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ABSTRACT: Intramolecular hydrogen bonding between donor and acceptor segments in
thermally activated delayed fluorescence (TADF) materials is now frequently employed to�
purportedly�rigidify the structure and improve the emission performance of these materials.
However, direct evidence for these intramolecular interactions is often lacking or ambiguous,
leading to assertions that are largely speculative. Here we investigate a series of TADF-active
materials incorporating pyridine, which bestows the potential ability to form intramolecular
H-bonding interactions. Despite possible indications of H-bonding from an X-ray analysis, an
array of other experimental investigations proved largely inconclusive. Instead, after
examining computational potential energy surfaces of the donor−acceptor torsion angle
we conclude that the pyridine group primarily alleviates steric congestion in our case, rather
than enabling an H-bond interaction as elsewhere assumed. We suggest that many previously
reported “H-bonding” TADF materials featuring similar chemical motifs may instead operate
similarly and that investigation of potential energy surfaces should become a key feature of
future studies.

Thermally activated delayed fluorescence (TADF) in
purely organic compounds now frequently underpins

high-performance light-emitting applications such as organic
light-emitting diodes (OLEDs),1,2 sensors,3 photocatalysis,4 or
fluorescence labeling,5,6 as the TADF mechanism theoretically
allows for the utilization of 100% of excitons for light emission.
To enable efficient TADF, spin mixing of singlet and triplet
excited states requires energy alignment of states of different
orbital characters.7 This can be realized in donor−acceptor (D-
A) compounds with well-separated frontier molecular orbitals
(FMOs), which typically possess near-perpendicular D-A
geometries and intramolecular charge-transfer (CT) excited
states.8 While other classes of materials can also exhibit TADF
without requiring perpendicular excited-state geometries�
most notably through the multiple-resonance TADF (MR-
TADF)9−13 and other upper-state crossing14,15 mechanisms�
for the more commonly reported “vibronically coupled” D-A
materials this perpendicularity is understood to be a strong
requirement, at least in the excited state. Small energy splitting
between excited CT singlet and localized excitonic (LE) triplet
states (ΔEST) in such materials can be overcome by thermal
energy, allowing reverse intersystem crossing (rISC) enabled
by a combination of spin−orbit coupling (SOC) and spin-
vibronic coupling of these states.16−22

Despite their ability to harvest triplet states, CT states with
near-perpendicular D-A geometries frequently possess low
oscillator strength, resulting in unsuitably low photolumines-

cence quantum yields (PLQYs) and/or long singlet exciton
lifetimes.23−26 Hence, efficient TADF molecules must balance
these competing factors, with designs that allow for some
torsional/vibrational flexibility (a perturbation that enables
emission) centered about a near-perpendicular “compromise”
average geometry (enabling rISC). Reports in which the D-A
geometry is influenced by external groups to understand or
control TADF properties are now commonplace.23,27−41

Successful strategies can include rigidification of the overall
D-A structure or major modification of the average molecular
geometry (including D-A angle or axial/equatorial conformers)
through molecular design. Incorporation of heteroatoms to
induce attractive intramolecular interactions, most commonly
N···H hydrogen bonds, is also now frequently reported (see
Supporting Information section 2 for selected relevant
examples).42−57,63

