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Abstract
This paper outlines the development of a non-intrusive alternative to current intelligent transportation systems using road-
side video cameras. The use of video to determine the axle count and speed of vehicles traveling on major roads was investi-
gated. Two instances of a convolutional neural network, YOLOv3, were trained to perform object detection for the purposes 
of axle detection and speed measurement, achieving accuracies of 95% and 98% mAP respectively. Outputs from the axle 
detection were processed to produce axle counts for each vehicle with 93% accuracy across all vehicles where all axles are 
visible. A simple Kalman filter was used to track the vehicles across the video frame, which worked well but struggled with 
longer periods of occlusion. The camera was calibrated for speed measurement using road markings in place of a reference 
object. The calibration method proved to be accurate, however, a constant error was introduced if the road markings were 
not consistent with the government specifications. The average vehicle speeds calculated were within the expected range. 
Both models achieved real-time speed performance.
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1 Introduction

Intelligent transportation systems (ITS) which monitor road 
use provide valuable data which can be used to inform many 
urban planning decisions. Traffic monitoring installations 
which continually track the number of passing vehicles can 
be used to build up a picture of how a particular road is used. 
Monitoring additional factors, such as the category or speed 
of vehicles, can help make this picture more detailed and 
improve its utility for various applications. Comparing the 
data produced from monitoring multiple roads to observe 
where traffic is typically heaviest or where heavy vehicles 
are more common allows for the efficient allocation of funds 
for road maintenance. Information into varying traffic den-
sity and speed at different times of day can inform the design 

of smart cities and motorways, and reliable data into where 
congestion frequently occurs can be used to highlight loca-
tions where such developments would be most beneficial. 
Additionally, road transport accounts for 22% of total UK 
emissions of carbon dioxide, and noise from road traffic 
affects 30% of people in the UK [1]. Traffic monitoring data 
can be used to identify problem areas and so help create and 
track initiatives that aim to address such issues.

Existing research into camera-based ITS solutions [6, 31, 
34] tends to focus on simple shape-based classification of 
vehicles into general categories, such as car or van. These 
categories are much more general than those produced using 
traditional solutions in which the HGV (heavy goods vehi-
cle) class in particular can be divided into many subclasses 
[27]. A key distinction between these subclasses is the 
number of axles the vehicle has, but little existing research 
has investigated the possibility of using a neural network 
to detect wheels, and so count axles, from video footage. 
Similarly, little research has been performed into the pos-
sibility of developing an integrated system capable of both 
classifying vehicles and estimating their speed.

This paper will detail the development of camera-based 
systems for the automatic detection of vehicle axle counts 
and vehicle speeds using a convolutional neural network 
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(CNN). This research is carried out in collaboration with 
Q-Free, an ITS company with an interest in developing a 
sophisticated roadside traffic monitoring system with a focus 
on vehicle classification. A base system will be designed to 
perform simple categorisation of vehicles based on shape. 
The aim is for the axle count and vehicle speed systems to 
exist as additional modules to provide clients with the flex-
ibility to choose the data they require.

Traditionally, the market for vehicle classification has 
been dominated by in-road systems [30] using sensors such 
as inductive loops to detect axles in order to classify vehi-
cles. These solutions are capable of classifying vehicles 
into very specific categories with a high degree of accuracy. 
However, a major disadvantage is that they are intrusive; 
they require the road to be closed during installation and 
maintenance [5]. This is costly, time-consuming and endan-
gers workers’ lives.

Therefore, there is considerable demand for non-intrusive 
solutions that can be deployed out-of-road. Such systems 
have previously been proposed based on a mix of sensing 
technologies, such as radar, LiDAR and video footage, how-
ever improvements in machine learning and object detection 
offer the unique proposal of a simpler and cheaper system 
based only on video.

There are some major challenges which must be 
addressed when developing a camera-based system to com-
pete with traditional in-road solutions. Compared to induc-
tion loops, cameras are expected to perform with less accu-
racy, as differing weather and lighting conditions add to the 
complexity of the system. Any roadside installation cover-
ing multiple lanes also needs to account for cases of occlu-
sion, when one vehicle fully or partially obscures another. 
In-road sensors placed beneath each lane are affected by 
neither occlusion nor weather and so performance tends to 
be much more reliable.

However, non-intrusive systems benefit from vastly lower 
installation and maintenance costs. Another advantage of 
camera-based systems over other sensor technology is that 
existing traffic surveillance cameras can be utilised, further 
reducing costs of installation.

The first step for both systems proposed in this paper is 
the detection of vehicles, and wheels for the axle count sys-
tem, from camera footage.

For this purpose, a CNN-based object detector will be 
used. A CNN is a deep neural network which contains a 
number of convolutional layers, in which a small filter is 
passed over an input matrix and dot products are taken at 
each filter location in order to produce the output of the layer 
[13, 17, 26]. This process maintains spatial structure of the 
input, making CNNs well suited to image recognition tasks 
as both simple and complex structures can be identified in 
the image at different layers of the network. Object detection 
refers to a subset of image classifiers in which, instead of 

predicting a class for the entire image, the classes and loca-
tions of objects within the image are identified by the model. 
These models should be capable of identifying any number 
of objects at various scales and in various poses.

In 2014 Girshick et al. presented R-CNN [10], a network 
in which region proposals are produced using the selective 
search algorithm [28]. The primary network computes fea-
tures, leading to a classification for each region of interest. 
R-CNN was able to outperform other existing systems at 
the time of publication in terms of accuracy but it is slow 
to train and test and memory usage is high. Following the 
publication of R-CNN, considerable research has been car-
ried out into the use of CNNs to detect and classify objects 
in images.

Fast R-CNN [9] attempted to improve on the efficiency 
of its predecessor by running the entire input image through 
several convolutional layers, then projecting the region pro-
posals onto the convolutional feature map produced. Faster 
R-CNN [23] uses a Region Proposal Network (RPN) which 
shares convolutional features with the detection network in 
order to further improve speed performance of the network.

Whilst R-CNN was initially designed for accuracy and 
then optimised for speed, other networks were primarily 
designed for speed. One such network is YOLO (You Only 
Look Once) [22]. When YOLO performs detections, the 
input image is divided into a grid and each grid cell predicts 
boundary boxes, with confidence scores representing likeli-
hood of the box containing an object and how accurate the 
box shape and position is expected to be. YOLO is capable 
of real-time performance but with poor accuracy when com-
pared to Faster R-CNN. Versions of YOLO with improved 
accuracy were proposed in YOLOv2 [20] and YOLOv3 [21].

