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Abstract—Industrial Internet of Things (IIoT) and fifth gen-
eration (5G) network have fueled the development of Industry
4.0 by providing an unparalleled connectivity and intelligence to
ensure timely (or real time) and optimal decision making. Under
this umbrella, the edge intelligence is ready to propel another
ripple in the industrial growth by ensuring the next generation
of connectivity and performance. With the recent proliferation
of blockchain, edge intelligence enters a new era, where each
edge trains the local learning model, then interconnecting the
whole learning models in a distributed blockchain manner,
known as blockchain-assisted federated learning. However, it
is quiet challenging task to provide secure edge intelligence
in 5G-enabled IIoT environment alongside ensuring latency
and throughput. In this paper, we propose a Proof-of-Learning
(PoL) consensus protocol that considers the reputation opinion
for edge blockchain to ensure secure and trustworthy edge
intelligence in IIoT. This protocol fetches each edge’s reputation
opinion by executing a smart contract, and partly adopts the
winner’s learning model according to its reputation opinion. By
quantitative performance analysis and simulation experiments,
the proposed scheme demonstrates the superior performance in
contrast to the traditional counterparts.

Index Terms—Industrial Internet of Things, blockchain, edge
intelligence, proof of learning, reputation opinion.

I. INTRODUCTION

INTERNET OF THINGS, (IoT) has changed the way the
devices (or objects) tank to each other and interact with
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surroundings. IoT encompasses smart devices (like, sensors,
tags, and wearable) that gather data, analyze it, and finale
a decision (or action). Fifth generation (5G) network has
also quicken the way that the devices connect to each other.
Recently, the reach of IoT has travelled a significant journey
starting from the smart homes applications to myriad smart
service ecosystem (including industrial as well as mission
critical applications). 5G-enabled Industrial IoT (IIoT) is the
most significant supplement of IoT in industrial and manufac-
turing sector. 5G-enabled IIoT moves across the normal inter-
networking of smart devices to realize how cyber-physical
systems and production or operational processes can transform
industrial systems by utilizing big data and analytics.

Meanwhile, integrating artificial intelligence (AI) with IIoT
is beginning to receive a tremendous amount of interest, which
is treated as one of the most important enabling technologies
to achieve smart IIoT [1]. The development of AI has made
breakthroughs in a wide spectrum of fields in IIoT, ranging
from wireless sensing [2], resource allocation [3], to decision-
making [4] and so on.

There is no doubt that the industrial systems need a
timely decision making or action so adopting conventional
data processing approaches may not fit this revolution. For
example, transmitting the data generated by industrial devices
to remote cloud servers for processing or analysis may involve
high turnaround delay. Due to this reason, the middleware
technology, clike edge computing, is very popular to process
the workload or analyze the data generated from IoT devices.

Although AI has been regarded as a promising solution to
solve the problems in IIoT (supported by edge computing),
there are many challenges that hinder its widespread adoption.
For example, the training data in IIoT is highly scattered,
while AI training approaches are relatively centralized. It is
not economical to bring the large volumes of scattered data
to a center, as well as low performance, costs and privacy.
These challenges have given rise to a new research area in
IIoT, i.e., edge intelligence [5]. It pulls the training capacity
from the data center to the industrial edges. Such space
proximity among data, demands, and intelligence provider,
benefits amount of high quality-of-service (QoS) supplement
[6].

Nowadays, blockchain has come into existence as a promis-
ing technique for widespread applications. It is accessible for
every entity, while not controlled by anyone, promising a
great benefit to enhance the deployment of edge intelligence
[7]. Essentially, edge node trains its own learning model in
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Fig. 1. Research approach

a local manner, then interacting the whole training models
in a decentralized blockchain way, finally sharing the better
learning model among edges, so as to construct the constantly
innovatory edge intelligence, known as blockchain-assisted
federated learning [8]. Driving by this trend, there are a lot
of works focusing on the Proof of Useful Work consensus
protocol to fully release the solution of blockchain assisted
edge intelligence, via substituting the hashing operation in
Proof of Work (PoW) as the intelligence training [9], such as
Proof of Learning (PoL) [10], Proof of Training Quality (PoQ)
[11], and Proof of Deep Learning (PoDL) [12]. However,
the particularity of IIoT overturns these huge benefits of
blockchain-assisted edge intelligence, thus leading to the fol-
lowing research challenges, including security consideration,
resource constraints, and performance requirements:
• Security requirements: the security issues in the indus-

trial scene, such as openness, heterogeneity, and non-
confidence, have adverse effects on the whole perfor-
mance of blockchain-assisted edge intelligence. For ex-
ample, some malicious edges could join in the system and
share false training models to impede edge intelligence.

