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1 Introduction

A rational 2d conformal field theory (RCFT) is characterised by having a finite set of
holomorphic characters χi(τ) and a partition function of the form:

Z(τ, τ̄) =
n−1∑
i,j=0

Mij χi(τ̄)χj(τ) (1.1)

where n is the total number of linearly independent characters of some chiral algebra.
A classification programme for rational conformal field theories in 2d was initiated

in [1, 2]. It is based on the fact that characters are vector-valued forms that solve a
modular linear differential equation (MLDE) whose order is the number of characters.
Such equations have finitely many parameters and these can be varied to scan for solutions
that satisfy the basic criteria to be those of a conformal field theory. We will refer to
such solutions as “admissible characters”. From the study of MLDE it emerged that an
important classifier for RCFT with a given number of characters is an integer ` ≥ 0, ` 6= 1
called the Wronskian index (for a detailed review, see [3]). Admissible characters for bosonic
CFTs have been constructed in [4–12] and for fermionic CFTs in [13–15].

Admissible characters do not, in general, correspond to any RCFT. For meromorphic
theories (those with a single character, n = 1) this is particularly obvious. At c = 24 there
is an infinite set of admissible characters as we will see below, but only a finite subset
corresponds to a CFT as shown in the seminal work of Schellekens [16]. Moreover a given
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character in this finite set sometimes corresponds to multiple different CFTs. That an
analogous phenomenon holds for theories with multiple characters was made explicit in
recent times [7–9] with the discovery of infinite families of admissible characters depending
on unbounded integers.

The classification of RCFTs for a fixed number of characters and Wronskian index thus
requires two steps: the classification of admissible characters, and the sub-classification of
those that describe genuine RCFT. Both steps are easiest for small values of n as well as the
Wronskian index `, because in this case the characters are completely determined by their
critical exponents [2, 5]. Given a set of admissible characters, a useful method to find corre-
sponding CFT comes from the coset construction of [17, 18] as implemented for meromor-
phic numerator theories in [19].1 This works as follows. We pick a known meromorphic CFT
H as well as a known RCFT C with n characters and suitable exponents, such that the coset:

C̃ = H
C

(1.2)

obtained by embedding the Kac-Moody algebra of C in that of H corresponds to the given
admissible characters. Whenever this can be done, we may conclude that these characters
describe the CFT C̃. This approach has been implemented in [19, 22–24] where H is a
known CFT at c = 8, 16, 24 (these are completely classified) or a lattice theory at c = 32
(these are too many to classify but many lattice theories are known [25, 26]). In particular,
in [19] this procedure was first used to construct the CFTs’ corresponding to admissible
characters with (n, `) = (2, 2) that had originally been found nearly three decades earlier [4]
but had not been previously identified with CFTs.

Let us briefly review some basic aspects of the meromorphic coset relation (more de-
tails can be found in [10, 19]). The numerator theory H is typically an extension of a
non-simple Kac-Moody algebra ⊕iGri,ki by higher-spin generators that organise a subset
of Kac-Moody characters into a single character. We denote these theories by E1[⊕iGri,ki ]
where E stands for “extension” and the subscript 1 tells us that the extended theory has a
single character. There are broadly two types of meromorphic theories: those correspond-
ing to free bosons on an even, self-dual lattice, for which the Kac-Moody algebra only
contains simply-laced factors (Ar, Dr, E6, E7, E8) at level 1, and the rest, which we call
non-lattice theories. These are characterised by the presence of non-simply-laced factors
(Br, Cr, F4, G2) and/or levels greater than 1. Some non-lattice theories can be derived as
orbifolds of lattice theories, while others are more complicated to construct [16, 27, 28].
The denominator theories C, at least in the original references [8, 19, 29], are taken to
be affine theories belonging to a current-algebra minimal series [30] or occasionally the
Virasoro minimal seriesM(p, q) [31]. The coset theories C̃ again typically have non-simple
Kac-Moody algebras that are extended by other chiral generators so that they have a
smaller number n of characters than the affine theories for the same algebras. Following

1See [20, 21] for earlier discussions of meromorphic cosets.
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the notation introduced above for meromorphic theories, we denote these by En[⊕iGri,ki ]
where the subscript n denotes the number of characters.

If the characters of C are denoted χi(τ), those of C̃ are denoted χ̃i and the single
character of H is denoted χH, then the coset relation is embodied in a holomorphic bilinear
relation:

n−1∑
i=0

di χi(τ) χ̃i(τ) = χH(τ) (1.3)

where di are positive integers and d0 = 1.
When both H and C correspond to CFTs having a Sugawara stress tensor in terms

of Kac-Moody currents, then by embedding the currents of C in those of H one defines
the stress tensor of the coset theory C̃. At a physics level of rigour, we take this to be a
proof that C is a genuine CFT [19]. But it is also possible for eq. (1.3) to be satisfied when
one or both of C, C̃ does not have any Kac-Moody currents. Also there are cases where
none of C, C̃,H has Kac-Moody currents (for example, H may correspond to the Monster
module [32, 33]). In such cases the coset construction of [19] is more tricky to apply, since
without a Sugawara construction we do not have an explicit expression for the stress tensor
of C. At the same time, the bilinear relation can certainly be verified as easily as for the
Sugawara case. So it is compelling to believe that, even in the absence of Sugawara stress
tensors, if the bilinear relation holds and H and C are both CFTs, then so is C̃. One such
example [29] arises when C is the Ising model and C̃ is the Baby Monster CFT [34].

As described above, the coset relation eq. (1.2) has been used to find interesting theories
C̃ given meromorphic theories H and known denominator CFTs C to divide them by. As
input, this method has relied on known classifications of meromorphic theories at c =
8, 16, 24 [16, 27] as well as special classes of lattices at c = 32 [25, 26] to find new n-
character CFTs. However, if C and C̃ are both known to describe CFTs then this relation
can be used in the other direction: to argue that H also corresponds to a CFT. Thus, in
principle new meromorphic theories can be found in this way.

In the present work we propose a practical way to carry this out. The key idea is to
first generate an extension-type CFT C̃ using the coset construction, with H being a known
meromorphic theory in the Schellekens list [16] and C being a suitable affine theory embed-
ded in it. Next, we remove C from the story and find bilinear relations where C̃ is paired
with the characters of another known CFT C′. For n = 3, large numbers of such coset pairs
were generated in [10]. Since C′ is a different theory from C (and not a tensor product of C
with something else), the result is a new meromorphic theory at a different central charge.

The affine algebra of the new meromorphic theory is the sum of algebras of C′ and C̃,
denoted E1[C′ ⊕ C̃], of the multi-character theory C′ ⊕ C̃. This extension arises from the
bilinear relation satisfied by C′ and C̃. In each case we explicitly find the character of H.
In most cases it will turn out that C′ ⊕ C̃ is non-simply-laced and/or has factors of level
> 1, showing that it must be a non-lattice theory.
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Using the above approach we predict the existence of 34 infinite families of novel
meromorphic theories with central charges cH = 8(m+3) where m is an integer ≥ 1. Every
such infinite family starts with a member at cH = 24 that can be found in Schellekens’
list [16]. We also predict the existence of 46 novel meromorphic theories with central
charges cH = 32 and cH = 40. We now turn to a description of the method and then
present our results.

