatively constant profile of the PAHs 242 

concentrations (Fig. 2). High burning temperature may generate more 6-ring PAHs compared with 243 

three-ring PAHs, which could also be generated from weathering and burning of sedimentary 244 

hydrocarbons (e.g., coal; Belcher et al., 2009; Killops and Masoud, 1992, Finkelstein et al., 2005; 245 

Belcher et al., 2009). Thus, the 6/3-ring ratio has been proven to be a useful proxy to reconstruct 246 

high temperature biomass burning that occurs during forest fires, and reduce the influence of 247 
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changes related weathering and burning of sedimentary hydrocarbons (Boudinot and Sepúlveda, 248 

2020). The 6/3-ring ratio increase towards the F–F boundary at the WCB and IG sections. 249 

Moreover, an increase in the 6/3-ring ratio at the BMC section were also found, although it is slightly 250 

stratigraphically lower than that of the IG and WCB sections. The latter support an increase in 251 

frequency of wildfires and an increase in high temperature burning during the F–F interval. An 252 

increase in PAHs abundance (Cor, BPery and BeP) has also been reported for two Belgium 253 

sections and are interpreted to reflect enhanced wildfire events (Kaiho et al., 2013). The increase 254 

of resistant PAHs degradation (pyrene, benzo[ghi]perylene, and coronene) and the 6/3-ring ratio 255 

over the F–F interval further support the occurrence of wildfires and increased frequency towards 256 

the F-F Boundary. Nonetheless, the exact scale (global, regional, or local) of wildfires during the 257 

F–F interval remains unclear without further investigation of multiple F–F sections. 258 

The ignition of wildfires could be caused by heat from natural lightning, volcanic activity, 259 

meteorite impact and even sparks generated by rock fall, with lightning strikes considered to be the 260 

most common ignition method (Glasspool and Scott, 2010). In the case of the wildfires 261 

around the F–F interval, volcanism could have been an alternative source of ignition. 262 

Increased mercury concentrations (which has been used as evidence for volcanic 263 

activities by several researchers) have been reported from several F–F sections (Racki et 264 

al., 2018; Kaiho et al., 2021; Liu et al., 2021; Zhao et al., 2022). Moreover, a bentonite layer 265 

has also been reported below the F–F interval, which might indicate volcanism before the 266 

F–F Boundary (Kaufmann et al., 2004). It is worth to note that the dating of the F-F 267 
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boundary does not directly correlate with any major large ingeous provinces ages, and Hg 268 

enrichments might be driven by increased amounts of sulfides, organic matter and clay 269 

minerals rather than volcanism (e.g., Percival et al., 2018, Shen et al., 2020). An increase 270 

in coronene abundance for three carbonate-dominated F–F sections (Yangdi, China; 271 

Sinsin, Belgium; Coumiac, France; with TOC generally less than 0.3 %) is interpreted to 272 

be the product of high-temperature country rock heating caused by the sill emplacement 273 

and/or large wildfires ignited by lava flows, rather than normal wildfires (Kaiho et al., 274 

2021). However, in the sections from this study, no Hg (Hg/TOC) spike is detected (Liu 275 

et al., 2021), and thus the PAHs are likely produced by combustion from natural wildfires. 276 

5.3 Implications for elevated atmospheric oxygen level 277 

For terrestrial plant material to burn, a minimum pO2 concentration of 16 % is 278 

needed (Belcher et al., 2010). Below this level, regardless of the dryness of the organic 279 

matter, wildfire activity cannot be sustained. In general, the higher the oxygen level, the 280 

less effect the moisture content has on the ability for organic material to combust (Watson 281 

and Lovelock, 2013). In the Late Devonian, readily available combustible terrestrial 282 

organic matter comprised a developed plant community and even the appearance of small 283 

forests (Stein et al., 2012). However, the F–F interval has been considered to be an 284 

interval with few wildfire events due to suppression by low pO2 level (~17 %, Scott and 285 