In this latter approach, improved quantum yields, narrower
emission spectra, or enhanced SOC compared to control
materials are commonly attributed to N···H or similar
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intramolecular interactions in the heteroatom-substituted
material.43−57 Although plausibly arising from increased D-A
planarization (shifting toward a more optimum “compromise”
average geometry) or rigidification of the molecular structure
(deactivating some vibrational quenching pathways) direct
evidence for intramolecular H-bonding is, to the best of our
knowledge, only ever inferred rather than conclusively
demonstrated. These inferences are typically based on
interatomic distances derived from single-crystal X-ray analysis
and/or computational calculations, sometimes in comparison
with a non-N-heteroaromatic analogue. The weakness of such
inferences is that the ground-state molecular conformation in
single crystals can be profoundly modified by intermolecular
interactions (i.e., packing forces, typically π−π stacking) and
do not necessarily reflect the reality of optoelectronic
measurements of excited states in solutions and/or host-
dispersed films. Single-point computational comparisons also
give limited insight, as while these can identify short
interatomic distances, they cannot conclude whether these
distances are due to intramolecular attractive forces or arise
from other features of molecular design enforcing a particular
geometry (e.g., alleviated steric strain). Experimentally, deeper
insight is confounded by the impossibility of preparing truly
unambiguous “control” materials; incorporating a basic H-
bond acceptor unit (e.g., a pyridine compared to a phenyl ring)
will also unavoidably change other steric33 and electronic
properties of the system (e.g., highest/lowest molecular orbital
energies, ΔEST), any of which can impact the TADF
performance to an equal or greater extent than a speculated
H-bonding interaction.
To investigate intramolecular H-bonding in TADF materi-

als, we prepared a set of model D-A compounds 1−3 featuring
pyridine and pyrimidine groups, based on a structure
previously reported by Yasuda et al. (see Supporting
Information section 3 for details of synthesis and crystal-
lization).58 X-ray crystal structures (Figure 1) revealed in each
case a near-perpendicular D-A twist (τ) and essentially single
intersegmental C−N bond lengths (a), indicating that the
nitrogen atom at the ortho position of the bridging unit does
not significantly change the electronic conjugation between the
D and A moieties. The acridine moiety is slightly folded along
the N···C(spiro) vector, more strongly in compounds 2 & 3 (θ
ca. 15° for 1 vs 32−36° for 2 and 3), forming the central
acridine ring into a pseudoboat conformation. This folding was
recently investigated for a spiro-fluorene substituted acridine
donor28 and was also observed in crystals of other acridine-
containing TADF emitters.7,31,59−62 This increased folding in 2
and 3 could potentially arise from intramolecular hydrogen
bonding but also potentially from alleviated D-A steric
repulsions as the donor-facing C−H group on the acceptor
is replaced by a more compact N atom.
The shortest intersegmental N···H contacts were ca. 2.5−2.6

Å for 2 and 3, compared to C···H distances of ca. 2.7−2.9 Å in
1. While these N···H distances are short enough to potentially
result from intramolecular hydrogen bonding, we note that,
due to the intersegmental orthogonality, the direction of the
sp2 nitrogen lone pair does not actually match the direction to
the adjacent hydrogen atom of the acridine unit, as would be
expected for an H-bond. For other atom pairs with even larger
N···H distances, the potential for a structure-determining H-
bonding interaction appears even less likely, revealing weak-
ness in the assertions that H-bonding is a structurally

significant effect in other reports of similarly structured
TADF materials.
In other works, analogous X-ray interatomic distances are

sometimes used alone to attribute intramolecular H-bonding as
the root cause of differences in TADF performance (examples
in Table S1). We note the confounding possibility of
intermolecular H-bonding interactions existing alongside
other crystal packing forces, which may inextricably influence
the observed structural parameters (Figure S23). Furthermore,
while TADF is an excited-state process, X-ray structures (and
less-expensive calculated structures) can only probe the
ground-state geometry. As illustrative examples, in the TADF
emitters pDTCz-DPmS49 and PXZ−PPO57 (entries 7 and 15
in Table S1 in Supporting Information) the D-A units are
shown to be nearly coplanar in the ground state. However,
further investigation of PXZ−PPO demonstrated that TADF
originates from a highly twisted excited state in that material
(Figure S3b of that work).57 It is therefore inappropriate to
rely solely on ground-state or X-ray structures for interpreting
the properties of TADF materials, which are rarely measured in
crystalline form and which perform their triplet conversion in
the excited state.
Here, exhaustive experimental investigations were also