2 Background

We start by briefly summarising the admissible characters for meromorphic theories at cH =
8N where N is an integer ≥ 1. From the theory of modular forms (see for example [35]) we
know that any polynomial2 of the Klein j-invariant j(q) is a modular invariant function.
The j-invariant has the expansion:

j(q) = q−1 + 744 + 196884q + · · · (2.1)

If we are willing to accept modular invariance up to a phase then the polynomial can be
multiplied by j(q) 1

3 or j(q) 2
3 . Thus the most general modular invariant is of the form:

χH(τ) = j
N
3 −s(js + a1 j

s−1 + a2 j
s−2 + . . . . . .+ as), (2.2)

where s :=
⌊

N
3

⌋
.

For cH = 24, 32, 40, the corresponding characters are of the form:

cH = 24 : χH(τ) = j +N , (2.3)

cH = 32 : χH(τ) = j
1
3 (j +N ) (2.4)

cH = 40 : χH(τ) = j
2
3 (j +N ), (2.5)

where we have renamed a1 as N . In the cH = 24 case we see that all values of N ≥ −744
are admissible, but it is known that only a finite subset correspond to CFTs. [16].

For n-character RCFT, the characters are vector-valued modular forms that have the
general form:

χi(q) = q−
c

24 (ai,0 + ai,1q + ai,2q
2 + · · · ), i = 0, 1, · · · , n− 1 (2.6)

For the characters to be admissible, the coefficients ai,r must be non-negative integers.
Moreover we must have a0,0 = 1 (non-degeneracy of the identity character). We also define
Di = ai,0,m1 = a0,1,m2 = a0,2. These are, respectively, the ground-state degeneracy of
each of the generalised primaries, the number of spin-1 currents and the number of spin-2
currents.

2Actually any rational function of j(q) would be invariant, but we are specialising to polynomials as we
want these functions to be holomorphic in H \ {i∞}.

– 4 –



J
H
E
P
0
7
(
2
0
2
2
)
1
5
2

For n = 2 there is an explicit and complete classification of all admissible characters [8].
However for n ≥ 3 the complete classification remains an open problem. Nevertheless, ad-
missible characters can be found by writing a general Modular Linear Differential Equation
of the form: (

Dn + φ2(τ)Dn−1 + · · ·+ φ2n(τ)
)
χ = 0 (2.7)

where D is a covariant derivative on torus moduli space and φ2j(τ) are meromorphic
modular functions of weight 2j. The maximum number of poles of the φ2r is called the
Wronskian index `. Consider the above equation for a fixed order n and a fixed value of
`. In this case the set of φ2j depends on a finite number of parameters, and one scans
the parameter space to find those values where the coefficients ai,r satisfy the admissibility
criteria. Of relevance in the present work will be solutions for n = 3 and ` = 0, in which
case the equation becomes:

(
D3 + µ1E4(τ)D + µ2E6(τ)

)
χ = 0 (2.8)

While this equation was first studied long ago in [5], all its admissible solutions with c ≤ 96
have been classified only recently [10] and we will make use of some of these below (all
these relevant solutions are given in table 7 in section B).

Next we summarise some results about the coset construction. In [19] the following
relation between the central charge c and conformal dimensions hi of the characters χi,
and the corresponding quantities c̃, h̃i of the coset dual χ̃i was derived:

`+ ˜̀= n2 +
(
c+ c̃

4 − 1
)
n− 6

n−1∑
i=1

(hi + h̃i) (2.9)

We will be interested in the case n = 3. Also, note that c+ c̃ must be a multiple of 8, so we
write it as 8N where N is an integer ≥ 1.3 Also, since the right hand side of the bilinear
relation is a character with integer dimensions, we must have hi + h̃i = ni, an integer ≥ 1,
for each i. Thus, for n = 3 the relation can be written:

`+ ˜̀= 6
(
N + 1−

2∑
i=1

ni

)
(2.10)

Let us comment on the significance of the integers ni. These denote the new chiral
currents, of spin ni, created by “fusing” the primaries of two RCFTs C, C̃ via a bilinear
relation into a meromorphic theory H. Whenever each ni ≥ 2, we have a special situation
where the only new currents in H, relative to C ⊕ C̃, have spin ≥ 2. In such cases the
Kac-Moody algebra of H is necessarily the direct sum of that of C, C̃. On the other hand
if any ni = 1, we have new Kac-Moody currents in H that were not present in the coset
pair. Viewed from the converse perspective starting with the meromorphic theory, the first

3In [19] the convention was to write c+ c̃ = 24N where N is a multiple of 1
3 .
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case ni ≥ 2 arises when the denominator theory C is an affine theory for one (or more) of
the simple factors in H. In that case the coset procedure just deletes the factor(s) and the
remaining ones make up the Kac-Moody algebra of C̃. But in the second case, the algebra
of C undergoes a non-trivial embedding in one of the simple factors of H. This “Higgses”
that factor down to a subalgebra given by the commutant, and some currents are lost in
the process. Only the first case ni ≥ 2 will be of relevance in the present work, while the
other case involving embeddings will be discussed in [23, 24].

From now on we focus on coset dual pairs of characters with n = 3 and `, ˜̀= 0, 0. From
the above relation it follows that n1+n2 = N+1. While the classification of admissible (3, 0)
characters has not been completed, significant progress has been made in [5, 10, 19, 36, 37].
We will make use of the results in [10], which subsumes the output of most of the previous
works and provides a complete set of admissible three-character sets with c ≤ 96.4

In the notation of [10], to which we refer the reader for more details, the admissible
character sets fall into five categories, labelled I, II, · · · ,V. Of these, all entries in categories
I, II, IV have already been identified as CFTs in [10].5 Among these are characters that
were previously identified as CFTs in [19] and which will play a role in the present work. We
will label them GHMD where the subscript D denotes the dimension of their Kac-Moody
algebra (see all GHM solutions listed in table 7 in section B). We will also make use of
characters of type III and V which were not identified with CFTs in [10]. These will be
studied in complete detail in work to appear [24]. The list of relevant III and V solutions
can be found in table 7 of appendix B.

3 Constructing new meromorphic CFTs

3.1 (3, 0) cosets from c = 24 meromorphic theories

We start by using the coset construction with H being one of the meromorphic theories in
Schellekens’ list, to identify 22 sets of admissible characters as CFTs. Table 1 shows coset
pairings of characters χi, χ̃i to make one of these meromorphic theories. The purpose of
this exercise is to identify the theories C̃ that we will use later on.

The entries in the table are as follows. The first column is a serial number labelling the
22 cases of interest. The next four columns tell us the properties of an affine (or minimal)
model C that we use as the denominator in the coset relation. Respectively, they provide
the central charge, conformal dimensions, dimension m1 of the Kac-Moody algebra, and
the Kac-Moody algebra itself. The next four columns provide the same properties for a
coset theory C̃ that combines with C in a bilinear relation that has been verified. The last

4In an upcoming work [24] we re-examine this partial classification of admissible characters and attempt
to identify which of them can be shown to exist as CFTs as well as which ones can be shown not to
correspond to any CFT.

5With a few exceptions that correspond to generalisations of CFTs such as Intermediate Vertex Operator
Algebras (IVOA) [38].
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four columns tell us the Kac-Moody algebra of the meromorphic Schellekens theory, the
integers (d1, d2) appearing in the bilinear relation eq. (1.3), the integer N that specifies
the character via χH(τ) = j(τ) +N , and the serial number of the corresponding theory in
the table of [16]. Note that the dimension of the Kac-Moody algebra of the meromorphic
theory is N + 744.