The industrial application of this work requires real-time 
performance. Therefore, YOLOv3 was used for the task of 
object detection. Two separate instances of the YOLOv3 
network were trained for use with each of the two systems 
proposed.

2  Theory

2.1  Camera Classification

A key challenge for camera-based vehicle classification 
which does not affect in-road systems is the issue of par-
tial or full occlusion of vehicles. This has an impact on any 
camera-based classification system but is especially prob-
lematic for axle detection as, in addition to the distortion of 
the shape of partially occluded vehicles, in many cases some 
or all wheels will be fully occluded. The nature of this issue 
means that a certain level of error is unavoidable. In the case 
of shape-based classification, vehicles which are entirely 
covered in the image by other vehicles cannot be classified 
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correctly even with a very high-performing network. Simi-
larly, for the case of axle detection, when no axles of the 
vehicle can be seen due to occlusion it is impossible for any 
network to produce a meaningful estimate of axle count.

For the purposes of the axle detection solution presented 
in this paper, any vehicle on which no wheels are visible 
will be considered fully occluded. Any vehicle on which 
only some wheels are visible will be considered partially 
occluded, and any vehicle on which all wheels are visible 
will be considered to not be occluded.

In cases of full occlusion, error is unavoidable and so 
its effects can be ignored when evaluating the accuracy of 
an axle detection system and only considered when decid-
ing whether video-based classification is appropriate for a 
particular application.

The effects of partial occlusion must be considered 
more carefully. For cases of partial occlusion there are two 
approaches available. The first approach would be to instruct 
the model to produce its best estimate of how many axles the 
vehicle has and report that number. Alternatively, the model 
could label that particular vehicle detection as occluded and 
therefore not output any count, removing the possibility of 
presenting incorrect data. Each approach should be carefully 
considered with reference to typical results of the network in 
order to choose the strategy with the likelihood of producing 
the most accurate output.

The issue of partial and full occlusion can also be 
addressed by implementing the system using a camera posi-
tioned at an appropriate height and angle to minimise the 
frequency of these cases. The significance of camera posi-
tion and recommendations for optimal performance will be 
further discussed in Section 4.4.

Another potential issue is the presence of partially visible 
vehicles, those entering or leaving the frame. In some such 
cases not all axles are in frame, making a count of axles for 
these vehicles impossible. Similar considerations of how 
to process these cases could be made. However, when the 

models are run on video footage rather than still frames, 
vehicles should all only be partially visible for a small por-
tion of the time they are present in the video. With an effec-
tive tracking algorithm it should be possible to ensure axle 
counts are predicted only when vehicles are fully visible, 
although this is outside the scope of this paper. Therefore, 
for the purposes of this paper, partially visible vehicles can 
be safely ignored when performing axle counts.

2.2  YOLO

YOLO is a an extremely fast object detection CNN as it 
does not use region proposals. Instead it predicts bounding 
box locations and class probabilities from just one ’look’ at 
an image.

YOLOv3 uses a feature extractor called Darknet-53 [18] 
which consists of 53 convolutional layers, which extract a 
high-level feature map given an input image.

The features learned by the convolutional layers are 
passed to a detection network which predicts the location of 
objects at three different scales. At each scale the image is 
divided into an S × S grid and a set of bounding box predic-
tions is obtained per grid cell, adapted from a predetermined 
set of anchor boxes. The first detection layer produces the 
largest bounding box predictions as the resolution at this 
stage is the lowest. The network then works at a finer resolu-
tion to predict medium sized bounding boxes in the second 
detection layer and the smallest bounding boxes are pre-
dicted in the final detection layer, where the resolution of 
the network is highest. This process is illustrated in Fig. 1.

A bounding box’s position is defined by width, height and 
centre coordinates. For each bounding box an objectness 
score is calculated, representing the likeliness of an object 
being present in the box. Additionally, C class scores are 
predicted, representing the probability that the object present 
belongs to each of C classes.

feature
extractor

convolutional layer
detection layer
upsampling layer

scale 1 scale 2 scale 3

Fig. 1  A simplified diagram of the YOLOv3 detection network, example detections and network layers are displayed for illustration purposes 
only and not shown to scale
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This system of anchors and predictions at different resolu-
tions allows the network to accurately and efficiently locate 
objects of varying sizes in an image.

For an input image of size 416 × 416 pixels, YOLO pre-
dicts a total of 10647 bounding boxes, therefore the output 
must be processed first in order to get a reasonable set of 
results. Initially, the boxes are filtered based on their object-
ness and confidence scores and boxes below a threshold are 
ignored.

Non-maximal suppression is then used to remove multi-
ple detections of the same object. This is implemented by 
selecting the box with the highest score, then removing any 
overlapping boxes. Overlap is determined using intersection 
over union (IOU), which is calculated as the area of overlap 
of two bounding boxes, divided by the total area covered by 
the two boxes.

YOLO is a network designed primarily for speed; bound-
ing box locations and class predictions are all made from a 
single pass through the network and source code is written 
in c for maximum efficiency. This prioritisation of speed 
should be advantageous for meeting the real-time perfor-
mance requirement, making accuracy of detections the pri-
mary consideration when training the networks.

2.3  Tracking

The Kalman filter [16] is a recursive algorithm used to esti-
mate the state of a process using a form of feedback control. 
It is very useful for tracking applications where the aim is to 
predict where an object will next be found. The filter makes 
the assumptions that the model of the process is linear and 
that the noise is white Gaussian.

The filter can be broken down into two steps; predict and 
update. During the predict step the optimal prediction of 
the current state and its expected variance are calculated 
as follows:

where x̂ is the state prediction, P is the estimated uncer-
tainty, k is the current step, A is the state transition matrix, 
B is the control matrix and Q is the noise uncertainty.

After a measurement, the update step combines the values 
and variances of the measurement and predicted state with a 
gain. Kalman gain is computed as:

where K is the gain, H is the observation matrix and R is the 
measurement uncertainty. Computed gain is used to update 
the estimates for state and variance as follows:

(1)x̂−
k
= Ax̂k−1 + Buk

(2)P−
k
= APk−1A

T + Q

(3)Kk = P−
k
HT (HP−

k
HT + R)−1

where zk is the output vector measured at step k.
If the measurement is noisy and has high variance, the 

gain is small and therefore reduces the weight of the meas-
urement value. If the predicted variance is large, the gain 
will be large and so the measurement will be weighted 
heavily.