Glasspool, 2006). The recovery of inertinite coupled with PAHs data in this study, further 286 

suggests the occurrence of wildfires during the F–F interval (Fig. 2). The increased PAHs 287 
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concentration towards the FFB is consistant with an increase in pO2 level over this 288 

interval as suggested by different models (Krause et al., 2018; Lenton et al., 2018; 289 

Schachat et al., 2018).  290 

In addition to an increased pO2 level, changes in aridity can make areas or intervals 291 

more prone to wildfire events (Heimhofer et al., 2018). Plants tend to biosynthysize 292 

longer plant cuticle wax chains to retain moisture within the leaf as a response to drier 293 

climate (Eglinton and Hamilton, 1967). The average chain length (ACL) of plant wax n-294 

alkanes, as calculated by Eq. (1), has been shown to be an effective proxy for aridity (Carr 295 

et al., 2014). 296 

ACL = ([nC27]*27) + ([nC29]*29) + ([nC31]*31) + ([nC33]*33) + ([nC35]*35) / [nC27] + 297 

[nC29] + [nC31] + [nC33] + [nC35]                                         (1) 298 

However, it is noteworthy that cases have also been reported where ACL decreases 299 

in response to incresased aridity (Hoffmann et al., 2013). In addition, plant community 300 

changes can also affect the changes in ACL (Bush and McInerney, 2013; Diefendorf et 301 

al., 2011; Vogts et al., 2012). These factors all together make the interpretation of ACL 302 

data complicated. 303 

Regardless of cause, the average chain length (ACL) in all three sections remained 304 

around 29, with the Beaver Meadow Creek (BMC) and Irish Gulf (IG) sections increasing 305 

slightly to ~29.5 below the FFB (Fig. 4). This short stratigraphic interval would be too 306 

brief for any plant community change. Rather, a transient change in aridity might be a 307 
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more reasonable interpretation for these minor inceases in ACL. However, aridity change 308 

cannot account for the trend in increasing PAHs abundance in this study (Fig. 4). Thus, 309 

the increased PAHs abundance towards the FFB and above reflects enhanced wildfire 310 

frequency caused by elevated pO2 level, potentially aided by a transient increase in aridity.  311 

In addition to being regulated by pO2 levels, wildfires have been proposed to have a 312 

positive feedback on the pO2 level. As pO2 level increases, wildfire intensity would 313 

increase and thus more charcoal would be produced and buried. This enhanced carbon 314 

burial would then further contribute to the rise of pO2 levels (Rimmer et al., 2015). 315 

Previously, the pO2 level has been estimated to be 24–27 % (Liu et al., 2020). In addition 316 

to a sharp rise in pO2, the ocean also experienced an episode of oxygenation across the 317 

Devonian, as evidenced by near-present day level δ98Mo values for euxinic samples (2.0 ‰ 318 

compared with the modern seawater value of 2.3 ‰; Dahl et al., 2010 and reference 319 

therein). This indicates a sychronised rise in the atmospheric and oceanic oxygen contents 320 

over the Devonian (Fig. 5) although experiencing a episode of anoxia across the F–F 321 

interval (see below discussion). 322 

5.4 Implications for the Frasnian–Famenian mass extinction 323 

Wildfires have been proposed to destroy plant root systems and lead to enhanced 324 

continental weathering, generate soot and aerosol, and affect the carbon cycle and climate, 325 

which then are ultimately linked with major ocean anoxia or mass extinction events (e.g., 326 

Archibald et al., 2018). Inceased runoff and transport of terrestrial organic matter, 327 
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including terrestrial-derived nutrients (e.g., P and N) flux to the ocean have been observed 328 

in response to modern and ancient wildfire events (Barkley et al., 2019). A slightly 329 

enhanced terrestrial input was inferred from the relative abundance of plant wax 330 