• Resource constraints: as a resource-hungry system, IIoT
is associated with problems of poor resources, conse-
quently resulting in lacking enough resources to transmit
all the local learning models, also including these false
training models from malicious edges.

• Performance requirements: IIoT is also a time latency-
sensitive system, which gives rise to the high require-
ments on the delay and throughput performance. These
challenges have opened up demands to construct a
security-latency-throughput improved blockchain-assisted
edge intelligence system.

A. Research Contributions

To overcome the above discussed research challenges, the
research approach adopted in this paper is shown in Fig. 1.
Based on this research approach, in this paper, to move towards
trustworthy edge intelligence, we propose a PoL consensus
protocol with reputation opinion for edge blockchain in IIoT.
The main contributions of this article are summarized as
follows:
• We propose a reputation opinion based PoL consensus

protocol, with high trustworthy supplement.

• We design the smart contract to obtain reputation opinion,
so as to abate malicious or accidental anomalies and
reliance on trusted intermediaries.

• The proposed trustworthy edge intelligence adopts the
winner’s intelligence through a weight aggregation of
the winner’s learning model according to its reputation
opinion, instead of completely using the winner’s model
and discarding all its own local model.

• In addition, we provide the quantitative performance anal-
ysis of the proposed approach based on several metrics
like, security, latency, and throughput.

B. Organization

The rest of this article is organized as follows. Section
III gives an overview of the PoL consensus protocol with
reputation opinion for edge blockchain in IIoT. In Section
IV, the smart contract to calculate reputation opinion are
discussed. Section V presents the quantitative performance
analysis, followed by experimental results in Section VI.
Finally, conclusions and future works are shown in Section
VII.

II. RELATED WORK

A. Security Requirements

Security requirement has become one of the major concerns
to uplift the possible way with technological advancement. In
addition, the security and the reliability of edge intelligence
play a huge role in the effectiveness of IIoT. Just think how
would the IIoT perform if the training results and the inference
results are malicious. Thus, the exciting new challenges have
spawned numerous studies on the security consideration about
the edge intelligence-enabled IIoT.

In the light of secure data storage, utilization, search, and
deletion in edge intelligence IIoT, the authors in [13] probe
into a novel security architecture. The architecture integrates
the acquisition, processing, and transition of sensing data in
IIoT. Also involved into the secure challenges of edge intelli-
gence IIoT, the authors in [5] discuss the security requirements
in the sense of confidentiality and integrity. In this context,
compressive sensing is considered to be especially appropriate
to solve the above challenges.

From another perspective, edge intelligence has been widely
adopted to improve the secure performance of IIoT. For
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example, the authors in [14] consider the edge intelligence
helped security authentication in IIoT. Meanwhile, with the
preponderance of information-centric networking and cyber-
physical system, the proposed scheme achieves the balanced
working load of IIoT edge devices, under the securing sce-
nario. Taking consideration of the malicious learning servers,
the authors in [15] develop a novel fuzzy consensus protocol,
integrating delegated proof of state (DPoS) and practical
Byzantine fault tolerance (PBFT). The proposed consensus
protocol provides the secure aggregation capability in edge
intelligence. However, they ignore the quantitative analysis of
security performance.

From the above summarization, it can be seen that the
security research of edge intelligence IIoT is urgent and
intense. There are several gaps in the secure edge intelligence
IIoT and the appropriate security quantitative analysis, which
explains the purpose and motivation of our article.

B. Learning-based Consensus Protocols

Working-based consensus protocols are taken by the tradi-
tional crypto-currency. There is no doubt that these potential
costs are not cost-effective, due to the fact that they could
not be applied by any others, except for maintaining the
blockchain.

Therefore, a series of multiple roles consensus protocols are
designed by many researchers. In general, the multiple roles
could be classified in two types, namely reaching consensus
and achieving AI tasks.

For example, PoQ uses federated learning in the permis-
sioned blockchain [11]. Two types of nodes are included,
i.e., committee nodes and committee leader. The committee
leader collects the transactions, and the committee nodes
verifies them. The approval is then distributed to the committee
leader. Finally, the transactions are attached to the blockchain
with the leader’s signature. PoDL builds a energy-recycling
consensus protocol, where model requester, miners, and full
nodes exist [12]. Miners complete deep learning training tasks
from mode requester, while full nodes validate the submitted
training models based on test datasets. Meanwhile, Proof of
useful work also changes the mining process as the AI model
training [16]. The difference is that the hashed value including
the digest including transactions, nonce and the hash of the
previous block. And the hashed value determine the hyper-
parameters of the training model.