Here, the Kalman filter uses the bounding boxes predicted 
by the network as the measurements (z) in the update step 
and predicts the location of the corresponding vehicle at the 
next time step (x). By comparing the positions predicted 
by the filter and those predicted by the neural network for 
each time step, it is possible to track the movement of each 
vehicle across multiple frames of a video. Although tracking 
is a necessary component of any video-based classification 
system, a Kalman filter has been implemented only for the 
speed detection system for which tracking is a fundamental 
aspect of operation.

2.4  Camera Calibration

The process of camera calibration is necessary in order to 
determine vehicle speed in real-world units. It is used to 
find the parameters of the pinhole camera model that most 
closely approximate the camera the image was taken with. 
These parameters are represented by the camera projection 
matrix

where K consists of the intrinsic parameters and 
[
R T

]
 cor-

responds to the extrinsic parameters, where R is the rotation 
matrix and T is the translation matrix [32].

The intrinsic parameters are described by the matrix

where r is the aspect ratio, f is the focal length in pixels, 
σ is the skew factor and (u0,v0) are the coordinates of the 
principal point [33]. The skew factor describes the amount 
of shear distortion in the projected image, and the principal 
point is the intersection between the image plane and the 
line that passes through the pinhole of the camera. Often, 
the principal point is assumed to be (0,0), the skew factor is 
assumed to be 0 and the aspect ratio is set to 1, reducing the 
intrinsic parameters to the focal length.

The extrinsic parameters represent the position of the 
camera in the 3D world scene [7]. This is described by the 

(4)x̂k = x̂−
k
+ Kk(zk − Hx̂−

k
)

(5)Pk = (I − KkH)P−
k

(6)P = K
[
R T

]

(7)K =

⎡
⎢⎢⎣

rf � u0
0 f v0
0 0 1

⎤⎥⎥⎦
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translation and rotation of the camera from the origin. Given 
the general camera model in Fig. 2, the horizontal rotation 
is given by the pan angle p, the vertical rotation by the tilt 
angle t, and the rotation along the camera’s optical axis is 
given by the swing angle s. The location of the camera is 
given by the world coordinates (XCAM,YCAM,ZCAM).

Knowledge of the camera matrix allows for coordinates 
in the image plane to be projected onto the 3D world scene 
as shown.

where λ is the scale factor, (x,y) are the coordinates of a 
point on the image plane and (X,Y,Z) are coordinates of the 
corresponding point in the world scene.

The proposed calibration method is based on the 
methods presented by Fung and Yung [8] and He and 
Yung [14], and uses a rectangular pattern from road 
markings to calculate the camera parameters. The 
3D world plane is defined with the X-axis along the 

(8)�
[
x, y, 1

]
=
[
X, Y , Z, 1

]
P

direction of the road, the Y -axis perpendicular to the 
road and the Z-axis perpendicular to the surface of the 
road. It is assumed that the road is straight and f lat 
and that all points on the road are on the Z = 0 plane 
in the 3D world scene. Four points on the road surface 
are selected using the road markings as a reference to 
form a rectangle ABCD with the sides ����⃗AB and �����⃗CD par-
allel to the X-axis and the sides ����⃗AC and �����⃗BD parallel to 
the Y -axis in the world scene. The width and length of 
the rectangle are w and l respectively. This rectangle 
is shown in Fig. 3 as seen in both the image plane and 
the world scene.

The method has the advantage that it can be used to 
calculate all the necessary camera parameters without 
requiring any prior knowledge of the camera setup. 
The method presented by Fung and Yung (FY) calcu-
lates the parameters using the width of the rectangle 
and the two vanishing points which are found from 
the intersection of the parallel lines. However, FY 
suffers from ill-conditioning at pan angles close to 
90 degrees. This is because as the pan angle tends to 
90n degrees, where n ∈ ℤ , the second vanishing point 
tends to infinity as one set of lines becomes paral-
lel in the image scene. He and Yung (HY) propose 
an alternative method to calculate the parameters in 
these cases, using just one vanishing point and the 
width and length of the rectangle. This method cannot 
be used for every case as it suffers from large error 
in certain cases and therefore a combination of the 
methods must be used.

Table 1 presents the three different cases and the cali-
bration method that is most suitable for each. The method 
used in Case 3 is the same as the standard HY method 
but with the labels of the rectangle vertices temporarily 
rotated by 90 degrees, effectively transforming the camera 
by a pan angle of 90 degrees in order to calculate the other 
parameters.

Fig. 2  General camera model (Based on [7])

Fig. 3  Example of road mark-
ings used for calibration (Based 
on [8])

(a) Viewed in the image scene (b) Viewed top down in the 3D world scene
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3  Methods

3.1  Dataset and Evaluation of Cameras

The dataset used to train the speed calculation network 
contains around 15,000 images, randomly sorted into 
training, test and validation sets at a ratio of 7 : 2 : 1. 
All images are labelled with the coordinate positions of 
bounding boxes representing the locations of any vehicles 
within the image. The speed calculation network is trained 
to identify a single class of object, ‘vehicle’.

The axle detection network is trained to identify two 
distinct classes of object in an image, ‘vehicle’ and 
‘wheel’. Due to the necessity of manually labelling wheel 
locations, a smaller dataset was used to train the axle 
detection network. This dataset consists of 3046 total 
labelled images, randomly sorted into a training dataset 
of 2440 images and test and validation datasets of 303 
images each.

All images are frames taken from traffic surveillance 
footage of UK motorways and A-roads, with images from 
three cameras used for the axle detection network and a 
wider range of camera locations for the speed network. 
These images were provided by Q-Free and taken from a 

small selection of existing cameras. This means that the 
data is not entirely representative of the data the network 
is likely to see when in use. When installed at a roadside, 
the camera used will either be an existing camera carefully 
selected for this purpose or a camera specifically installed 
for use with this system.

Video footage was also necessary to evaluate the effec-
tiveness of the speed calculation algorithm. Due to limited 
availability of suitable footage, testing was performed using 
one ten second video clip, as well as videos created from still 
images taken from the image dataset.

A key element of this research is the determination of 
important factors to consider when choosing a camera for 
operation. This is especially important for the axle detection 
model as the system must be capable of identifying small 
objects with a very high accuracy, a challenging task for a 
neural network. Therefore, an evaluation will be performed 
of the suitability of the three cameras selected for the pur-
poses of axle detection. Examples of images from each of 
these three cameras are presented in Fig. 4.

The cameras were chosen to maximise the variety of the 
dataset whilst ensuring only images where wheels can be 
clearly distinguished were used. For example, cameras fac-
ing too directly down a road could not be used as vehicles 
were imaged from the front, with the side view necessary to 
detect axles not visible. Each camera used produced a data-
set with unique challenges to be addressed by the network.