(calculated by n-C27,29,31,33,35/n-C17,19,21,27,29,31,33,35; Boudinot and Sepúlveda, 2020) 331 

showing a minor increase below the FFB that correlates to the ACL increase in the more 332 

proximal sections of BMC and IG. The pristane/phytane (Pr/Ph) ratio has been used as a 333 

redox indicator (lower Pr/Ph ratios indicating reducing conditions and higher ratios 334 

indicating more oxic conditions), as reducing conditions favor the conversiton of the 335 

phytyl side chain of chlorophyll to phytane whereas oxic environments encourage the 336 

conversion of phytyl to pristane (Peters et al., 2005). However, the utility of this 337 

biomarker is limited by multiple factors (Koopmas et al., 1999; Peters et al., 2005). For 338 

example, the Pr/Ph ratio may also be affected by the source of organic matter, with an 339 

increased flux of terrestrial organic matter resulting in an increase in the Pr/Ph value 340 

(Song et al., 2020). In the investigated sections, the samples are dominated by marine 341 

organic matter, with very limited terrestrial organic matter contribution (less than 2.2 %, 342 

Liu et al., 2020). Thus, we carefuly infer our Pr/Ph values here to reflect redox conditions. 343 

In the studied sections, the Pr/Ph data generally remain constant around 1 throughout the 344 

F–F interval. Further, isorenieratane and aryl isoprenoids produced by green sulfur 345 

bacteria are considered to be robust proxies for photic zone euxinia (Summons and Powell, 346 

1986). The presence of very low absolute amounts of aryl isoprenoids and isorenieratane 347 
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(near the detection limit) for the investigated sections (C13–C22 aryl isoprenoids average 348 

9.04, 3.37 and 10.98 μg/g TOC for the BMC, IG, and WCB sections, respectively; 349 

Haddad et al., 2016) are several orders of magnitude lower than those reported from 350 

euxinic basins (e.g., 2723 μg/g TOC for C14–C27 aryl isoprenoid during the 351 

Changhsingian leading into the Permian–Triassic mass extinction event at the Meishan 352 

section, South China; Cao et al., 2009). This further supports that the local marine redox 353 

conditions in the Appalachian basin during the F–F interval were not persistantly euxinic 354 

(Boyer et al., 2014; Haddad et al., 2016, 2018; Kelly et al., 2019).  355 

Ocean anoxia/euxinia has been frequently linked with the F–F mass extinction event. 356 

Albeit not recorded in our study, widespread and intermitnent ocean anoxia has been 357 

reported for F–F sections globally. In contrast, the absence of evidence for ocean anoxia, 358 

or even more oxygenated ocean, has been shown in several sections, such as Australia 359 

(Becker et al., 1991; George et al., 2014), North America (Bratton et al., 1999; White et 360 

al., 2018), and South China (Song et al., 2017) (see a review by Carmichael et al., 2019 361 

for a summary of the redox states of global F–F sections). Heterogeneity in nutrient supply, 362 

local depositional conditions, and the living organism species is expected within a global 363 

ocean system for any interval of Earth history. Further high-resolution studies with 364 

sections that have clear biostratigraphy characterization are needed for section correlation 365 

and to determine the timing and locality of ocean anoxia, and to correlate ocean anoxia 366 

with the F–F mass extinction event. 367 
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In addition, elevated nutrient supply from enhanced terrestrial input might have 368 

boosted the marine productivity. Increased burial of marine organic matter and inert 369 

carbon (e.g., charcoal, soot) would have lead to a positive CIE and the drawdown of the 370 

pCO2, and cause climate cooling that may have ultimately contributed to the F–F event 371 

(Averbuch et al., 2005; Huang et al., 2018; Joachimski and Buggisch, 2002; Song et al., 372 