From the above researches, there is a research trending
that when taking a consensus in the blockchain, AI tasks are
achieved simultaneously. However, the current researches take
the seldom consideration about the reputation of participators,
as well as the quantitative performance of the consensus
protocol.

III. BLOCKCHAIN ASSISTED EDGE INTELLIGENCE
APPROACH IN IIOT

In this section, we present the blockchain-assisted edge
intelligence approach, i.e., the improved PoL consensus pro-
tocol, as well as the adversary model under the consideration.

A. PoL Consensus Protocol

The work in [17] has proposed a blockchain-enabled edge
intelligence aspect, which also contributes to relieving the
centralized training and resource-limitation problems in IIoT.
Assuming that there are NMH edge learning nodes in IIoT,
where NM nodes are malicious to hinder edge intelligence,
while NH nodes are honest to promote edge intelligence. Fig.
2 shows a reputation opinion based PoL consensus protocol
in the blockchain assisted edge intelligence, including the
following five steps:

1) Local intelligence training and the generation of trans-
actions: Deep reinforcement learning approach is adopted
in each local learning node [18]. Specifically, there are two
identical deep networks, namely target networks and evaluated
networks, while target networks are kept frozen for a fixed
period of time. The evaluated networks are crafted in each
episode to minimize loss function `Φ(ω) under the local
training dataset Φ [18]:

`Φ(ω) = E[(r + γmax
a′

Q(s′, a′, ω−)−Q(s, a, ω))2], (1)

where r is the immediate reward and γ ∈ (0, 1) is a discount
factor to balance the immediate reward and the previous ones.
Q(s′, a′, ω−) is the expected reward in state s′, taking action
a′, under the weighs and biases set ω− of neurons in deep net-
works, and the same in Q(s, a, ω). The smaller loss function
means the more similarity between the evaluated networks and
the target ones, further the more accurate evaluation of real Q
function and the better learning intelligence of deep networks.

2) A new block is attached by the training winner: Instead
of solving bootless hashing puzzles like in PoW, the ‘miners’
in PoL compete to obtain the better deep networks. Thus, the
winner in PoL is the one with the minimum local loss function.
The local loss function in node n can be denoted by [11]:

`Φn(ωI) =
1

I

I∑
i=1

`Φn
(ωi), (2)

where I is the total number of local training episodes in node
n, `Φn(ωi) is its i-th training loss function, denoted by eq.
(1), and Φn is the local training dataset in node n.

The winner then attaches a new un-verified block in the
current chain, whose format and the concrete format of each
part are presented Fig. 2. It is worth mentioning that proof in
the block header is the minimum local loss function among
transactions in the block.

The block is disseminated over the block system by two
types of block propagation protocols, namely the legacy block
propagation protocol and the compact block propagation pro-
tocol [19]. We mainly consider the former one, i.e., the legacy
block propagation protocol, in this article.

3) Other nodes verify the newly attached block: After re-
ceiving the new attached block, other nodes conduct two types
of validation, including cryptography, and training results.
In the cryptography validation, message authentication codes
(MACs) and digital signatures will be verified. Meanwhile,
the validity of training results will be verified via re-running
the training process, using transaction data. More details are
presented in our previous work [17].
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Fig. 2. A reputation opinion based PoL consensus protocol in the blockchain assisted edge intelligence.

4) The winner’s intelligence is partly adopted by others:
After verifying the validity of the newly attached block, other
node, such as node n, partly adopts the winner’s intelligence
through a weighted aggregation of the winner’s learning
model, according to its reputation opinion:

ω(tk+1)
n = ω(tk)

n +R(tk)
s→wω

(tk)
w , (3)

where there are K time slots, denoted by
{t0, t1, ..., tk, ...tK−1}. ω

(tk+1)
n and ω

(tk)
n are the node n’s

local learning models at time slot tk+1 and tk, respectively.
R

(tk)
s→w is the reputation opinion of the winner, calculated by

smart contract at time slot tk. Section IV will present how
to get the reputation opinion. ω(tk)

w is the winner’s learning
model. Different from our previous work in [17] which
discards all the own local model, fully adopting the winner’s
learning model, the improved solution in this article is with
the merits of learning resource conservation and security.