As can be seen in the table, rows 4 − 9, 13 − 17, 22 are cases where C̃ is of GHM
type [19]. Among the rest, rows 1, 2, 10−12, 18−21 were missed in [19] for various reasons
— for example that reference did not consider coset duals where C is a tensor product of two
identical two-character theories. Note that despite this, C̃ is not a tensor product of simpler
theories. Finally, row 3 is the Ising-Baby Monster pairing implicit in [34] and discussed
in the present context in [29]. This is the only known case of a c = 24 coset where one
or both (in this case, both) of the entries have no Kac-Moody algebra. The coset relation
must then be understood in the more general sense mentioned below eq. (1.3), and the
corresponding meromorphic theory is the Monster CFT. We will soon see that for c ≥ 32,
the Baby Monster theory features in coset pairings with affine theories.

# c (h1, h2) m1 C c̃ (h̃1, h̃2) m̃1 C̃ Affine (d1, d2) N Sch.
algebra #

1. 12 ( 1
2 ,

3
2 ) 276 D12,1 12 ( 3

2 ,
1
2 ) 276 D12,1 D⊕2

12,1 2 552 66
2. 12 ( 2

3 ,
4
3 ) 156 E⊕2

6,1 12 ( 4
3 ,

2
3 ) 156 E⊕2

6,1 E⊕4
6,1 8 312 58

3. 1
2 ( 1

2 ,
1

16 ) 0 M(4, 3) 47
2 ( 3

2 ,
31
16 ) 0 BM — (1, 1) 0 0

4. 3
2 ( 1

2 ,
3

16 ) 3 A1,2
45
2 ( 3

2 ,
29
16 ) 45 GHM45 A⊕16

1,2 (1, 1024) 48 5
A⊕3

3,4A1,2 7
A5,6C2,3A1,2 8
D5,8A1,2 10

5. 5
2 ( 1

2 ,
5

16 ) 10 C2,1
43
2 ( 3

2 ,
27
16 ) 86 GHM86 D⊕2

4,2C
⊕4
2,1 (1, 512) 96 25

A⊕2
5,2A

⊕2
2,1C2,1 26

E6,4A2,1C2,1 28
6. 7

2 ( 1
2 ,

7
16 ) 21 B3,1

41
2 ( 3

2 ,
25
16 ) 123 GHM123 B3,1D6,2C4,1B3,1 (1, 256) 144 39

B3,1A9,2A4,1 40
7. 9

2 ( 1
2 ,

9
16 ) 36 B4,1

39
2 ( 3

2 ,
23
16 ) 156 GHM156 D8,2B

⊕2
4,1 (1, 128) 192 47

B4,1C
⊕2
6,1 48

8. 11
2 ( 1

2 ,
11
16 ) 55 B5,1

37
2 ( 3

2 ,
21
16 ) 185 GHM185 B5,1E7,2F4,1 (1, 1) 240 53

9. 13
2 ( 1

2 ,
13
16 ) 78 B6,1

35
2 ( 3

2 ,
19
16 ) 210 GHM210 B6,1C10,1 (1, 32) 288 56

10. 17
2 ( 1

2 ,
17
16 ) 136 B8,1

31
2 ( 3

2 ,
15
16 ) 248 E8,2 B8,1E8,2 (1, 1) 384 62

11. 1 ( 1
2 ,

1
8 ) 1 U(1) 23 ( 3

2 ,
15
8 ) 23 III50 U(1)⊕24 (8, 4096) 24 1

12. 2 ( 1
2 ,

1
4 ) 6 A⊕2

1,1 22 ( 3
2 ,

7
4 ) 66 III45 A⊕24

1,1 (64, 4096) 72 15
A⊕4

3,2A
⊕4
1,1 16

A5,3D4,3A
⊕3
1,1 17

A7,4A
⊕3
1,1 18

D5,4C3,2A
⊕2
1,1 19

D6,5A
⊕2
1,1 20
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13. 3 ( 1
2 ,

3
8 ) 15 A3,1 21 ( 3

2 ,
13
8 ) 105 GHM105 A⊕8

3,1 (8, 1024) 120 30
D⊕2

5,2A
⊕2
3,1 31

A7,2C
⊕2
3,1A3,1 33

D7,3G2,1A3,1 34
C7,2A3,1 35

14. 5 ( 1
2 ,

5
8 ) 45 D5,1 19 ( 3

2 ,
11
8 ) 171 GHM171 D⊕2

5,1 A
⊕2
7,1 (8, 256) 216 49

15. 6 ( 1
2 ,

3
4 ) 66 D6,1 18 ( 3

2 ,
5
4 ) 198 GHM198 D⊕4

6,1 (64, 256) 264 54
D6,1 A

⊕2
9,1 55

16. 7 ( 1
2 ,

7
8 ) 91 D7,1 17 ( 3

2 ,
9
8 ) 221 GHM221 D7,1 A11,1 E6,1 (8, 64) 312 59

17. 9 ( 1
2 ,

9
8 ) 153 D9,1 15 ( 3

2 ,
7
8 ) 255 GHM255 D9,1 A15,1 (8, 16) 408 63

18. 10 ( 1
2 ,

5
4 ) 190 D10,1 14 ( 3

2 ,
3
4 ) 266 E⊕2

7,1 D10,1E
⊕2
7,1 (1, 2) 456 64

19. 4 ( 1
3 ,

2
3 ) 16 A⊕2

2,1 20 ( 5
3 ,

4
3 ) 80 V39 A⊕12

2,1 (8748, 972) 96 24
A⊕2

5,2C2,1A
⊕2
2,1 26

A8,3A
⊕2
2,1 27

20. 28
5 ( 2

5 ,
4
5 ) 28 G⊕2

2,1
92
5 ( 8

5 ,
6
5 ) 92 III37 E6,3G

⊕3
2,1 (50, 1) 120 32

21. 52
5 ( 3

5 ,
6
5 ) 104 F⊕2

4,1
68
5 ( 7

5 ,
4
5 ) 136 III22 C8,1F

⊕2
4,1 (50, 1) 240 52

22. 4 ( 2
5 ,

3
5 ) 24 A4,1 20 ( 8

5 ,
7
5 ) 120 GHM120 A⊕6

4,1 (1250, 1250) 144 37
A9,2B3,1A4,1 40

Table 1. Coset relations for cH = 24 with (n1, n2) = (2, 2). We identify M(4, 3) ∼= B0,1, A1,2 ∼=
B1,1, C2,1 ∼= B2,1 and BM ≡ Baby Monster. We further identify U(1) ∼= D1,1, A⊕2

1,1
∼= D2,1 and

A3,1 ∼= D3,1.

Table 1 includes a few self-dual pairs. In these cases we have: χ0 = χ̃0, χ1 = χ̃2 and
χ2 = χ̃1. Hence eq. (1.3) (for three characters) becomes:

χH0 = χ2
0 + d1 χ1χ2 + d2 χ2χ1 = χ2

0 + (d1 + d2)χ1χ2 = χ2
0 + d3 χ1χ2.

Hence, in the (d1, d2) column we just have one entry d3 = d1 + d2 for self-dual pairs. We
follow this convention for all tables whenever there are self-dual pairs involved in a bilinear
relation.

3.2 New meromorphic theories at c ≥ 32: infinite families

The next step is to combine the theories labelled C̃ in table 1 with suitable infinite series
of affine theories to make modular invariants with central charge ≥ 32. One set of results
is exhibited in table 2, where 34 infinite families of coset pairs are described. The theories
labelled C̃ are all taken from table 1. However in each case the corresponding theory labelled
C in table 1 has been replaced by a new affine theory C labelled by an arbitrary integer
parameter m. The associated character is exhibited in the last column of the table (see
below for an explanation of the notation). The m = 0 case is the original one in table 1.
The integers (n1, n2) are, in all cases, given by (2,m + 2), verifying eq. (2.10) between a
pair of three-characters with vanishing Wronskian index.