performed in the hope to uncover alternative, unambiguous
evidence of H-bonding. In 1H NMR spectroscopy, intra-
molecular H-bonding is expected to affect acridine proton
signal symmetry and/or result in a severe deshielding of the
donor segment proton adjacent to the nitrogen of the acceptor
segment bridge in 2 and 3. Instead, comparing the chemical
shifts of the signals in the 1H NMR spectra of 1−3 (Figure
S15), a similar but minor downfield shift of all acridine proton
signals of 2 and 3 can be observed. Since this occurs for all
acridine signals regardless of their proximity to the nitrogen
atom of the bridging heterocycle, it is not reasonable to

Figure 1. Chemical and X-ray molecular structures of compounds 1−
3 and relevant geometrical parameters. (inset) Acridine folding.
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attribute this to a localized intramolecular H-bonding
interaction. Rather, as previously observed for phenothiazine
segments in D-A compounds, a comparable downfield shift of
all donor proton signals can be observed when comparing
planar to slightly folded conformers of the respective donor
units.34 This downfield shift is therefore in line with reduced
electronic conjugation within the donor segment for the more
folded structures of 2 and 3 and also follows trends in the
cyclic voltammetry data discussed in the Supporting
Information (section 9). Alternatively or additionally, a
reduction of the intersegmental dihedral angle in 2 and 3
due to alleviated steric hindrance could impact the
intersegmental electronic conjugation in solution and result
in a minor downfield shift of the acridine proton signals of 2
and 3 as compared to 1.
To further investigate the structural dynamic differences,

compounds 1−3 were also probed by variable-temperature 1H
NMR (Supporting Information, section 5). Down to −80 °C,
we observed no signal coalescence/splitting or broadening that
might be indicative of intramolecular H-bonding for 1−3.
As TADF materials have predominantly emissive applica-

tions, the photophysical properties of compounds 1−3 were
investigated comprehensively (Figure 2, with additional
discussion in Supporting Information section 7). In Zeonex
films the steady-state absorption and photoluminescence (PL)
bands of the three materials are all different, with the
absorbance spectra showing direct CT excitation bands at
longer wavelengths (350−400 nm). The PL spectra have
predominately broad CT-like emission with some weakly
structured emission also evident, reminiscent of what was
previously reported for similar acridine-pyrimidine TADF
materials.27 This hybrid spectral shape arises from mixed CT-
LE excited-state character in the nonpolar Zeonex host, which
evolves from TADF to room temperature phosphorescence
(RTP) in time-resolved measurements (Figure S25, 5 wt %
films). This outcome is unsurprising, given the large ΔEST
values in the Zeonex host (0.34 eV for 1 and 2, and 0.16 eV for
3). The PLQYs of the 1 wt % films were also different, the
highest being that for material 3 (55%, as compared to 11%
and 24% in 1 and 2, respectively). The phosphorescence
spectra of 1−3 collected from 5 wt % films are nearly identical,
indicating strongly that this originates from the spiroacridine
unit common to all three. Time-resolved emission decays were

also collected in dichloromethane (DCM), with the increased
polarity of this solvent red-shifting the PL emission, narrowing
the ΔEST, and tipping the balance from mixed TADF/RTP to
pure TADF in all three materials (Figure 2b, contour plots of
time-resolved spectra Figure S24). The decays demonstrate the
strongest delayed fluorescence (DF) for material 3; materials 1
and 2 have much weaker DF, although the emission decays
more rapidly for 1 than for 2.
While there are significant differences between their optical