5) The calculation of reputation opinion in smart con-
tract: After adopting the learning model from the winner,
other node, such as node n, needs to score the winner as
score

(tk)
n→w, in case of malicious nodes sharing the mischievous

learning model to hinder edge intelligence:

score(tk)
n→w =

{
1, positive effect
0, negative effect

. (4)

Smart contract would then be triggered, including the fol-
lowing three parts of functions: charging the fee of adopting
the winner’s learning model, the calculation of the winner’s

reputation opinion, the calculation of other nodes’ reputation
opinions. More details are presented in Section IV.

B. Adversary Model

There are NMH edge nodes in IIoT joining in the PoL
consensus protocol, where NM nodes are malicious and NH

nodes are honest. The malicious nodes are defined as the ones
scoring against the original validity of the winner’s learning
model, i.e., if a winner’s learning model is effective, the
malicious node will score it as negative effect and vice-versa.
Besides, the malicious nodes also submit invalid transactions
which include mischievous learning models. If happening to
be the winner, it will result in the performance inefficiency of
the whole edge intelligence.

We set the trustworthiness of node n as Cn, where Cn = 1
when it is malicious and Cn = 0 when it is honest, and NM =∑NMH

n=1 Cn. Due to the fact that there are only two possible
trustworthiness outcomes for a discrete random number [20],
we define event A as Cn = 1, and random variable X as the
number of times that event A happen. Thus, random variable X
follows the Binomial distribution with the parameters of NMH

and pm, i.e., X v B(NMH , pm), where pm is the probability
that Cn = 1.

IV. DESIGNING THE SMART CONTRACT

After presenting the PoL consensus protocol with reputation
opinion and the adversary model, we will design the smart con-
tract in this section. The overall target of designing the smart



5

contract is to meet common contractual conditions, including
charging fees of using the winner’s learning model, and
calculating the reputation opinions, so as to abate malicious
or accidental anomalies and reliance on trusted intermediaries.
As mentioned, there are three parts of functions in the smart
contract, as shown in Fig. 3.

Smart contract charges the fees from other nodes, such as
node n, according to the score from node n to the winner,
i.e., score(tk)

n→w. If score(tk)
n→w = 1, the winner charges the fee

from node n, otherwise, no charge.
We then present that how to calculate the reputation opin-

ions of all kinds of nodes, including the winner and other
nodes.

Fig. 3. The operation process in the smart contract.

A. The Calculation of the Winner’s Reputation Opinion

We use a subjective logic model to calculate the reputation
opinion based on historical interactions, which is widely
applied in probabilistic reasoning to estimate the reputation or
trustworthiness level [21]. In this article, also-ran nodes partly
adopt the winner’s learning model according to its reputation
opinion, as show in eq. (3), i.e., the learning model from more
trustworthy winner will be adopted more, and accordingly
get more fees in return. Moreover, the malicious nodes who
submit the mischievous learning models will have the lower
reputation opinion, thus having less effects on the whole edge
intelligence, gradually fading them out the edge intelligence
system, thus conducting the trustworthy edge intelligence.

A reputation opinion of winner w at tk time slot is
determined by smart contract via collecting the scores
from also-ran nodes to the winner. It is denoted by
a opinion vector υ

(tk)
s→w = {bel(tk)

s→w, dis
(tk)
s→w, uncer

(tk)
s→w},

where bel
(tk)
s→w, dis

(tk)
s→w, uncer

(tk)
s→w mean the belief degree,

the distrust degree, and the uncertainty degree from smart
contract to winner w at tk time slot, respectively, and
bel

(tk)
s→w, dis

(tk)
s→w, uncer

(tk)
s→w ∈ [0, 1], bel(tk)

s→w + dis
(tk)
s→w +

uncer
(tk)
s→w = 1. Based on the work in [22], we have:



bel(tk)
s→w = (1− uncer(tk)

s→w)
N

(tk)
pos

N
(tk)
pos +N

(tk)
neg

dis(tk)
s→w = (1− uncer(tk)

s→w)
N

(tk)
neg

N
(tk)
pos +N

(tk)
neg

uncer(tk)
s→w = 1− succe(tk)

s→w

, (5)

where N
(tk)
pos , N (tk)

neg are the number of positive interactions,
and negative interactions during time slot tk, respectively.
N

(tk)
pos =

∑NMH

n=1,n6=w score
(tk)
n→w, and N

(tk)
neg = NMN − N (tk)

pos .
succe

(tk)
s→w is the success probability of blockchain communi-

cations from the winner to others, and is also the indicator
of the trustworthiness of blockchain links from the winner to
others. The bigger communication success probability means
the better trustworthiness of blockchain links. The reputation
opinion of the winner at time slot tk can be expected as:

rep(tk)
s→w = bel(tk)

s→w + αs→wuncer
(tk)
s→w, (6)

where αs→w ∈ [0, 1] means the weight factor considering the
influence of the uncertainty degree from the winner to others.