In this table, both C and C̃ correspond to known theories. Hence, from the coset pairing
we conclude that the modular invariant obtained by combining them in a bilinear relation
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also corresponds to a genuine CFT. This is a meromorphic CFT that, in most cases, has
to be of non-lattice type since it either involves non-simply-laced algebras or levels greater
than 1, or both.

# c (h1, h2) m1 C c̃ (h̃1, h̃2) m̃1 C̃ Sch. #
(m = 0)

1. 16m+1
2

(
1
2 ,

16m+1
16

)
128m2 + 8m B8m,1

47
2
(

3
2 ,

31
16

)
0 BM 0

2. 16m+3
2

(
1
2 ,

16m+3
16

)
128m2 + 40m + 3 B8m+1,1

45
2
(

3
2 ,

29
16

)
45 E3[A⊕15

1,2 ] 5
E3[A⊕3

3,4] 7
E3[A5,6C2,3] 8
E3[D5,8] 10

3. 16m+5
2

(
1
2 ,

16m+5
16

)
128m2 + 72m + 10 B8m+2,1

43
2
(

3
2 ,

27
16

)
45 E3[D⊕2

4,2C
⊕3
2,1 ] 25

E3[A⊕2
5,2A

⊕2
2,1] 26

E3[E6,4A2,1] 28
4. 16m+7

2
(

1
2 ,

16m+7
16

)
128m2 + 104m + 21 B8m+3,1

41
2
(

3
2 ,

25
16

)
123 E3[D6,2C4,1B3,1] 39

E3[A9,2A4,1] 40
5. 16m+9

2
(

1
2 ,

16m+9
16

)
128m2 + 136m + 36 B8m+4,1

39
2
(

3
2 ,

23
16

)
156 E3[D8,2B4,1] 47

E3[C⊕2
6,1 ] 48

6. 16m+11
2

(
1
2 ,

16m+11
16

)
128m2 + 168m + 55 B8m+5,1

37
2
(

3
2 ,

21
16

)
185 E3[E7,2F4,1] 53

7. 16m+13
2

(
1
2 ,

16m+13
16

)
128m2 + 200m + 78 B8m+6,1

35
2
(

3
2 ,

19
16

)
210 E3[C10,1] 56

8. 16m+17
2

(
1
2 ,

16m+17
16

)
128m2 + 264m + 136 B8m+8,1

31
2
(

3
2 ,

15
16

)
248 E8,2 62

9. 8m+ 1
(

1
2 ,

8m+1
8

)
128m2 + 24m + 1 D8m+1,1 23

(
3
2 ,

15
8

)
23 E3[D⊕23

1,1 ] 1
10. 8m+ 2

(
1
2 ,

8m+2
8

)
128m2 + 56m + 6 D8m+2,1 22

(
3
2 ,

7
4

)
66 E3[A⊕22

1,1 ] 15
E3[A⊕4

3,2A
⊕2
1,1] 16

E3[A5,3D4,3A1,1] 17
E3[A7,4A1,1] 18
E3[D5,4C3,2] 19
E3[D6,5] 20

11. 8m+ 3
(

1
2 ,

8m+3
8

)
128m2 + 88m + 15 D8m+3,1 21

(
3
2 ,

13
8

)
105 E3[A⊕7

3,1] 30
E3[D⊕2

5,2A3,1] 31
E3[A7,2C

⊕2
3,1 ] 33

E3[D7,3G2,1] 34
E3[C7,2] 35

12. 8m+ 5
(

1
2 ,

8m+5
8

)
128m2 + 152m + 45 D8m+5,1 19

(
3
2 ,

11
8

)
171 E3[D5,1A

⊕2
7,1] 49

13. 8m+ 6
(

1
2 ,

8m+6
8

)
128m2 + 184m + 66 D8m+6,1 18

(
3
2 ,

5
4

)
198 E3[D⊕3

6,1] 54
E3[A2

9,1] 55
14. 8m+ 7

(
1
2 ,

8m+7
8

)
128m2 + 216m + 91 D8m+7,1 17

(
3
2 ,

9
8

)
221 E3[A11,1E6,1] 59

15. 8m+ 9
(

1
2 ,

8m+9
8

)
128m2 + 280m + 153 D8m+9,1 15

(
3
2 ,

7
8

)
255 E3[A15,1] 63

16. 8m+ 10
(

1
2 ,

8m+10
8

)
128m2 + 312m + 190 D8m+10,1 14

(
3
2 ,

3
4

)
266 E⊕2

7,1 64
17. 8m+ 12

(
1
2 ,

8m+12
8

)
128m2 + 376m + 276 D8m+12,1 12

(
3
2 ,

1
2

)
276 D12,1 66

Table 2. Coset relations for cH = 8(m+ 3) with (n1, n2) = (2,m+ 2).

The new meromorphic theories predicted by the above coset relations are summarised
in table 3. The first 15 rows have Br,1 factors and the next 19 rows have Dr,1 factors. We
provide the Kac-Moody algebra of which the meromorphic theory is an extension (in the
first row, the extension is of a combination of a Kac-Moody algebra with the Baby Monster
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module). When the integer m is equal to 0 the theory is part of the list in [16] and we
provide the serial number of that list where this entry can be found. For all m ≥ 1 the
theory is new, to our knowledge.

Finally, for each case we provide the linear combination of character bilinears corre-
sponding to the character of the extension. Here we have exhibited the way in which the
9 characters of the theory C ⊕ C̃ are combined into a meromorphic extension E1[C ⊕ C̃] (in
special cases where C = C̃ we have 6 rather than 9 characters for C ⊕ C̃, but the idea is the
same). The quantities χ̂0, χ̂2, χ̂m+2, labelled by their conformal dimensions, are respec-
tively the bilinears χ0χ̃0, χ1χ̃1, χ2χ̃2 of the characters of C, C̃ (these however are labelled
serially as 0, 1, 2 rather than by their conformal dimensions, the latter can be read off
from the table).6 The χ̂’s are three of the 9 (or 6) characters in C ⊕ C̃. In general the
bilinear identity involves coefficients d1, d2 (recall that d0 = 1). Thus the column specifies
χ̂0 + d1χ̂1 + d2χ̂2 which defines the new meromorphic theory E1[C ⊕ C̃].

# H S# Modular # H S# Modular

invariant invariant

1. E1[B8m,1BM] 0 χ̂0 + χ̂2 + χ̂m+2 2. E1[B8m+1,1A
⊕15
1,2 ] 5 χ̂0 + χ̂2 + 1024χ̂m+2

3. E1[B8m+1,1A
⊕3
3,4] 7 χ̂0 + χ̂2 + 1024χ̂m+2 4. E1[B8m+1,1A5,6C2,3] 8 χ̂0 + χ̂2 + 1024χ̂m+2

5. E1[B8m+1,1D5,8] 10 χ̂0 + χ̂2 + 1024χ̂m+2 6. E1[B8m+2,1C
⊕3
2,1D

⊕2
4,2] 25 χ̂0 + χ̂2 + 512χ̂m+2

7. E1[B8m+2,1A
⊕2
2,1A

⊕2
5,2] 26 χ̂0 + χ̂2 + 512χ̂m+2 8. E1[B8m+2,1A2,1E6,4] 28 χ̂0 + χ̂2 + 512χ̂m+2

9. E1[B8m+3,1B3,1C4,1D6,2] 39 χ̂0 + χ̂2 + 256χ̂m+2 10. E1[B8m+3,1A4,1A9,2] 40 χ̂0 + χ̂2 + 256χ̂m+2

11. E1[B8m+4,1B4,1D8,2] 47 χ̂0 + χ̂2 + 128χ̂m+2 12. E1[B8m+4,1C
⊕2
6,1 ] 48 χ̂0 + χ̂2 + 128χ̂m+2

13. E1[B8m+5,1E7,2F4,1] 53 χ̂0 + χ̂2 + χ̂m+2 14. E1[B8m+6,1C10,1] 56 χ̂0 + χ̂2 + 32 χ̂m+2

15. E1[B8m+8,1E8,2] 62 χ̂0 + χ̂2 + χ̂m+2

16. E1[D8m+1,1D
⊕23
1,1 ] 1 χ̂0 + 8χ̂2 + 4096 χ̂m+2 17. E1[D8m+2,1A

⊕22
1,1 ] 15 χ̂0 + 64χ̂2 + 4096 χ̂m+2

18. E1[D8m+2,1A
⊕2
1,1A

⊕4
3,2] 16 χ̂0 + 64χ̂2 + 4096 χ̂m+2 19. E1[D8m+2,1A1,1A5,3D4,3] 17 χ̂0 + 64χ̂2 + 4096 χ̂m+2

