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A B S T R A C T 

We present a new catalogue of distances and peculiar velocities (PVs) of 34 059 early-type galaxies derived from fundamental 
plane (FP) measurements using data from the Sloan Digital Sk y Surv e y (SDSS). This 7016 deg 

2 homogeneous sample comprises 
the largest set of PVs produced to date and extends the reach of PV surv e ys up to a redshift limit of z = 0.1. Our SDSS-based FP 

distance measurements have a mean uncertainty of 23 per cent. Alongside the data, we produce an ensemble of 2048 mock galaxy 

catalogues that reproduce the data selection function, and are used to validate our fitting pipelines and check for systematic 
errors. We unco v er a significant trend between group richness and mean surface brightness within the sample, which may hint 
at an environmental dependence within the FP or the presence of unresolved systematics, and can result in biased PVs. This is 
remo v ed by using multiple FP fits as function of group richness, a procedure made tractable through a new analytic deri v ation 

for the integral of a three-dimensional (3D) Gaussian o v er non-trivial limits. Our catalogue is calibrated to the zero-point of the 
CosmicFlows-III sample with an uncertainty of 0.004 dex (not including cosmic variance or the error within CosmicFlows-III 
itself), which is validated using independent cross-checks with the predicted zero-point from the 2M ++ reconstruction of 
our local velocity field. Finally, as an example of what is possible with our new catalogue, we obtain preliminary bulk flow 

measurements up to a depth of 135 h 

−1 Mpc . We find a slightly larger-than-expected bulk flow at high redshift, although this 
could be caused by the presence of the Shapley supercluster, which lies outside the SDSS PV footprint. 

Key words: catalogues – galaxies: distances and redshifts – galaxies: elliptical and lenticular, cD – galaxies: fundamental 
parameters – galaxies: statistics – cosmology: observations. 

1

G  

T
m
o
p
a
a
t
a

 

m
h  

U
(  

F
s
F

�

(  

t
 

a  

i  

g  

t

T
∼  

s
I
(  

p
f
r
a
t
o  

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/1/953/6611706 by guest on 23 August 2022
 I N T RO D U C T I O N  

alaxies are receding from us due to the expansion of the Universe.
he observed relation between galaxy recession velocity and co- 
oving distance is called the Hubble–Lema ̂ ıtre law. The variation 

f any galaxy’s observed velocity from its recession is called galaxy 
eculiar velocity (PV). The main cause of PVs are the gravitational 
ttraction of the growing large-scale structures (LSSs). Hence, robust 
nd accurate measurements of local PVs are essential for inferring 
he Hubble–Lema ̂ ıtre law and additionally allow for cosmography 
nd precise cosmological studies of gravity in the local Universe. 

The PV of a galaxy can be derived if one can independently
easure both its distance and redshift. Several distance indicators 

av e been dev eloped that enable the mapping of PVs in the local
ni verse. Well-kno wn examples include Cepheid variable stars 

Leavitt & Pickering 1912 ), the tip of the red giant branch (Lee,
reedman & Madore 1993 ), Type Ia supernovae (Phillips 1993 ), 
urface brightness fluctuations (Tonry & Schneider 1988 ), the Tully–
isher relation (TF) (Tully & Fisher 1977 ), the Fundamental Plane 
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FP) (Djorgovski & Davis 1987 ; Dressler et al. 1987 ), and gravita-
ional waves (Holz & Hughes 2005 ). 

Each distance indicator has its own limitations; TF and FP galaxies
re relatively abundant and easy to measure, and so far are the only
ndicators that have been used to derive distances for thousands of
alaxies. Ho we ver, this comes at the cost of large intrinsic scatter in
heir empirical relationships and so large distance uncertainties. 