Finally, integrating the past reputation opinions of winner
w with the current one, we have the final reputation opinion
and update it in the smart contract:

R(tk)
s→w = rep(tk)

s→w + γs→wrep
(tk−1)
s→w

+ γ2
s→wrep

(tk−2)
s→w + ...+ γks→wrep

(t0)
s→w,

(7)

where γs→w ∈ (0, 1) is a freshness fading factor between
winner and others, i.e., the more recent reputation opinion has
more influence than the past ones.

B. The Calculation of Other Nodes’ Reputation Opinions

In order to prevent other also-ran nodes from malignant
scoring, on the one hand, so as to hinder edge intelligence, on
the other hand, to avoid paying for using the winner’s learning
model, after calculating the winner’s reputation opinion, smart
contract also measures other also-ran nodes’ reputation opin-
ions. The motivation behind this mechanism, instead of only
calculating the winner’s reputation opinion, is to enhance the
security of PoL.

According to the scores collected from all also-ran nodes,
and the principle that the minority is subordinate to the
majority, smart contract also scores the winner as score(tk)

s→w:

score(tk)
s→w =

{
1,

∑NMH

n=1,n6=w score
(tk)
n→w ≥ 1

2NMH

0,
∑NMH

n=1,n6=w score
(tk)
n→w < 1

2NMH

. (8)

According to score(tk)
s→w, smart contract then scores also-ran

node n:

score(tk)
s→n =

{
1, score

(tk)
s→w = score

(tk)
n→w

0, score
(tk)
s→w 6= score

(tk)
n→w

. (9)

Then smart contract calculates node n’s reputation
opinion, also according to a opinion vector
υ

(tk)
s→n = {bel(tk)

s→n, dis
(tk)
s→n, uncer

(tk)
s→n}, where

bel
(tk)
s→n, dis

(tk)
s→n, uncer

(tk)
s→n means belief degree, distrust
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degree, and uncertainty degree from smart contract to also-ran
node n at tk time slot, respectively.

If score(tk)
s→n = 1:

bel(tk)
s→n = (1− uncer(tk)

s→n)
N

(tk−1)
pos + 1

N
(tk−1)
pos +N

(tk−1)
neg + 1

dis(tk)
s→n = (1− uncer(tk)

s→n)
N

(tk−1)
neg

N
(tk−1)
pos +N

(tk−1)
neg + 1

uncer(tk)
s→n = 1− succe(tk)

s→n

, (10)

if score(tk)
s→n = 0:

bel(tk)
s→n = (1− uncer(tk)

s→n)
N

(tk−1)
pos

N
(tk−1)
pos +N

(tk−1)
neg + 1

dis(tk)
s→n = (1− uncer(tk)

s→n)
N

(tk−1)
neg + 1

N
(tk−1)
pos +N

(tk−1)
neg + 1

uncer(tk)
s→n = 1− succe(tk)

s→n

, (11)

where N
(tk−1)
pos , N (tk−1)

neg are the number of positive interac-
tions, and negative interactions during time slot tk−1, respec-
tively. succe(tk)

s→n is the success probability of blockchain com-
munications among other nodes, and is also the indicator of the
trustworthiness of blockchain links among other nodes. The
bigger communication success probability means the better
trustworthiness of blockchain links. The reputation opinion of
node n at time slot tk can be denoted as:

rep(tk)
s→n = bel(tk)

s→n + αs→nuncer
(tk)
s→n, (12)

where αs→n ∈ [0, 1] means the weight factor considering the
influence of the uncertainty degree among other nodes.

We then have the final reputation opinion and update it in
the smart contract:

R(tk)
s→n = rep(tk)

s→n + γs→nrep
(tk−1)
s→n

+ γ2
s→nrep

(tk−2)
s→n + ...+ γks→nrep

(t0)
s→n,

(13)

where γs→n ∈ (0, 1) is a freshness fading factor among
other nodes, i.e., the more recent reputation opinion has more
influence than the past ones.

V. QUANTITATIVE PERFORMANCE ANALYSIS

In this section, we present the quantitative performance
analysis of PoL consensus protocol with reputation opinion,
including security, latency and throughput.