Dataset 1 is the largest of the three, containing 1536 
total images. Adverse weather conditions are seen in many 
of the images from this dataset. This poses additional chal-
lenges for the axle detection network as wheels are often 
not clearly defined. This blurring of the undercarriage of 
vehicles is especially prevalent for lorries, such as the 
example seen in Fig. 4a (top). Individual wheels can only 
be seen in some images as indistinct patches of a different 
shade of grey, posing a significant challenge for the axle 

Table 1  Case selection

Case Pan Angle p (degrees) Calibration 
Method

1 90n + 30 < p < 90n + 60 Fung & Yung (FY)
2 180n + 60 < p < 180n + 120 He & Yung (HY)
3 180n − 30 < p < 180n + 30 HY Rotated  (HY′)
where n ∈ ℤ 

Fig. 4  Example images taken 
from each of the three cameras 
used for axle detection

(a) Dataset 1 (b) Dataset 2 (c) Dataset 3
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detection network. This dataset also features a high density 
of traffic, with partial and full occlusion common and is 
the only dataset taken from a dual carriageway in an urban 
environment.

Dataset 2 contains 1062 images. It is taken from a cam-
era with a wide angle lens. This causes problems for sev-
eral reasons. Firstly, for most of the range in which vehicles 
are visible the wheels are small and thus difficult to detect. 
CNN-based object detectors can struggle in cases where the 
objects to be detected are of substantially different scale and 
so the detection of very small wheels may be difficult to 
achieve. The second issue with the angle of this camera is 
that vehicles close to the camera, in the ideal position for 
wheel detection, are often only partially visible. Clearly this 
makes obtaining an accurate axle count impossible. For this 
dataset the window in which a vehicle is far enough from 
the camera to be fully visible but close enough for wheels 
to be clear and relatively large is very small. This window 
is especially small for longer vehicles which need to pass 
further from the camera before the entire vehicle is visible.

Furthermore, due to the wide angle, significant barrel dis-
tortion can be seen in the images of this dataset. This term 
refers to the effect where straight lines in an image appear 
curved, forming the shape of a barrel [11]. The effects of 
this distortion may impact the performance of the model 
when detecting objects. Figure 4b shows an example where 
the effects of barrel distortion can be clearly seen (top) and 
an example of a vehicle at a distance where wheels are too 
small to be reliably detected (bottom).

Dataset 3 is the only axle detection dataset taken from a 
three-lane road and the only dataset in which only one side 
of the road is visible. It is also the smallest dataset, with only 
448 images. The images are taken from a camera located 
in the central reservation of a motorway and only show the 
leftmost two lanes on one side of the road. The axle detec-
tion model should perform well on this dataset as all vehicles 
are close enough to the camera for wheels to be clear and 
occlusion is less common than in Dataset 1. However, as this 
dataset will only allow the model to classify vehicles in two 
lanes, the use of footage from a similar camera may have 
somewhat limited use for real-world applications.

Another aspect of each dataset which may affect the mod-
el’s success at axle detection is the type of vehicles present. 
Dataset 2 contains a high number of farm vehicles and heavy 
goods vehicles transporting farm equipment whilst Dataset 
3 has a significant number of vehicle transporters carrying 
cars. These types of vehicles may skew the results as the 
network must be able to identify wheels which differ sig-
nificantly in appearance as well as learn to ignore vehicles 
and wheels when being transported but identify them in all 
other situations. In contrast, Dataset 1 contains primarily 
cars, vans, lorries and buses and other vehicle types are 
uncommon.

The validation accuracy across the three datasets was 
used to make some preliminary conclusions as to the key 
factors in deciding whether a particular camera is suitable 
for axle detection. It was found that the effects of the distor-
tion seen in Dataset 2 were significant enough to make this 
camera setup unsuitable. For this reason, model performance 
at axle detection will be evaluated using results across only 
Datasets 1 and 3 as these are taken from cameras found to 
be suitable for the application. The performance across all 
three datasets will be further discussed in Section 4.4 and 
conclusions made about some considerations for appropriate 
camera selection.

3.2  Training

The darknet framework from AlexeyAB [4] was used to con-
figure and train the two networks.

The framework included data augmentation tools, which 
were used to randomly vary the saturation, exposure, hue, 
resolution and aspect ratio of the images, therefore artifi-
cially increasing the size of the dataset. The initial convolu-
tional weights used were pre-trained on Imagenet [19]. The 
three anchor boxes were calculated using k-means clustering 
on the dataset.

Input sizes of 608×608 pixels to train the axle detection 
network and 416×416 pixels to train the speed measurement 
network were chosen. The higher resolution is necessary for 
the axle detection network as the inclusion of a wheel class 
means that smaller objects must be identified in each image 
and for reliable operation it is desirable that these objects are 
represented by as many pixels as possible in the input image.

The models were trained for a total of 4000 iterations for 
the axle detection network and 6000 iterations for the speed 
measurement network. After training, the sets of weights 
with the highest reported mean average precision for the test 
dataset were used to evaluate the accuracy of the networks. 
Mean average precision (mAP) is a standard metric used to 
evaluate the performance of object detection networks. It is 
determined by calculating an average precision (AP) value 
for each class and then taking the mean across all classes 
[15].

All training and evaluation of network performance was 
performed using an Nvidia GTX 1080 with 8GB of VRAM.

3.3  Detection of Axle Counts

The output detections of the axle detection network were 
processed using code written in Python. The script assigns a 
wheel to a vehicle if the centre point of the wheel bounding 
box is within the vehicle bounding box.

In order to ensure that wheels are correctly assigned in the 
case of vehicle bounding boxes overlapping, two measures 
are taken. Before assigning wheels, vehicles are ordered by 
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ascending size as in most cases the further vehicle, to which 
wheels inside both boxes should be assigned, will be smaller. 
In order to account for cases where the more distant vehicle 
is larger, wheels are not assigned to a vehicle if the centre 
point of the wheel is in the top 20% of the vehicle bounding 
box. The measures taken were found to consistently assign 
wheels to the correct vehicle across all three datasets.

A key consideration for processing the output detections 
is the identification of cases of full or partial occlusion. A 
vehicle is considered potentially occluded by the code when 
its bounding box overlaps with that of another vehicle. This 
means that both the occluded vehicle and the vehicle in the 
foreground occluding it will be flagged as occluded. Fur-
thermore, in some cases where the bounding boxes overlap 
there is no actual occlusion taking place. As many vehicles 
are incorrectly flagged as occluded in this manner, there 
is no simple way to ascertain which vehicles are actually 
occluded. Therefore, the approach of simply ignoring any 
vehicles marked as occluded is likely to result in very high 
error rates and so the alternative approach of producing a 
reasonable estimate of axle count for partially occluded vehi-
cles will be followed.