20. E1[D8m+2,1A1,1A7,4] 18 χ̂0 + 64χ̂2 + 4096 χ̂m+2 21. E1[D8m+2,1C3,2D5,4] 19 χ̂0 + 64χ̂2 + 4096 χ̂m+2

22. E1[D8m+2,1D6,5] 20 χ̂0 + 64χ̂2 + 4096 χ̂m+2 23. E1[D8m+3,1A
⊕7
3,1] 30 χ̂0 + 8χ̂2 + 1024 χ̂m+2

24. E1[D8m+3,1A3,1D
⊕2
5,2] 31 χ̂0 + 8χ̂2 + 1024 χ̂m+2 25. E1[D8m+3,1A7,2C

⊕2
3,1 ] 33 χ̂0 + 8χ̂2 + 1024 χ̂m+2

26. E1[D8m+3,1D7,3G2,1] 34 χ̂0 + 8χ̂2 + 1024 χ̂m+2 27. E1[D8m+3,1C7,2] 35 χ̂0 + 8χ̂2 + 1024 χ̂m+2

28. E1[D8m+5,1A
⊕2
7,1D5,1] 49 χ̂0 + 8χ̂2 + 256 χ̂m+2 29. E1[D8m+6,1D

⊕3
6,1] 54 χ̂0 + 64χ̂2 + 256 χ̂m+2

30. E1[D8m+6,1A
⊕2
9,1] 55 χ̂0 + 64χ̂2 + 256 χ̂m+2 31. E1[D8m+7,1A11,1E6,1] 59 χ̂0 + 8χ̂2 + 64 χ̂m+2

32. E1[D8m+9,1A15,1] 63 χ̂0 + 8χ̂2 + 16 χ̂m+2 33. E1[D8m+10,1E
⊕2
7,1 ] 64 χ̂0 + χ̂2 + 2 χ̂m+2

34. E1[D8m+12,1D12,1] 66 χ̂0 + χ̂2 + χ̂m+2

Table 3. The 34 infinite series of new meromorphic CFTs. In each series, m= 0 corresponds to a
Schellekens theory, whose Schellekens number S# is given in the second last column. BM denotes
the Baby Monster CFT. Each theory has central charge 8m+24.

We now work out an example in detail. This is a typical case in this table and should
clarify the procedure that has been used for all cases. We pick Row 6 of table 2, involving
the coset pairing of B8m+5,1 with E3[E7,2 ⊕ F4,1]. The resulting meromorphic theory is in
row 13 of table 3. Notice that Br,1 is a three-character affine theory for all r (the same is

6Note that the χ̃i are not characters of the Kac-Moody algebra, but of its three-character extension.
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true for the Dr,1 series, see appendix A for details). We now claim that the two factors
pair to a meromorphic character with cH = 8(m + 3) and (n1, n2) = (2,m + 2) and that
the bilinear identity is:

χH0 = χ0χ̃0 + χ 1
2
χ̃ 3

2
+ χ 16m+11

16
χ̃ 21

16
= χ̂0 + χ̂2 + χ̂m+2 (3.1)

The notation has been explained above. It should be kept in mind that for m = 0 the last
two terms in the last expression remain distinct although both would be denoted by χ̂2,
one comes from the bilinear in h = 1

2 , h̃ = 3
2 while the other comes from the bilinear in

h = 11
16 , h̃ = 21

16 .7 However for m ≥ 1, the case of interest here, there is no ambiguity in the
notation.

Now we explain how the bilinear identity is proved for all m, with the m-independent
coefficients (d1, d2) = (1, 1) in this family. To start with, we have explicitly verified the
bilinear relation, to order q2000 in the q-series, for 32 ≤ cH ≤ 72, which corresponds to
1 ≤ m ≤ 6 by comparing the series expansion on both sides. We find (d1, d2) = (1, 1) in
all these cases, and the modular invariant on the r.h.s. of the bilinear relation to be:

cH = 24 : χH(τ) = j − 504,

cH = 32 : χH(τ) = j
4
3 − 456 j

1
3 ,

cH = 40 : χH(τ) = j
5
3 − 152 j

2
3 ,

cH = 48 : χH(τ) = j2 + 408 j − 129024,

cH = 56 : χH(τ) = j
7
3 + 1224 j

4
3 − 374784 j

1
3 ,

cH = 64 : χH(τ) = j
8
3 + 2296 j

5
3 − 659456 j

2
3 ,

cH = 72 : χH(τ) = j3 + 3624 j2 − 839680 j − 33030144.

(3.2)

This led us to conjecture that (d1, d2) = (1, 1) independent of m, and then immediately to
a proof of the conjecture.

For the proof we switch to the notation of eq. (2.2) and find a formula for the coefficients
in this example for all m. For this we first write:

χ̂0 + d1 χ̂2 + d2 χ̂m+2 = q−
cH
24 (an integral power series of q) (3.3)

After cancelling the fractional power of q — if any — from both sides of the above equation,
we see that:

ar(m) = coefficient of qr in l.h.s. of eq. (3.3)

− coefficient of qr in
(
j
m+3

3 + a1 j
m
3 + . . .+ ar−1j

m+3
3 −(r−1)

)
. (3.4)

For r = 1 we can write more explicitly:

a1(m) = coefficient of q in l.h.s. of eq. (3.3) − coefficient of q in j
m+3

3

= 128m2 + 168m+ 240− 248(m+ 3). (3.5)
7However for self-dual pairs the two χ̂2’s are indeed same at m = 0.

– 11 –



J
H
E
P
0
7
(
2
0
2
2
)
1
5
2

Note that though a1(m) has been derived from eq. (3.3), it only comes from comparing
O(q) coefficient on both sides of eq. (3.3) and hence the formula for a1(m) is independent
of d1 and d2. This is because on the l.h.s. of eq. (3.3) d1 appears at O(q2) and d2 appears
at O(qm+2).

The characters χi of the B-series affine theory at level 1 are known to be given by
Jacobi θ-constants. Using this representation one can show that m2(m) is quartic in m

(recall that m2 is the second-level degeneracy for the identity character). This in turn
would imply that the coefficient of q2 in χH would be quartic in m and hence a2 would be
quartic in m. Using this, we now prove that d1(m) is independent of m.