A. Security

We set the probability that the original validation of a block
is inverted after PoL consensus protocol as the measure of
security performance, denoted by pinv . The bigger pinv means
the worse security performance. It includes two parts, i.e, the
winner is honest while the verification result indicates it is ma-
licious, and the winner is malicious while the verification result
indicates it is honest. Furthermore, pinv is also influenced
by each node’s reputation opinion, i.e., the smaller reputation
opinion may result in the larger inverted probability. As shown

in Section III-B, X v B(NMH , pm). Thus, pinv is expected
as:

pinv = (ph→m + pm→h)β
∑NMH

n=1 R
(tk)
s→n , (14)

where 0 < β < 1 is the converse impact factor of reputation
opinions, i.e., the bigger β means the smaller impact of
reputation opinion, due to the fact that the bigger pinv means
the worse security performance. ph→m denotes the probability
that the winner is honest while the verification result indicates
it is malicious. pm→h means the probability that the winner
is malicious while the verification result indicates it is honest.
Therefore, ph→m is denoted as:

ph→m = (1− pm) Pr(X ≥ d1
2
NMHe), (15)

and pm→h is denoted as:

pm→h = pm Pr(X ≥ d1
2
NMHe), (16)

finally, pinv can be denoted as:

pinv = Pr(X ≥ d1
2
NMHe)β

∑NMH
n=1 R

tk
s→n . (17)

When d 1
2NMHe is even:

pinv = β
∑NMH

n=1 R
tk
s→n [1− (NMH − k)

(
NMH

k

)
k∑

i=0

(−1)iCi
k

1

NMH − k + i
tNMH−k+i

∣∣1−pm

0
],

(18)

when d 1
2NMHe is odd:

pinv = β
∑NMH

n=1 R
tk
s→n [1 + (NMH − k)

(
NMH

k

)
k∑

i=0

(−1)iCi
k

1

NMH − i
tNMH−i

∣∣1−pm

0
].

(19)

Proof : See Appendix A.1.

B. Latency and Throughput

According to the consensus process of PoL, time latency
TPoL includes local training delay Ttra, block dissemination
delay Tdis, and verification delay Tver:

TPoL = Ttra + Tdis + Tver, (20)

where Ttra is a uniform constant for the whole edge intelli-
gence system.

For block dissemination delay Tdis, according to the work in
[19], we consider the legacy block propagation protocol in the
edge intelligence system. Here, after verifying or generating
a block, the node will send an inventory message to its
neighbors. According to the winner’s reputation opinion and
whether the block has been received, the receiver will reply
to a getdata message. When receiving the getdata message,
the sender node will send the requested block to the receiver.
The formats of a inventory message and a getdata message,
containing the winner’s reputation opinion, are shown in
Table I and Table II. It is worth noting that there is a new
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TABLE I
THE FORMAT OF A inventory MESSAGE.

Message header

Start String Command
(inventory)

Reputation
opinion
R

(tk)
s→w

Size Checksum

The counter of inventories
Inventory entries

TABLE II
THE FORMAT OF A getdata MESSAGE.

Message header

Start String Command
(getdata) Size Checksum

The number of requested objects
Requested objects

string located in the message header, i.e., reputation opinion,
compared with the traditional inventory message.

Thus, block dissemination delay Tdis can be expressed as:

Tdis =TDinv + PDinv+

R(tk)
s→w(TDget + PDget + TDblo + PDblo),

(21)

where TDinv and PDinv are transmission delay and prop-
agation delay of a inventory message. TDget and PDget

are transmission delay and propagation delay of a getdata
message. TDblo and PDblo are transmission delay and propa-
gation delay of a block. Due to the fact transmission delay
is related to data size and transmission bandwidth B, and
propagation delay is related to propagation distance and rate,
TDinv = sinv/B, TDget = sget/B, TDblo = sblo/B, and
PDinv = PDget = PDblo, where sinv, sget and sblo are
data sizes of the inventory message, the getdata message, and
the block. Since whether replying to the inventory message is
influenced by the currrent winner’s reputation opinion, thus the
time delays of the getdata message and the block are related
with the current R(tk)

s→w.
For verification delay Tver, it contains the delay of verifying

the winner’s training result V Twin and the delay of verifying
MACs and digital signatures V Tcry. According to computation
model for deep networks [23], V Twin can be denoted as:

V Twin =
swincwin

fn
, (22)

where swin is the data size of the winner’s training samples
to be validated, cwin is the number of CPU cycles to validate
one training sample, and fn is the computation capability, i.e.,
CPU cycles frequency, of verifier n.