A possible improvement would be to introduce a third 
class when training the network which would identify 
occluded vehicles where not all axles are visible. If this 
model could achieve high accuracy it would be possible to 
ignore all vehicles where occlusion makes an axle count 
impossible or, alternatively, flag those vehicles for which 
the axle count is less reliable due to occlusion. While this 
is a potential avenue for future research, it was decided to 
focus on training the two-class model for the purposes of 
this paper.

A second flag was set in the code to identify vehicles 
which may only be partially visible in the frame. Again, 
knowing for sure whether a particular vehicle is partially 
visible or if it is merely close to the edge of the frame is 
difficult. However, this is a less important issue than that 
of occlusion. When the system runs on a video feed with a 
tracking algorithm in place, the axle count for each vehicle 
can simply be predicted at a point where there is a sufficient 
gap between the vehicle and the edge of the frame. Thus, 
vehicles which are marked as partially visible can be safely 
discounted on the assumption that a prediction with a higher 
confidence would be possible with the vehicle in a different 
position.

The output code should ideally also be able to handle a 
degree of error in the bounding box predictions provided 
by the network. Several features were implemented to aid 
in this. Vehicles with only one axle do not exist. Therefore 
in cases where only one wheel is assigned to a vehicle, that 
vehicle will be predicted to have two axles. This means that 
two-axle vehicles will return a correct axle count provided 
that at least one wheel is detected. This will allow for a 

degree of error in the detection of wheels for these vehicles, 
set two axles as the default return for any vehicle where 
some wheels are detected, and even account for cases of 
partial occlusion in two-axle vehicles.

In order to account for some inaccuracy in the position-
ing of vehicle bounding boxes, wheels which are not ini-
tially assigned to any vehicle will be assigned to the vehi-
cle the shortest horizontal distance away. The risk of this 
approach is that background errors (when an element of the 
background is incorrectly identified as an object) have the 
potential to change a correct axle count to an incorrect one. 
However, one strength of YOLO as an object detector is that 
background errors are relatively rare and so their influence 
on overall accuracy is minimal.

3.4  Camera Calibration

A calibration tool was developed using Python and OpenCV 
[3] to enable the user to easily calibrate a camera for speed 
calculation [12]. It is assumed that the camera is in a fixed 
position and that distortion effects, such as barrel distor-
tion, were negligible. It is also assumed that the road is flat 
and straight, and that the road markings used for calibration 
have parallel features and conform to the government road 
specifications. The dimensions of the road markings on UK 
roads can be found in the Traffic Signs Manual from the 
Department for Transport [2].

The user first selects the vertices of a rectangle ABCD 
by clicking on an image from the camera. The rectangle 
should use road markings for reference as shown in Fig. 3. 
To reduce the user error, the points can be inputted multiple 
times to form an average location for each. The width of the 
rectangle is specified and then the software calculates the 
camera parameters using Fung and Yung’s method (FY). 
The pan angle is then used to check whether the parameters 
should be recalculated using He and Yung’s (HY) method or 
 HY′ with the ABCD labels rotated by 90 degrees as shown in 
Table 1. The camera parameters are then written to file to be 
used by the main program to calculate the speed of vehicles.

3.5  Speed Calculation

The tracking and speed calculations are implemented using 
AlexeyAB’s C++ API [4] and a modified version of his 
C++ example file [12].

Tracking is used to identify each vehicle present in the 
video and associate a list of bounding box locations with 
it. The tracking algorithm used is the OpenCV Kalman 
filter. This standard implementation of the Kalman filter 
did result in some erroneous behavior as the originally 
detected bounding boxes would only be used to update 
the filter during the update step and were then discarded. 
Therefore, the location of the bounding box as predicted 
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by the network was lost and replaced by that predicted by 
the Kalman filter which was less accurate, hence the speed 
measurements were affected. To remedy this behavior, 
rather than changing the API, the Kalman filter predic-
tions were matched to the bounding box predictions of the 
network. For each network predicted box, it was compared 
to every Kalman prediction and a score for each pairing 
was calculated. This score is given by the intersection area 
over the area of the network predicted box. For the pair 
with the highest score the tracking ID from the Kalman 
filter was applied to the corresponding network predicted 
bounding box.

Once the Kalman filter has identified which bounding 
boxes correspond to a particular vehicle, the average speed 
of each vehicle passing the view of the camera can be cal-
culated. Given that each camera only covers a relatively 
short section of road, and that the function of this system is 
to monitor general traffic conditions rather than individual 
vehicles, it is deemed reasonable to assume that all vehicles 
are moving in a straight line and at a constant speed. This 
allows for speed to be simply calculated without the need for 
tracking specific movement on the Z = 0 plane.

In order to calculate speed, the bounding boxes predicted 
must first be converted to a position on the Z = 0 plane. 
To do this, the camera parameters are loaded from the file 
generated by the calibration tool. Then, for each detected 
vehicle, the corner of the bounding box closest to the ground 
plane is selected. The corner coordinates (xq,yq) in the image 
plane are then converted to a set of corresponding coordi-
nates (XQ,YQ) on the Z = 0 plane in the real world scene 
using the following transformations:

where

The first time a new vehicle is detected, its tracking ID, 
initial coordinates (XQ,YQ) and the current frame number 
fq are recorded. Each time the same vehicle is detected, its 
distance d from (XQ,YQ) and the elapsed number of frames 
tf since fq are calculated. Using these, the average speed v of 
the vehicle from when it was first detected is

(9)
XQ =

�sh cos p+

⎡⎢⎢⎢⎣

�sh sin p

sin t

⎤⎥⎥⎥⎦
xq cos t sin s+yq cos t cos s+f sin t

(10)
YQ =

�sh sin p−

⎡⎢⎢⎢⎣

�sh cos p

sin t

⎤⎥⎥⎥⎦
xq cos t sin s+yq cos t cos s+f sin t

,

(11)�s = xq cos s − yq sin s

(12)�s = xq sin s + yq cos s.

where FPS is the frames per second of the video feed.

4  Results and Discussion

4.1  Axle Detection

The neural network for axle detection achieved a mAP 
of 95.14% across Datasets 1 and 3, with a vehicle AP of 
97.50% and a wheel AP of 92.77%, working at a speed of 
20 FPS. Figure 5 contains examples of typical detections 
produced by the axle detection network.