We first employ Mathematica to solve (for 32 ≤ cH ≤ 72 as in eq. (3.2) above):

(m, coefficient of q2 in χH) = [(1, 272432), (2, 560268), (3, 1121832), (4, 2159876),
(5, 3942688), (6, 6804092)]. (3.6)

which returns:

coefficient of q2 in χH = 121108 + 337268
3 m+ 89056

3 m2 + 19456
3 m3 + 8192

3 m4. (3.7)

From the above we can get a general formula for a2 using eq. (2.2),

a2(m) = 121108 + 337268
3 m+ 89056

3 m2 + 19456
3 m3 + 8192

3 m4

− 4124(m+ 3)− 30752(m+ 2)(m+ 3)− 248ma1. (3.8)

Comparing the O(q2) term on both sides of eq. (1.3)), we find:

m̃2 + m̃1m1(m) +m2(m) + d1(m)D1(m)D̃1

= a2(m) + 248ma1(m) + 4124(m+ 3) + 30752(m+ 2)(m+ 3). (3.9)

Now from row 6 of table 2 we read off:

m̃1 = 185
m1(m) = 128m2 + 168m+ 55,

(3.10)

while from the θ-constant representation of the characters of Br,1 we get:

D1(r) = 2r + 1 = 16m+ 11

m2(r) = 1 + 25
6 r + 23

6 r
2 − 2

3r
3 + 2

3r
4,

(3.11)

where r = 8m+ 5 for the present example.
Finally, solving the MLDE for the (m-independent) C̃ theory in row 6 of table 2 gives:

m̃2 = 56351, D̃1 = 4921. (3.12)
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Inserting eqs. (3.10), (3.11), (3.12) in eq. (3.9), we get:

56351+185(128m2 +168m+55)+
(

1+ 25
6 (8m+5)+ 23

6 (8m+5)2

−2
3(8m+5)3 + 2

3(8m+5)4
)

+d1(m)4921(16m+11)

= a2(m)+248ma1(m)+4124(m+3)+30752(m+2)(m+3) (3.13)

from which, using eq. (3.8) and eq. (3.5), we find that d1(m) = 1 for all m. Similarly one
can argue that d2 = 1 ∀m ≥ 1.

The corresponding results for the remaining infinite families can be explained in the
same way. In all cases the coefficients d1, d2 in the bilinear relation for all m are the same
as those obtained for m = 0, i.e. the cH = 24 case. Thus we have verified (still to order
q2000 in the q-series), that this new theory satisfies a bilinear relation with C̃ forming a
modular invariant with cH = 8(m+ 3) for all m.

Now let us give below, explicitly, the 3-character extension of the twelve character
theory E7,2F4,1,

χ̃0 = χE
0 χ

F
0 + χE

7
5
χF

3
5

χ̃ 3
2

= χE
3
2
χF

0 + χE
9

10
χF

3
5

χ̃ 21
16

= χE
21
16
χF

0 + χE
57
80
χF

3
5

(3.14)

where χE
i ’s represent the six characters of E7,2 and χF

i s represent the two characters of F4,1.
The above expressions are obtained by comparing the characters of the extension (found
from the MLDE approach) with the leading behaviour of the characters χE , χF which is
given by the dimensions of integrable representations.

Using the above result, now we can explicitly write the 1-character extension of the
36-character theory B8m+5,1E7,2F4,1:

χH = χ̂0 + χ̂2 + χ̂m+2 = χ0χ̃0 + χ 1
2
χ̃ 3

2
+ χ 16m+11

16
χ̃ 21

16

= j1/3
(
j + 128m2 + 168m+ 240− 248(m+ 3)

)
, (3.15)

= χ0χ
E
0 χ

F
0 + χ0χ

E
7
5
χF

3
5

+ χ 1
2
χE

3
2
χF

0 + χ 1
2
χE

9
10
χF

3
5

+ χ 16m+11
16

χE
21
16
χF

0 + χ 16m+11
16

χE
57
80
χF

3
5
,

where χ̂is represent the nine characters of B8m+5,1 ⊕ E3[E7,2F4,1], χi’s represent the three
characters of B8m+5,1, χ̃i’s represent the three characters of E3[E7,2F4,1].

3.3 New meromorphic theories at c = 32, 40: finite families

In this section we exhibit a finite set of novel meromorphic theories with central charges
cH = 32 and cH = 40 only. As in the previous cases, the bilinear relations for these examples
have also been verified to order q2000. Tables 4 and 5 exhibit the coset pairings which
correspond respectively to cH = 32 with (n1, n2) = (2, 3), and cH = 40 with (n1, n2) =
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(3, 3). There exists no new family for cH = 40 with (n1, n2) = (2, 4). At cH = 32 we find
that there are 7 additional meromorphic theories. Out of these, 3 are novel non-lattice
meromorphic theories (second and third line of row 1, and row 2). The remaining 4 are
lattice meromorphic theories whose lattices can be found in [39]. Similarly, at cH = 40,
there are 39 additional meromorphic theories, of which 32 are novel non-lattice theories
and the remaining 7 are lattice theories.

# c (h1, h2) m1 C c̃ (h̃1, h̃2) m̃1 C̃
1. 12 (

2
3 ,

4
3

)
156 E⊕2

6,1 20 (
4
3 ,

5
3

)
80 E3[A⊕10

2,1 ]
E3[A⊕2

5,2C2,1]
E3[A8,3]

2. 68
5

(
4
5 ,

7
5

)
136 E3[C8,1] 92

5
(

6
5 ,

8
5

)
92 E3[E6,3G2,1]

3. 14 (
3
4 ,

3
2

)
266 E⊕2

7,1 18 (
5
4 ,

3
2

)
198 E3[D⊕3

6,1]
E3[A⊕2

9,1]
4. 15 (

7
8 ,

3
2

)
255 E3[A15,1] 17 (

9
8 ,

3
2

)
221 E3[A11,1E6,1]

Table 4. Coset relations for cH = 32 with (n1, n2) = (2, 3).

# c (h1, h2) m1 C c̃ (h̃1, h̃2) m̃1 C̃

1. 20 (
1
2 ,

5
2

)
780 D20,1 20 (

5
2 ,

1
2

)
780 D20,1

2. 20 (
4
3 ,

5
3

)
80 E3[A⊕10

2,1 ] 20 (
5
3 ,

4
3

)
80 E3[A⊕10

2,1 ]
E3[A⊕10

2,1 ] E3[A⊕2
5,2C2,1]

E3[A⊕10
2,1 ] E3[A8,3]

E3[A⊕2
5,2C2,1] E3[A⊕2

5,2C2,1]
E3[A⊕2

5,2C2,1] E3[A8,3]
E3[A8,3] E3[A8,3]

3. 20 (
7
5 ,

8
5

)
120 E3[A⊕5

4,1] 20 (
8
5 ,

7
5

)
120 E3[A⊕5

4,1]
E3[A⊕5

4,1] E3[A9,2B3,1]
E3[A9,2B3,1] E3[A9,2B3,1]

4. 17 (
3
2 ,

9
8

)
221 E3[A11,1E6,1] 23 (

3
2 ,

15
8

)
23 E3[D⊕23

1,1 ]
5. 35

2
(

3
2 ,

19
16

)
210 E3[C10,1] 45

2
(

3
2 ,

29
16

)
45 E3[A⊕15

1,2 ]
E3[C10,1] E3[A⊕3

3,4]
E3[C10,1] E3[A5,6C2,3]
E3[C10,1] E3[D5,8]
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6. 18 (
5
4 ,

3
2

)
198 E3[D⊕3

6,1] 22 (
7
4 ,

3
2

)
66 E3[A⊕22

1,1 ]
E3[D⊕3

6,1] E3[A⊕4
3,2A

⊕2
1,1]

E3[D⊕3
6,1] E3[A5,3D4,3A1,1]

E3[D⊕3
6,1] E3[A7,4A1,1]

E3[D⊕3
6,1] E3[D5,4C3,2]