In addition, according to the computation mode for crypto-
graphic messages [24], V Tcry can be expressed as:

V Tcry =
(1 +NMH)(δ + θ)

fn
, (23)

where verifying one MAC and one digital signature need
δ CPU cycles and θ CPU cycles, respectively. And there
are NMH MACs and NMH digital signature from NMH

transactions, i.e., NMH edge learning nodes, as well one MAC
and one signature from the un-validated block.

Therefore, the throughput about the number of blocks
generated per second can be expressed as:

τPoL =
1

Ttra + Tdis + Tver
. (24)

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we conduct an extensive experimental analy-
sis to evaluate the performance of the proposed improved PoL
with reputation opinion (RO).

In order to assess the performance of the improved PoL,
we use the improved PoL edge intelligence approach and
the traditional one [10] to solve a joint resource allocation
problem in IIoT [17], denoted by improved PoL with RO, and
traditional PoL w.o. RO, respectively in the following figures,
with the aim to achieve better joint resource utility.

Fig. 4 presents the training curves tracking resource utility
and training episodes, under improved PoL with RO, and tradi-
tional PoL w.o. RO. Meanwhile, Fig. 5 is its fitted result. In the
figures, local training happens in the first 1000 episodes, after
that the PoL consensus protocol is performed to share better
local learning intelligence. Thus, there are mutationally jagged
curves when the episode is 1000. However, the improved PoL
partly adopts the winner’s learning model according to the
winner’s reputation opinion, which results in the relatively
lighter jitter, compared with the traditional one. Meanwhile,
as shown in the fitted figure, i.e., Fig. 5, after the sharing
learning model in episode 1000, the utility of the improved
approach increases more quickly than the traditional one,
which indicates that the improved approach also has better
learning performance than the traditional one.

Fig. 4. Training curves tracking resource utility under traditional PoL w.o.
RO and improved PoL with RO.

Fig. 6 shows the curves tracking security performance pinv
and the total number of edge learning nodes, under two
approaches and the different pm. pinv indicates the probability
that the original validation of a block is inverted after PoL
consensus protocol, and the bigger one means the worse
security performance. As shown in the figure, the security
performance of the improved approach is always better than
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Fig. 5. The fitted training curves of Fig. 4 tracking resource utility under
traditional PoL w.o. RO and improved PoL with RO.

the traditional one. The reason is that the also-ran nodes use
the reputation opinion to partly adopt the winner’s model,
rather than totally adopting it, which leads to that although
some malicious nodes are selected as the winners by accident,
their false learning model also has the lesser effects on others.
Meanwhile, when pm increases, i.e, more nodes may be
malicious nodes, the whole edge intelligence system becomes
more untrustworthy, which results in the bigger pinv .

1 0 1 5 2 0 2 5 3 0 3 5 4 0
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

p in
v

T h e  t o t a l  n u m b e r  o f  e d g e  l e a r n i n g  n o d e s

 I m p r o v e d  P o L  w i t h  R O ,  p m = 0 . 7
 T r a d i t i o n a l  P o L  w . o .  R O ,  p m = 0 . 7
 I m p r o v e d  P o L  w i t h  R O ,  p m = 0 . 3
 T r a d i t i o n a l  P o L  w . o .  R O ,  p m = 0 . 3

Fig. 6. The curves tracking security performance pinv and the total number
of edge learning nodes.

Fig. 7 gives the curves tracking security performance pinv
and the converse impact factor of reputation opinion β. As
we can see, with the increase of the probability of malicious
nodes, the pinv rise, i.e., the whole edge intelligence system
becomes more untrustworthy. Meanwhile, due to the factor that
the bigger β means the smaller impact of reputation opinion,
with the increase of converse impact factor of reputation
opinion, the impact of reputation opinion will decrease, further

reduce the untrustworthiness of the whole edge intelligence
system.

0 . 2 0 . 4 0 . 6 0 . 8
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

p inv

T h e  c o n v e r s e  i m p a c t  f a c t  o f  r e p u t a t i o n  o p i n i o n

 I m p r o v e d  P o L  w i t h  R O ,  p m = 0 . 7
 I m p r o v e d  P o L  w i t h  R O ,  p m = 0 . 6
 I m p r o v e d  P o L  w i t h  R O ,  p m = 0 . 5
 I m p r o v e d  P o L  w i t h  R O ,  p m = 0 . 4

Fig. 7. The curves tracking security performance pinv and the converse
impact factor of reputation opinion β.