properties, attributing any of these to a single source is
frustrated by the intractable electronic effects of the pyridine
nitrogen in materials 2 and 3. The possibility of intramolecular
H-bonding cannot be excluded from these results, but
simultaneously the increased acceptor strength associated
with the pyrimidine group in 3 is entirely sufficient to explain
the red-shifted PL spectrum. This change in electronic state
energies leads to reduced ΔEST, and the improved TADF
performance in time-resolved measurements without needing
to additionally invoke an explanation involving intramolecular
interactions. Indeed, if intramolecular interactions were the
primary cause of these changes, we would expect to see much
more similar behavior in 2 as compared to 3 (both with the
potential for intramolecular H-bonding), whereas in practice 1
and 2 are much more alike despite the presence of the pyridine
site in 2 but not in 1. In similar studies (Table S1), improved
PLQYs akin to what is observed here for 3 are often used to
post hoc rationalize the claim of intramolecular H-bonding
interactions.
With all available experimental avenues providing at best

ambiguous evidence for intramolecular H-bonding in com-
pounds 1−3, we turned to density functional theory (DFT)
calculations for additional insight. In other similar reports DFT
is often used in a similar capacity as X-ray structures, with short
N···H distances used to support the assertion of intramolecular
H-bonding.43,45,47,48,50−54,57,63 As noted above though, attrac-
tive interactions are not the only molecular feature that can
cause short N···H interatomic distances, and so their presence
in calculations does not immediately confirm an H-bonding
interaction.
Investigations of the relaxed S0 calculated geometries

(rCAM-B3LYP/6-31G(d)) were relatively uninformative. In
agreement with the X-ray structures, near-perpendicular D-A
dihedral angles were observed in all cases alongside slight

Figure 2. (a) Steady-state absorption (ABS), photoluminescence (PL), and phosphorescence (PH, 80 K after 10 ms delay) of Zeonex films (1 wt %
for PL, 5 wt % for ABS and PH). (b) Time-resolved emission decay of degassed DCM solutions (1 mgml−1).

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c00907
J. Phys. Chem. Lett. 2022, 13, 8221−8227

8223

https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00907/suppl_file/jz2c00907_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00907/suppl_file/jz2c00907_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00907/suppl_file/jz2c00907_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00907/suppl_file/jz2c00907_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00907/suppl_file/jz2c00907_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00907/suppl_file/jz2c00907_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.2c00907/suppl_file/jz2c00907_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00907?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00907?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00907?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c00907?fig=fig2&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.2c00907?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


acridine folding (22−24°). Investigation of the excited states
(TDA-DFT CAM-B3LYP/6-31G(d)) revealed similarly per-
pendicular structures as well as trends in highest occupied and
lowest unoccupied molecular orbitals (HOMO/LUMO,
Figure S28), oscillator strengths (Figure S29), and excited-
state energy splitting (Figure S31) that are broadly in line with
those observed in experimental cyclic voltammetry and optical
spectroscopy (Supporting Information sections 9 and 7).
Similar to our previous report,27 we also observe rocking of the
acceptor relative to the plane of the donor (Figure 3, green
angles). While this rocking at first appears enforced by N···H

attractive forces between the acceptor pyridine and spiro-
fluorene H atoms (thus absent in 1), we note that the same
fluorene distortion occurs in the X-ray structures although with
the orientation of the pyridine group reversed (Figure 1). We
therefore cannot consider this as conclusive evidence of an H-
bonding interaction, as any such attractive interaction would
be expected to translate into experimental X-ray structures as
well.
Examination of natural transition orbitals (NTOs) was also

roughly in line with expectations for these CT emitters; the S0
→ S1 NTOs of 1−3 feature well-separated hole and particle
with minimal overlap, while S0 → S2,3 excitations revealed
additional excited states of increased LE character (Figure
S30). The excited-state relaxed D-A dihedral angles vary in the
range of 85−90°, which is too small a variance to provide
compelling evidence for any excited-state planarization
(whether caused by intramolecular H-bonding in 2 and 3, or
otherwise).
Because rISC is a dynamic process involving vibronic

coupling of excited states (most commonly through D-A
dihedral rocking), a static picture of the relaxed molecular
geometry is not always sufficient for deeper understanding.64