E3[D⊕3
6,1] E3[D6,5]

E3[A⊕2
9,1] E3[A⊕22

1,1 ]
E3[A⊕2

9,1] E3[A⊕4
3,2A

⊕2
1,1]

E3[A⊕2
9,1] E3[A5,3D4,3A1,1]

E3[A⊕2
9,1] E3[A7,4A1,1]

E3[A⊕2
9,1] E3[D5,4C3,2]

E3[A⊕2
9,1] E3[D6,5]

7. 37
2

(
3
2 ,

21
16

)
185 E3[E7,2F4,1] 43

2
(

3
2 ,

27
16

)
86 E3[D⊕2

4,2C
⊕3
2,1 ]

E3[E7,2F4,1] E3[A⊕2
5,2A

⊕2
2,1]

E3[E7,2F4,1] E3[E6,4A2,1]
8. 19 (

3
2 ,

11
8

)
171 E3[D5,1A

⊕2
7,1] 21 (

3
2 ,

13
8

)
105 E3[A⊕7

3,1]
E3[D5,1A

⊕2
7,1] E3[D⊕2

5,2A3,1]
E3[D5,1A

⊕2
7,1] E3[A7,2C

⊕2
3,1 ]

E3[D5,1A
⊕2
7,1] E3[D7,3G2,1]

E3[D5,1A
⊕2
7,1] E3[C7,2]

9. 39
2

(
3
2 ,

23
16

)
156 E3[D8,2B4,1] 41

2
(

3
2 ,

25
16

)
123 E3[D6,2C4,1B3,1]

E3[D8,2B4,1] E3[A9,2A4,1]
E3[C⊕2

6,1 ] E3[D6,2C4,1B3,1]
E3[C⊕2

6,1 ] E3[A9,2A4,1]

Table 5. Coset relations for cH = 40 with (n1, n2) = (3, 3).

The new meromorphic theories predicted by the above coset relations are summarised
in table 6. The format for the columns of this table is similar to that of table 3. The first
7 entries are theories at c = 32 and the next 39 are theories at c = 40.

# H cH χH # H cH χH

1. E1[A⊕10
2,1 E

⊕2
6,1 ] 32 χ̂0 + 972χ̂2 + 22 ·37χ̂3 2. E1[A⊕2

5,2C2,1E
⊕2
6,1 ] 32 χ̂0 + 972χ̂2 + 22 ·37χ̂3

3. E1[A8,3E
⊕2
6,1 ] 32 χ̂0 + 972χ̂2 + 22 ·37χ̂3 4. E1[C8,1E6,3G2,1] 32 χ̂0 + χ̂2 + 1250χ̂3

5. E1[D⊕3
6,1E

⊕2
7,1 ] 32 χ̂0 + 256χ̂2 + 64χ̂3 6. E1[A⊕2

9,1E
⊕2
7,1 ] 32 χ̂0 + 256χ̂2 + 64χ̂3

7. E1[A11,1A15,1E6,1] 32 χ̂0 + 512χ̂2 + 64χ̂3

8. E1[D⊕2
20,1] 40 χ̂0 + 2χ̂3 9. E1[A⊕20

2,1 ] 40 χ̂0 + 23 ·312χ̂3

10. E1[A⊕10
2,1 A

⊕2
5,2C2,1] 40 χ̂0 + 23 ·312χ̂3 11. E1[A⊕10

2,1 A8,3] 40 χ̂0 + 23 ·312χ̂3

12. E1[A⊕4
5,2C

⊕2
2,1 ] 40 χ̂0 + 23 ·312χ̂3 13. E1[A⊕2

5,2A8,3C2,1] 40 χ̂0 + 23 ·312χ̂3

14. E1[A⊕2
8,3] 40 χ̂0 + 23 ·312χ̂3 15. E1[A⊕10

4,1 ] 40 χ̂0 + 22 ·58χ̂3

16. E1[A⊕2
9,2B

⊕2
3,1 ] 40 χ̂0 + 22 ·58χ̂3 17. E1[A⊕5

4,1A9,2B3,1] 40 χ̂0 + 22 ·58χ̂3

18. E1[A11,1D
⊕23
1,1 E6,1] 40 χ̂0 + 26χ̂3 + 217χ̂3 19. E1[A⊕15

1,2 C10,1] 40 χ̂0 + χ̂3 + 215χ̂3
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20. E1[A⊕3
3,4C10,1] 40 χ̂0 + χ̂3 + 215χ̂3 21. E1[A5,6C2,3C10,1] 40 χ̂0 + χ̂3 + 215χ̂3

22. E1[C10,1D5,8] 40 χ̂0 + χ̂3 + 215χ̂3 23. E1[A⊕22
1,1 D

⊕3
6,1] 40 χ̂0 + 219χ̂3 + 212χ̂3

24. E1[A⊕2
1,1A

⊕4
3,2D

⊕3
6,1] 40 χ̂0 + 219χ̂3 + 212χ̂3 25. E1[A1,1A5,3D4,3D

⊕3
6,1] 40 χ̂0 + 219χ̂3 + 212χ̂3

26. E1[A1,1A7,4D
⊕3
6,1] 40 χ̂0 + 219χ̂3 + 212χ̂3 27. E1[C3,2D5,4D

⊕3
6,1] 40 χ̂0 + 219χ̂3 + 212χ̂3

28. E1[D⊕3
6,1D6,5] 40 χ̂0 + 219χ̂3 + 212χ̂3 29. E1[A⊕22

1,1 A
⊕2
9,1] 40 χ̂0 + 219χ̂3 + 212χ̂3

30. E1[A⊕2
1,1A

⊕4
3,2A

⊕2
9,1] 40 χ̂0 + 219χ̂3 + 212χ̂3 31. E1[A1,1A5,3A

⊕2
9,1D4,3] 40 χ̂0 + 219χ̂3 + 212χ̂3

32. E1[A1,1A7,4A
⊕2
9,1] 40 χ̂0 + 219χ̂3 + 212χ̂3 33. E1[A⊕2

9,1C3,2D5,4] 40 χ̂0 + 219χ̂3 + 212χ̂3

34. E1[A⊕2
9,1D6,5] 40 χ̂0 + 219χ̂3 + 212χ̂3 35. E1[C⊕3

2,1D
⊕2
4,2E7,2F4,1] 40 χ̂0 + χ̂3 + 215χ̂3

36. E1[A⊕2
2,1A

⊕2
5,2E7,2F4,1] 40 χ̂0 + χ̂3 + 215χ̂3 37. E1[A2,1E6,4E7,2F4,1] 40 χ̂0 + χ̂3 + 215χ̂3

38. E1[A⊕7
3,1A

⊕2
7,1D5,1] 40 χ̂0 + 26χ̂3 + 217χ̂3 39. E1[A3,1A

⊕2
7,1D5,1D

⊕2
5,2] 40 χ̂0 + 26χ̂3 + 217χ̂3

40. E1[A⊕2
7,1A7,2C

⊕2
3,1D5,1] 40 χ̂0 + 26χ̂3 + 217χ̂3 41. E1[A⊕2

7,1D5,1D7,3G2,1] 40 χ̂0 + 26χ̂3 + 217χ̂3

42. E1[A⊕2
7,1C7,2D5,1] 40 χ̂0 + 26χ̂3 + 217χ̂3 43. E1[B3,1B4,1C4,1D6,2D8,2] 40 χ̂0 + χ̂3 + 215χ̂3

44. E1[A4,1A9,2B4,1D8,2] 40 χ̂0 + χ̂3 + 215χ̂3 45. E1[B3,1C4,1C
⊕2
6,1D6,2] 40 χ̂0 + χ̂3 + 215χ̂3

46. E1[A4,1A9,2C
⊕2
6,1 ] 40 χ̂0 + χ̂3 + 215χ̂3

Table 6. The 34 infinite series of new meromorphic CFTs. In each series, m= 0 corresponds to a
Schellekens theory, whose Schellekens number S# is given in the second last column. BM denotes
the Baby Monster CFT. Each theory has central charge 8m+24.