(13)v =
d

tf ⋅
1

FPS

= d ⋅
FPS

tf

(a) Dataset 1

(b) Dataset 3

Fig. 5  Typical output of the axle detection network for validation 
datasets 1 and 3, including both correct and false scenes
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The performance of the model at the task of identify-
ing vehicles is very good, especially considering that cases 
where vehicles are not correctly identified are generally due 
to occlusion or distance of the vehicle from the camera. In 
other words, the model rarely fails to correctly identify vehi-
cles and almost always in cases where obtaining an accurate 
axle count would not be possible even with a correct vehicle 
detection.

The network’s slightly lower accuracy on the task of 
wheel detection is not unexpected. Wheels are simpler, 
smaller and in many cases less distinct in images than vehi-
cles. These factors all combine to make wheels more chal-
lenging for a neural network to reliably detect. However, 
the errors made by the network follow predictable patterns, 
many of which can be accounted for when processing the 
output detections for a final axle count.

An important requirement for the neural network is real 
time speed performance. One feature of the YOLO network 
is that, while training must take place at a fixed input image 
resolution, detections can be performed at a lower resolu-
tion if required. This allows for a fully trained model to 
be adjusted to alter speed and accuracy characteristics at 
test time. Figure 6 shows the speed and accuracy perfor-
mance of the axle detection network for a range of test-time 
resolutions.

At the highest resolution of operation, the network oper-
ates at 19.7 FPS with an mAP of 95.14%. This may be suf-
ficient speed for relatively low quality surveillance camera 
setups. However, the industry standard frame rate for high 
quality video footage is 30 FPS [24]. In the case of opera-
tion using a camera with the standard frame rate it would 
therefore be necessary to reduce the resolution of the net-
work. As can be seen from Fig. 6, a reduction to input width 
and height resolution of 512 pixels is sufficient to increase 
the speed to 32.8 FPS without significantly reducing the 

accuracy of the network. This indicates that real-time per-
formance is feasible for any realistic camera setup. For the 
purposes of this paper, general results are presented using 
the maximum width and height resolution of 608 pixels.

Mean average precision is the standard metric for evalu-
ating the performance of neural networks on object detec-
tion tasks and will be further discussed with relation to 
the different camera setups tested in Section 4.4. For the 
remainder of this section, however, the performance of the 
entire axle-count system will be evaluated using a measure 
of the percentage of vehicles present in the validation dataset 
for which a correct axle count was produced. This is more 
meaningful than mAP when considering the feasibility of 
the system as a whole for real-world implementation as the 
efficacy of the processing of network outputs is taken into 
account in addition to performance of the neural network.

In order to maximise the number of vehicles correctly 
counted, measures were taken to increase the likelihood of 
an accurate count, even when the network did not produce 
accurate bounding boxes.

False positives on background from the neural network 
are rare, and so the most common form of error on two-
axle vehicles is only one wheel being correctly detected. 
As previously discussed, two-axle vehicles will be correctly 
counted whenever at least one wheel is detected thus neu-
tralising this error entirely. Additionally, it was found that 
another frequent error made by the network was identifying 
one too many wheels in the rear section of a six-axle lorry, 
as seen in Fig. 5b (bottom-left). As lorries are the primary 
focus of this system and seven-axle vehicles are extremely 
rare, it was decided to return an axle count of six whenever 
seven axles are assigned to a vehicle.

In the future a more sophisticated system for identify-
ing these false positive wheel detections will be introduced. 
However, at this stage a simple solution which eliminates 
the majority of error is sufficient for a preliminary inves-
tigation into the potential accuracy of the system. By dis-
allowing both one-axle and seven-axle vehicles, the most 
common forms of error in both cars and vans, and lorries 
are eliminated.

It was also necessary to make decisions about which vehi-
cles to include when presenting results in order to effectively 
measure the performance of the system. It was decided that 
the most meaningful metric of success would be the percent-
age of vehicles where a correct axle count is possible which 
were counted correctly by the system.

Vehicles which are partially visible in the frame to the 
extent that not all axles are visible are excluded, as well 
as vehicles which are judged to be too distant for wheel 
detection to be realistic. Thus, only vehicles in the region 
where axle counts would be expected to take place when 
working on a video feed are included. Vehicles which are 
fully occluded are also excluded from the results as these are 
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considered cases of unavoidable error. Results are given for 
both the case where partially occluded vehicles are included 
and the case where they are excluded. The comparison of 
results in these two cases will aid in understanding the 
significance of partial occlusion as an issue, and allow an 
informed decision to be made as to the importance of further 
work in improving the performance of the network in cases 
of occlusion.

The model achieved a correct axle count on 91.6% of 
vehicles across Datasets 1 and 3 when partially occluded 
vehicles were included and 93.3% when they were excluded. 
Table 2 shows the full breakdown of results, with results 
divided by true axle count of the vehicle included.

The significance of cases of partial occlusion can clearly 
be seen here. Across both datasets the inclusion of partially 
occluded vehicles corresponded to a roughly 2% decrease 
in overall accuracy.

Table 3 shows the number of vehicles with each axle 
count present in each dataset.

The distribution of vehicle types across Dataset 1 is a 
significant issue. Two-axle vehicles made up 98% of the 
vehicles present in the validation set. This is likely due to 
the location of the camera, in an urban area where vehicles 
with more than two axles are rare. This extremely uneven 
distribution also raises the possibility that, in a similar urban 
environment, the axle-count network may not add significant 
value to the base vehicle classification system.

The results for Dataset 3 are somewhat limited by the 
small sample size but performance across this dataset is 
extremely promising. Only three of the 45 vehicles pre-
sent in the validation set were incorrectly identified. Two 

are presented in Fig. 5b: one six axle vehicle (top-right) 
is occluded to the extent that only three axles are visible 
and the only four-axle vehicle in the validation set (bot-
tom-right) is a vehicle transporter on which a wheel of 
a vehicle being transported has been detected. Both of 
these are cases where some error is expected. The final 
incorrectly counted vehicle was a seven-axle vehicle. As 
explained above, it was decided that error when encounter-
ing rare seven-axle vehicles is acceptable if it allows for 
the reduction of error when identifying six-axle vehicles. 
Across this dataset, every non-occluded six-axle vehicle 
was correctly identified, including those such as the exam-
ple shown in Figure 5b (bottom-left) where there is error 
in the neural network output.