Fig. 8 and Fig. 9 show the curves tracking the performance
of time latency and throughput, under two approaches, respec-
tively. Due to the fact that the receiver of a block decides
whether to receive it according to the winner’s reputation
opinion, rather than totally replying inventory message to
receive the block, the improved PoL has the better performance
in terms of time latency and throughput.

1 0 1 5 2 0 2 5 3 0 3 5 4 0
2 . 8

3 . 0

3 . 2

3 . 4

3 . 6

3 . 8

4 . 0

T Po
L (m

sec
)

T h e  t o t a l  n u m b e r  o f  e d g e  l e a r n i n g  n o d e s

 I m p r o v e d  P o L  w i t h  R O
 T r a d i t i o n a l  P o L  w . o .  R O

( a )  T i m e  l a t e n c y

Fig. 8. The curves tracking the performance of time latency.

VII. CONCLUSION

In this paper, towards trustworthy edge intelligence, we
propose a PoL consensus protocol with reputation opinion
for edge blockchain in IIoT. By means of smart contract
to get each edge’s reputation opinion, the learning edges
partly adopt the winner’s learning model, rather than com-
pletely adoption. We also give the quantitative performance
analysis of the proposed scheme, including security, latency,
and throughput. Finally, simulation results show the effec-
tiveness of our proposed scheme. Meanwhile, some future
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1 0 1 5 2 0 2 5 3 0 3 5 4 0
0 . 2 4

0 . 2 6

0 . 2 8

0 . 3 0

0 . 3 2

0 . 3 4

0 . 3 6
T Po

L/m
sec

T h e  t o t a l  n u m b e r  o f  e d g e  l e a r n i n g  n o d e s

 I m p r o v e d  P o L  w i t h  R O
 T r a d i t i o n a l  P o L  w . o .  R O

( b )  T h r o u g h p u t

Fig. 9. The curves tracking the performance of throughput.

works are also necessary. For example, incentive mechanism
and resource allocation are urgent problems. For one thing,
incentive mechanism is the basic problem to attract edges to
join in the edge intelligence, in the case of restricted edge
capability. For another, flexible resource allocation is one
of the characteristics of edge scenarios. How to make sure
the excellent edge intelligence contributors obtain more edge
resource is yet the question.

APPENDIX A

Appendix A.1:
X v B(NMH , pm), thus we have:

Pr(X ≥ d1
2
NMHe) = 1− Pr(X < d1

2
NMHe)

= 1− F (d1
2
NMHe;NMH , pm),

(25)

where, F (d 1
2NMHe;NMH , pm) can be denoted by regularized

incomplete Beta function. For convenience, let d 1
2NMHe = k:

F (k;NMH , pm) = I1−pm
(NMH − k, k + 1)

= (NMH − k)

(
NMH

k

)∫ 1−pm

0

tNMH−k−1(1− t)kdt,
(26)

when k is even:∫ 1−pm

0

tNMH−k−1(1− t)kdt

=

∫ 1−pm

0

tNMH−k−1(C0
k + C1

k(−t) + C2
k(−t)2

+ ...+ Ck
k (−t)k)dt

=C0
k

1

NMH − k
tNMH−k

∣∣1−pm

0
−

C1
k

1

NMH − k + 1
tNMH−k+1

∣∣1−pm

0
+ ...+

Ck
k

1

NMH
tNMN

∣∣1−pm

0

=

k∑
i=0

(−1)iCi
k

1

NMH − k + i
tNMH−k+i

∣∣1−pm

0
,

(27)

when k is odd:∫ 1−pm

0

tNMH−k−1(1− t)kdt

=−
∫ 1−pm

0

tNMH−k−1(t− 1)kdt

=−
∫ 1−pm

0

tNMH−k−1(C0
kt

k + C1
kt

k−1(−1)1 + ...

+ Ck−1
k t(−1)k−1 + Ck

k (−1)k)dt

=−
∫ 1−pm

0

(C0
kt

NMH−1dt+ C1
kt

NMH−2(−1)1dt+ ...

+ Ck−1
k tNMH−k(−1)k−1dt+ Ck

k t
NMH−k−1(−1)kdt)

=− [C0
k

1

NMH
tNMH

∣∣1−pm

0
+

(−1)1C1
k

1

NMH − 1
tNMH−1

∣∣1−pm

0
+ ...

+ (−1)k−1Ck−1
k

1

NMH − k + 1
tNMH−k+1

∣∣1−pm

0
+

(−1)kCk
k

1

NMH − k
tNMH−k

∣∣1−pm

0
]

=− [

k∑
i=0

(−1)iCi
k

1

NMH − i
tNMH−i

∣∣1−pm

0
].

(28)
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