Consequently, the shape of the potential energy surface (PES)
associated with D-A bond rotation was also evaluated (Figure
3d). While some previous studies have investigated similar
PESs for D-A motion in TADF materials44,50,65 we note that,
for ideal comparison, we use only S1 excited-state calculations
to build our PES. Furthermore, to properly compare the
rigidity of the D-A rocking motion between the materials, we
also plot our PESs against angular displacement (ΔA) away
from their individual energy minima, rather than absolute D-A
angle. In our case the energy-minima D-A angles are all similar
(85−89.9°), and so this consideration makes minimal
difference to Figure 3d. In other works though, large
differences in relaxed D-A angles between materials (e.g.,
∼60° for carbazole, ∼90° for acridine) frustrate direct PES
comparison when plotted against absolute D-A angle and
absolute (rather than relative) energies at these angles.44,50,65,66

Turning to Figure 3d, because intramolecular H-bonding is
often invoked as a rigidifying influence on molecular geometry,
we expected it to manifest as a steepening of the PES. Instead,
the rotational barrier of 1 with a phenylene spacer is steeper
than those of 2 and 3 bearing the pyridinyl spacer, the opposite
of what would be expected for an attractive or rigidifying
intramolecular interaction. Similar results are also observed for
calculations using rBMK and rPBE0 computational methods
(Figures S33 and S34).
In the absence of conclusive evidence for H-bonding

through the previously discussed experimental methods and
additionally armed with compelling PES evidence that H-
bonding is not active in these materials, we are forced to
consider alternative explanations. Recently pyrazine-core
TADF materials have been reported to enjoy decreased steric
congestion, leading to more rotatable carbazole donors and
imparting resistance to dimerization.33 The weight of evidence
points to a similar effect in our case, with the decreased steric
congestion in materials 2 and 3 explaining their wider PES
curves in Figure 3d as well as their greater extent of acridine
folding in Figure 1 (consistently folded toward the pyridine
nitrogen). Alleviation of steric crowding is also consistent with
the near-perpendicular D-A geometries enjoyed by all three
materials, as expanded steric freedom would not directly
impact the equilibrium D-A angle.

Figure 3. (a−c) Optimized ground-state (rCAM-B3LYP/6-31G(d))
and excited-state (TDA-DFT CAM-B3LYP/6-31G(d)) geometries
and (d) PESs of 1, 2, and 3 (CAM-B3LYP/6-31G(d)), calculated for
D-A bond angular displacement away from the optimized S1
geometry. Energies (ΔE) and angles (ΔA) are plotted relative to
their values at the energy-minimized geometry. The dotted line
represents 0.025 eV, the approximate value of available thermal
energy at room temperature and therefore the extent across the PES
these materials are expected to explore.
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Applying the same logic more broadly, we suggest that H-
bonding may not play as significant a role as previously claimed
in other analogous TADF systems (where H-bonding is often
assumed or inferred from X-ray data or single-point
calculations). While H-bonding may indeed be active in
these other systems, as in our case, the differences observed in
photophysical properties attributed to H-bonding could
instead arise from electronic and/or steric differences induced
by the heteroatom-containing substituent. Firmer identification
of H-bonding in such systems will likely require deeper
investigation of PES curves (plotted against ΔA) as in Figure
3d.
In conclusion, we have investigated intramolecular H-

bonding in a series of TADF materials bearing phenylene or
pyridine bridges. Other reports propose the existence of
important H-bonding interactions in similar chemical systems;
in our case we find the evidence for H-bonding interactions is
inconclusive at best and wholly absent in an appropriate
comparison of computational PESs of compounds 1−3. We
conclude that alleviation of steric congestion is a significantly
more plausible explanation for the differences in material
properties we observe here. Similar conclusions may be more
widely applicable to previous reports that claim intramolecular
H-bonding as a design feature of enhanced TADF materials.
We therefore suggest that there remains ample scope for
reasonable doubt concerning intramolecular H-bonding in
these types of materials.
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