4.2  Tracking

The Kalman filter successfully tracked vehicles across the 
video frame in most cases. However, periods of occlusion 
caused issues as the filter would not recognise the object 
again. This issue was most prevalent during periods of 
dense traffic. Measures can be taken to reduce the effects 
of occlusion by carefully selecting the camera position. 
The higher the camera is installed, the less occlusion will 
occur. The camera angle relative to the direction of the 
road will also have an effect. The closer the camera is to 
being perpendicular to the road, the more vehicles will 
obstruct those in other lanes. The closer the camera is to 
being parallel to the road, the more likely that vehicles are 
obstructing vehicles in the same lane. Having the camera 
close to parallel would also mean that the vehicles would 
rapidly reduce in size, because the vanishing point would 
be closer. Therefore the size of the region where cars are 
successfully detected is reduced. For these camera angles, 
the Kalman filter caused some vehicle identities to jump 
across the road nearer the vanishing point. However, this 
was easily remedied by cropping out the other side of the 
road.

In this work, the Kalman filter was only implemented 
for use with the speed calculation model, however there 
is great potential for improvements in the accuracy of the 
axle detection model through the implementation of a 
tracking algorithm.

Table 2  Percentage of vehicles of each axle count in validation sets 1 
and 3 where predicted axle count is accurate

Partially 
Occluded 
Vehicles

Number of Axles

2 3-5 6-7 All

Dataset 1 Included 91.8% 60.0% 100% 91.3%
Excluded 93.5% 60.0% 100% 93.0%

Dataset 3 Included 100% 0.0% 85.7% 93.3%
Excluded 100% 0.0% 92.3% 95.5%

Datasets Included 92.6% 50.0% 92.9% 91.6%
1 and 3 Excluded 94.2% 50.0% 100% 93.3%

Table 3  Number of vehicles 
of each axle count present in 
validation datasets 1 and 3

Number of Axles

2 3 4 5 6 7 All

Dataset 1 293 3 1 1 1 0 299
Dataset 3 30 0 1 0 13 1 45
Datasets 1 and 3 323 3 2 1 14 1 344
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4.3  Vehicle Speed

The evaluation of the accuracy of the calculated vehicle 
speeds is unfortunately limited by the lack of available 
ground truth speed measurements to use for calibration and 
evaluation of results. This work, therefore, represents a proof 
of concept; the development of a functional system which 
returns results typical of the types of roads being monitored 
but which would likely require some tuning using reliable 
speed measurements in order to guarantee high accuracy.

The calculated speeds were consistently in the region of 
expected speeds for the road and vehicle class. The speed 
measurements for vehicles in the overtaking lanes were 
faster than for the vehicles in the slow lane, as expected. 
This can be seen in the two frames from the video output in 
Fig. 7. Vehicle 9 is in the fast lane and traveling faster than 
vehicles 7 and 8. All three vehicles are also traveling close 
to 70mph which is expected for this type of road.

The neural network trained for the speed estimation 
model achieved an mAP of 98% at the single feature detec-
tion task. Combined with effective tracking of vehicles 
across multiple video frames using the Kalman filter, error 
due to incorrect output from the neural network could be 
effectively eliminated.

The camera calibration method was accurate, however, 
it relied on knowing the accurate dimensions of the road 
markings. Occasionally the road markings deviated from 
the government road specifications and in these cases the 
speed measurements were all uniformly affected due to the 
constant calibration error. The camera calibration was also 
only valid for short periods of time, as the video was not 
taken with a tripod and therefore the camera was not in a 
truly fixed position.

Using the corner of the bounding box closest to the road 
surface did not result in the most accurate solution. This 
is because YOLOv3 best predicts the bounding box center 
and only fits the box shape using an anchor box, resulting 
in loosely fitting bounding boxes. Therefore, the corner of 
the box was never perfectly on the Z = 0 plane in the world 
scene. The corner of the bounding box would also remain 

relatively stationary while the object was coming into view 
at the edge of the frame. This would result in errors in the 
average speed.

For a network size of 416×]416, using a HD 1920 × 
1080px video as input, the model reached a peak speed of 
36 FPS whilst both displaying the output detection as a video 
stream and performing the tracking and speed calculations. 
Using the road markings, the length of the road visible in 
Fig. 7 can be estimated to be 60m. Therefore, a vehicle trave-
ling at 70mph will cross the video frame in just under two 
seconds and will be captured by the camera in approximately 
60 frames.

As the model’s speed is faster than the video’s 30 FPS, 
all occurrences of the vehicle will be used. For calculating 
the vehicle speed, an absolute minimum of two occurrences, 
or just over 1 FPS, is necessary. However, this would not be 
sufficient to track the vehicle, which is necessary to calcu-
late the speed. Therefore, the more occurrences the better 
and currently the model is using the maximum number of 
captures as it is running faster than the camera.

For real-time application, the network would be running 
on less powerful hardware. However, the model would not 
be required to display the output as a video stream, which 
would further increase the computational performance. 
Therefore, the network shows very strong potential to per-
form at the speeds required for real-time application.

4.4  Investigation into Appropriate Camera 
Selection for Axle Detection

Average precision values for the axle detection network 
across each of the three validation datasets are presented 
in Table 4.

It can be seen that vehicle AP is fairly consistent across 
all three datasets whereas wheel AP varies considerably. 
Whilst Datasets 1 and 3 return high values for wheel AP 
of 92.04% and 95.05% respectively, model performance on 
Dataset 2 is considerably poorer, with only 73.51% wheel 
AP achieved.

Fig. 7  Two successive captures 
from the video output

(a) Frame 50 (b) Frame 77, approximately one second later
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As outlined previously, images taken from some cameras 
could be immediately discounted due to camera angles at 
which wheels are not clearly visible. A more thorough and 
systematic investigation of the significance of camera posi-
tioning and angles could be pursued to identify the ideal 
setup for axle detection. However, this would require the 
compilation of a labelled dataset containing images from a 
high number of cameras, with factors such as camera posi-
tion relative to the road and camera yaw and pitch angles, 
varied in order to provide meaningful results related to the 
specific setup. Such an investigation is outside the scope of 
this paper but is a potential avenue for future research.

In this study, evaluation of model performance across the 
three datasets has revealed some more subtle factors which 
should be considered and a general approach is outlined for 
the selection of an appropriate camera for use with the axle-
detection system.

The poor performance of the model on Dataset 2 suggests 
that the effects of barrel distortion are more significant than 
initially expected. Detections run on this dataset showed 
that in many cases wheels which were perfectly clear to the 
human observer were not identified by the model. In con-
trast, across Datasets 1 and 3 wheel detections were inac-
curate primarily in cases where wheels were small, unclear, 
blurred or close together and so detection could be reason-
ably expected to be more challenging.

Further work would be necessary in order to investigate 
the possibility of limiting the impact of barrel distortion, 
through the means of additional data augmentation tech-
niques or further training with more distorted data. However, 
at this stage in the research it is simply recommended to 
choose cameras which do not display barrel distortion in 
order to ensure optimal performance of the axle detection 
network.