2017). Paleontology studies suggest that faunas living in warm temperatures were 373 

sensitive to cooling, and experienced more severe losses than faunas living in cooler water 374 

temperatures (McGhee, 1996; Ma et al., 2016). For example, over 90% of all brachiopod 375 

families from the low-latitude, tropical regions became extinct, in comparison with ~ 27% 376 

brachiopods from the cooler waters (McGhee, 1996). Warm-adapted benthic ostracods 377 

were also severely affected, whereas sponges and solitary rugose corals that lived in deep 378 

water environments were less affected (Ma et al., 2016). After the F–F mass extinction, 379 

faunas (e.g., foraminifers) that previously populated high-latitude regions migrated to 380 

low-latitude regions, with the low-latitude organisms that survived displaying a dramatic 381 

decline in their biogeographic distribution (Kalvoda, 1990). In addition to the mass 382 

extinction in the marine realm, research has shown that the F–F biotic crisis also affected 383 

the terrestrial ecosystems to some extent (McGhee, 1996). The ecological selectivity of 384 

the F–F biotic crisis is better explained by climate cooling. In summary, our organic 385 

geochemistry data do not provide evidence for enhanced ocean anoxia in the Appalachian 386 

basin, and whether ocean anoxia is a killing mechanism of the F–F mass extinction still 387 
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needs further research. The increased frequency of wildfires fit with the climate cooling 388 

scenario across the F–F boundary interval. 389 

6 Conclusions 390 

The PAHs data from three F–F sections suggest enhanced wildfire activity around 391 

the FFB (Fig. 2). The dominance of three-ring Phenanthrene indicates that the wildfire 392 

has a low burning intensity. Average chain length data remained relatively constant at 29 393 

for all three sections, and thus indicate relative aridity conditions were stable during this 394 

time interval. The enhanced wildfire activity might be linked to an elevated atmospheric 395 

oxygen level. Although a slightly increased terrestrial input was observed, no major 396 

oceanic oxygen deficiency in the Appalachian basin is detected over the F–F interval by 397 

Pr/Ph, albeit that widespread and intermittent ocean anoxia has been reported. 398 

Nevertheless, our evidence for enhanced wildfire activity corroborates with the 399 

hypothesis that pCO2 drawdown and climate cooling that resulted from enhanced 400 

mountain building and continental weathering might have led to the F–F biocrisis. This 401 

interpretation seems more consistent with the pattern that shallow water species were 402 

among those most severely affected. 403 
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Figures 689 

Figure 1. Paleogeography map showing location of the Appalachian Basin (open square) 690 

in North America (after Liu et al., 2020). Inserted map shows the present-day New York 691 

State sample locations – a: Walnut Creek Bank, b: Irish Gulf, c: Beaver Meadow Creek). 692 

The orange circle represents the Belgium Frasnian–Famennian sections where a wildfire 693 

event at the F–F boundary is also inferred (Kaiho et al., 2013). 694 

  695 
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Figure 2. 13Corg stratigraphy and biomarkers from three F–F sections, New York State, 696 

USA. Abbreviations: Phe, phenanthrene; Pyr, pyrene; Chy, chrysene; BF, 697 

benzofluoranthenes; BeP, benzo[e]pyrene; BPery, benzo[ghi]perylene; Cor, coronene; 698 

PWRA, plant wax relative abundance; ACL, average chain length. Inertinite abundance 699 

data are from Liu et al. (2020). a: Walnut Creek Bank (WCB); b: Irish Gulf (IG); c: Beaver 700 

Meadow Creek (BMC).  701 

  702 
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Fig. 3 Cross plots for total PAHs concentrations and thermal maturity parameters. WCB: 703 

Walnut Creek Bank (blue), IG: Irish Gulf (red), BMC: Beaver Meadow Creek (green). 704 

  705 
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Figure 4. Biomarkers of plant wax relative abundance (PWRA), average chain length 706 

(ACL), and pristane/phytane ratio (Pr/Ph) from three F–F sections, New York State, USA. 707 

a: Walnut Creek Bank (WCB); b: Irish Gulf (IG); c: Beaver Meadow Creek (BMC). 708 

Inertinite abundance data are from Liu et al. (2020). See text for discussion. 709 

  710 
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Figure 5. Evolution curve for atmpheric oxygen level (Liu et al., 2020) and Mo isotope 711 

values of euxinic samples (Dahl et al., 2010). See text for discussion. 712 

 713 
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