4 Conclusions

The meromorphic theories we have identified in the present work have been summarised in
tables 3 and 6. As mentioned in the Introduction, the proposals in this work are made at a
physics level of rigour and considerable evidence provided. It should be possible in future to
convert these to a set of mathematically rigorous statements and proofs. We have obtained
infinitely many theories that can be thought of as generalisations of 34 non-lattice theories
in ref. [16] to arbitrary central charge c = 8N . The fact that infinitely many generalisations
exist is ultimately due to properties of the Br,1 and Dr,1 affine theories, which have three
characters for all r and whose modular transformation matrix is periodic in r.

It is interesting to see the Baby Monster module make an appearance in this discussion,
in row 1 of table 3. This appears to illustrate a general phenomenon: modules with and
without Kac-Moody algebras appear on a similar footing in general meromorphic theories
(and presumably in more general RCFTs). This is in contrast to the c = 24 case where
there is one entry (the Monster CFT) that is the extension of modules without a Kac-
Moody algebra, namely E1[M(4, 3)BM ], while the rest are extensions of only Kac-Moody
algebras. Such a perspective may be helpful to derive at least partial classifications for
meromorphic theories at c = 32, even though a complete classification is understood to be
virtually impossible due to the enormous number (of order 109) of possible theories.

The present work makes no claim to being complete. The goal has only been to
provide several examples of an interesting phenomenon: the prediction of meromorphic
theories at higher c starting from coset pairings for meromorphic theories at lower c. The
present results already suggest many new possibilities, for example we may conjecture that
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starting at every cH = 8(2p + 3) (where p ∈ N ∪ {0}) there is an infinite series labelled
by another parameter m with (n1, n2) = (p + 2, p + m + 2). This series is the extension
E1[D8p+12,1D8p+8m+12,1]. The special case for p = 0 and arbitrary m corresponds to row
17 of table 2 which describes a series of meromorphic theories starting at cH = 24 given by
E1[D12,1D8m+12,1]. Also the special case p = 1 and m = 0 can be found in row 1 of table 5
which describes a meromorphic theory at cH = 40 given by, E1[D20,1D20,1]. Our conjecture
subsumes these examples and suggests infinite generalisations thereof. More generally, we
have not yet considered cases with multiple Br,1 or Dr,1 factors. We hope to return to all
these and many more cases in the future [24].

The recursive nature of the process described here is a potentially very useful feature.
If a meromorphic theory is first discovered by any method at any central charge c = 8N ,
one can attempt to construct its generalisations at higher values of c using our approach.

Our results provide more evidence for the close relationship between general RCFTs
and meromorphic CFT. It is not true, as was implicitly thought earlier (and is still occasion-
ally claimed in the literature), that meromorphic theories constitute some sort of “exotic”
outliers in the space of all RCFTs. Rather, the most general RCFTs are the ones with
extensions of the usual Virasoro and Kac-Moody algebras. The most familiar RCFTs, such
as minimal Virasoro and affine theories, are merely unextended special cases of the RCFT
landscape which is mostly populated by extensions. Meromorphic theories are such exten-
sions, and are intimately linked to n-character RCFT for n > 1 through coset relations.
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A Some general features of Br,1 and Dr,1 affine theories

• For Br,1 we have the three characters as follows,

– χ0: identity (adj. irrep): [0, · · · , 0] (which contains information about the di-
mension of Lie algebra (= coefficient of O(q) = 2r2 +r) and hence is the adjoint
irrep of SO(2r + 1)).
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– χ 1
2
: fundamental irrep: σ1 (whose dimension (= coefficient of O(q0) term =

2r + 1) matches with that of the fundamental irrep of SO(2r + 1)).

– χ 2r+1
16

: spinor irrep: σr (whose dimension (= coefficient of O(q0) term = 2r)
matches with that of the spinor irrep of SO(2r + 1))8

• For Dr,1 we have the three characters as follows,

– χ0: identity (adj. irrep): [0, · · · , 0] (which contains information about the di-
mension of Lie algebra (= coefficient of O(q) = 2r2−r) and hence is the adjoint
irrep of SO(2r))

– χ 1
2
: fundamental irrep: σ1 (whose dimension (= coefficient of O(q0) term = 2r)

matches with that of the fundamental irrep of SO(2r))

– χ r
8
: spinor irrep: σr ≡ σr−1 (whose dimension (= coefficient of O(q0) term =

2r−1) matches with that of the spinor irrep of SO(2r))9

Now note that we have an infinite family whenever we have a factor of Br1,1 or Dr1,1

in a theory and the idea is to generate an infinite set by increasing r1 → r1 + 8k (with
k ∈ Z). Now, we can explicitly compute and check the (d1, d2) values for upto cH = 40 and
we observe that we get the same (d1, d2) for a given coset pair forming a particular infinite
family at every stage of cH. This is because the only thing that differs in the bilinear
relation of one stage to another for a given infinite family is the rank (in steps of 8) of Br1,1

or Dr1,1 factors. However, increasing r1 → r1 + 8 doesn’t change the number of irreps of
Br1,1 or Dr1,1. Hence, we observe again that the values of (d1, d2) at one value of cH will
be the same for all other values of cH.

The above discussion shows a very crucial point about 3-characters. As we discussed
above we were able to generate infinite families of meromorphic theories because each
of these theories had a Br1,1 or Dr1,1 as their factors and as we know from [3], every
Br1,1 or Dr1,1 has 3 characters (except D4,1 which has 2 due to triality). Thus, we could
generalise the Schellenkens coset pairs which always resulted in a 9-character theory and
from Schellekens we know that the non-Br1,1 or non-Dr1,1 factors always admit a unique
3-character extension.

8Dimension of spinorial representation of SO(n odd) = 2
n−1

2 .
9Dimension of spinorial representation of SO(n even) = 2 n

2−1. In this case (even dimension) we have
chiral spinor irreps (σr ≡ σr−1) but at the level of characters they will be treated on equal footing.
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B Relevant admissible character solutions

In this section we present (for completeness) the relevant admissible character solutions to
the (3, 0) MLDE and GHM solutions from [10] and [19] respectively.

# c h1 h2 m1 D1 D2 # c h1 h2 m1 D1 D2

III22
68
5

4
5

7
5 136 119 68 III37

92
5

6
5

8
5 92 1196 299

V39 20 4
3

5
3 80 5 4 III45 22 3

2
7
4 66 77 11

III50 23 3
2

15
8 23 575 23

GHM45
45
2

3
2

29
16 45 4785 45 GHM86

43
2

3
2

27
16 86 5031 43

GHM105 21 3
2

13
8 105 637 21 GHM120 20 7

5
8
5 120 4 13

GHM123
41
2

3
2

25
16 123 5125 41 GHM156

39
2

3
2

23
16 156 5083 39

GHM171 19 3
2

11
8 171 627 19 GHM185

37
2

3
2

21
16 185 4921 2368

GHM198 18 3
2

5
4 198 75 9 GHM210

35
2

3
2

19
16 210 4655 35

GHM221 17 3
2

9
8 221 561 17 GHM255 15 3

2
7
8 255 455 15

Table 7. Some admissible character solutions to the (3,0) MLDE and GHM solutions.
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