It was decided that both Dataset 1 and Dataset 3 were 
suitable for this application. However, slight differences in 
performance can be observed between the two sets. One key 
reason for this is weather conditions. Dataset 3 contains only 
images taken in clear weather, whereas Dataset 1 contains 
some images taken in sunny conditions and others where 
rain severely impacts visibility. Table 5 shows the average 
precision values for Dataset 1 when data is segregated by 
weather conditions.

As can be seen, the impact of weather on the accurate 
detections of wheels is significant. In wet conditions spray 
from the road surface can partially obscure the underside of 
vehicles, making distinction of individual wheels more dif-
ficult. Figure 5a (bottom) shows examples of similar three-
axle vehicles in similar positions but different weather con-
ditions, where the image taken in wet conditions (left) was 
not correctly labelled and the image taken in sunny condi-
tions (right) was. From these images it can be clearly seen 
that even slight changes in weather conditions can have a 
significant impact on model performance.

Although there is no data available with other forms of 
adverse weather present, it can be assumed that other con-
ditions which affect visibility, such as fog or snow, would 
cause similar issues. This is one of the major disadvantages 
of video-based classification as the effects of reduced vis-
ibility can be extremely difficult to overcome. Any potential 
user of the axle detection system should be informed that 
performance is likely to suffer slightly in adverse weather 
conditions. However, the output processing of the wheel 
detections produced by the network has been shown to allow 
for a degree of inaccuracy from the network, demonstrated 
by the consistently high percentage of vehicles across Data-
sets 1 and 3 for which an accurate axle count was returned. 
Additionally, the impact of rain on the task of vehicle detec-
tion was found to be minimal and so it can be expected that 
the performance of the speed detection system will not be 
severely impacted by adverse weather conditions.

Another key difference between Dataset 1 and Dataset 
3 is the number of partially or fully occluded vehicles. In 
Dataset 1, 18.4% of vehicles visible in the validation set are 
occluded heavily enough that at least one wheel is not vis-
ible, compared to only 2.2% for Dataset 3. This difference 
is caused by two factors.

Firstly, Dataset 1 is taken from an urban dual carriage-
way on which there is relatively heavy traffic. Dataset 3, 
in contrast, is taken from a motorway camera and traffic is 
lighter. Road type is not a factor which can necessarily be 
accounted for when selecting a location for this system as 
town councils are likely to desire data from specific roads 
and traffic flow clearly cannot be controlled.

The second factor causing more significant occlusion in 
Dataset 1 is the height at which the camera is installed. The 
camera used for Dataset 1 is relatively low down. While this 
does provide some advantages as vehicles are seen from a 

Table 4  Measures of bounding box prediction accuracy for the axle 
detection network across each validation dataset

Vehicle AP Wheel AP mAP

Dataset 1 97.25% 92.04% 94.65%
Dataset 2 98.53% 73.51% 86.02%
Dataset 3 97.80% 95.05% 96.42%
Datasets 1 and 3 97.50% 92.77% 95.14%

Table 5  Measures of bounding box prediction accuracy of the axle 
detection network for dataset 1 under different weather conditions

Vehicle AP Wheel AP mAP

Clear 97.26% 97.42% 97.34%
Rain 97.04% 91.38% 94.21%
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view which is fairly close to side-on, giving a good view 
of wheels, it also means that many vehicles are directly 
between the camera and other vehicles.

The higher positioning of the camera for Dataset 3 
means that more of the top of vehicles is visible and less 
of the sides. However, it means that vehicles must be closer 
together and large for occlusion to occur. The height at 
which cameras are installed is a factor which can be con-
trolled to an extent. When choosing a camera for use with 
this system, increased elevation is desirable provided that 
wheels are still clearly visible.

However, it is important to note that the inclusion of par-
tially occluded vehicles had similar impact on overall model 
accuracy for both datasets despite the discrepancy in number 
of occluded vehicles present. This is likely due to the fact 
that the majority of occluded vehicles in Dataset 1 have two 
axles and two-axle vehicles can be correctly identified even 
when partially occluded. In contrast, a higher proportion of 
partially occluded vehicles in Dataset 3 have more than two 
axles and so cannot be correctly identified unless all axles 
are visible. Thus, it is reasonable to conclude that partial 
occlusion is a less severe issue on roads where two-axle 
vehicles are more common and so a lower mounted camera 
may indeed be appropriate in urban areas similar to that of 
camera 1 where many-axled vehicles are uncommon.

5  Conclusions

In summary, the axle detection system proposed in this 
paper produced an accurate axle count for 93.3% of vehi-
cles in which all axles are visible, with superior performance 
demonstrated based on well chosen camera placement. The 
system is capable of real-time operation, with a minimum 
speed of 19.7 FPS and speeds exceeding 30 FPS achieved 
without significant impact on accuracy when operating at a 
lower resolution.

The speed detection model achieved very high accuracy 
for the task of object detection with 98% mAP. The system is 
capable of real-time operation, with the model being able to 
keep up with a 30 FPS video and calculated speeds were in 
the region of expected speeds for the road and vehicle type.

The systems presented in this paper represent early pro-
totypes of the final solutions envisaged, with significant 
further work required to produce fully operational modules.

Operating the axle detection system on video footage 
using a tracking algorithm will allow for several potential 
improvements in terms of accuracy. If the section of a frame 
in which wheels are most clearly visible can be identified 
for each camera, detections can take place only for vehicles 
in this section. This will reduce error as axles are counted 
only when the vehicle is in the ideal position for detection. 
Further improvements could be made by averaging the axle 

count for every frame in which the vehicle is in the detec-
tion zone in order to account for random error in detection.

To improve the tracking for the speed calculation system, 
the Deep SORT algorithm [29] should be used. By including 
the object features, occluded objects would be tracked much 
more successfully.

The camera calibration method is very good in principle. 
However, its accuracy relies on the road markings and this 
is not reliable in practice as they do not always conform to 
the government road specifications. The calibration method 
presented by Sochor et al. [25] shows promise, as it is fully 
automatic, requires no user input and does not rely on any 
reference markers.

To improve the accuracy of the speed measurements, 3D 
bounding boxes should be used. The center of the ground 
plane of the 3D bounding box would be a much more accu-
rate marker than the corner of the 2D bounding box that 
is closest to the Z = 0 plane. Using 3D boxes would also 
open up the possibility of being able to output the size of 
the object without much additional effort. The accuracy of 
the model should also be investigated using ground truth 
speed data.
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