The current largest individual PV samples are the Cosmicflows-IV 

ully–Fisher catalogue (CF4-TF; Kourkchi et al. 2020 ) containing 
9800 objects, and the FP-based 6-degree Field Galaxy Surv e y PV

ample (6dFGSv; Springob et al. 2014 ), containing ∼8800 objects. 
n addition to these individual catalogues, the Cosmicflows project 
Tully et al. 2008 , 2013 ; Tully, Courtois & Sorce 2016 ) aims to
rovide a single comprehensive collection of distance measurements 
rom all of the aforementioned distance indicators. The most recently 
eleased iteration, Cosmicflows-III (Tully et al. 2016 ), contains 
lmost 18 000 galaxies with distance measurements, with progress 
owards enlarging this substantially (as evident by the recent release 
f the CF4-TF subsample referenced abo v e). Most pre vious ef forts,
ncluding the abo v e cases, hav e focused on the z < 0.05 univ erse,
s this nearby regime is where the FP and TF methods, with large
ncertainties that increase with distance, are most useful. 
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 permits unrestricted reuse, distribution, and reproduction in any medium, 

http://orcid.org/0000-0002-1081-9410
http://orcid.org/0000-0002-1809-6325
http://orcid.org/0000-0002-9748-961X
http://orcid.org/0000-0001-9552-8075
http://orcid.org/0000-0002-4213-8783
mailto:c.howlett@uq.edu.au
http://creativecommonsorg/licenses/by/4.0/


954 C. Howlett et al. 

M

 

a  

c  

1  

W  

m  

f  

r  

s  

r  

t  

S  

2  

2  

P  

(
 

t  

G  

v  

W  

2  

Q  

v  

A  

H  

B  

t  

r  

B  

e  

V  

P  

f  

f  

2
 

6  

(  

d  

t  

t  

t  

t  

z  

t  

r  

t  

c  

h  

t
 

f  

a  

o  

a  

c  

a  

e  

p
 

S  

F  

Table 1. Selection criteria applied to SDSS data to create the SDSS PV 

catalogue. Each row summarizes a different selection criterion, references the 
section of the text where it is described, and gives the number of remaining 
galaxies in the sample after this selection has been applied. 

Selection Ref. # remaining 

GALAXY with ZWARN = 0 Section 2.1 (i) 403 789 
Magnitude in range 10 . 0 ≤ m r ≤ 17 . 0 Section 2.1 (ii) 287 974 
Redshift range 0.0033 ≤ z ≤ 0.1 Section 2.1 (iii) 242 419 
de Vaucouleurs profile Section 2.1 (iv) 124 050 
Concentration index r 90 /r 50 > 2 . 5 Section 2.1 (v) 109 614 
Axial ratio b/a > 0 . 3 Section 2.1 (vi) 102 747 
Within the contiguous NGC area Section 2.1 (vii) 87 002 
H α EW < 1 Å Section 2.1 (viii) 45 716 
g − r colour cut Section 2.1 (ix) 43 226 
Velocity dispersion cut Section 2.1 (x) 42 170 
No spirals or visual inspection rejects Section 2.4 34 562 
No FP outliers Section 4.2 34 059 
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1 Available here: https:// www.sdss.org/dr12/ spectro/ galaxy portsmouth/ 
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PV catalogues have formed the backbone for many science
pplications o v er the years. In the 1990s, they were primarily used to
onstrain �m and linear galaxy bias b (Willick et al. 1997 ; Sigad et al.
998 ). Ho we ver, as discussed comprehensi vely in Davis, Nusser &
illick ( 1996 ), there were inconsistencies between the velocity fields
easured by PV surv e ys and predicted by redshift surv e ys; arising

rom a combination of sparseness in the redshift surv e ys at high
edshift, angular incompleteness in the PV surv e ys, and potential
ystematics in the estimation and calibration of the PVs. More
ecently, the advent of large surveys of nearby galaxies, such as
he 2MASS Redshift Surv e y (Huchra et al. 2012 ), Sloan Digital Sky
urv e y (SDSS) (York et al. 2000 ), 6dF Galaxy Surv e y (Jones et al.
004 ), and the Arecibo Le gac y F ast ALFA Surv e y (Gio vanelli et al.
005 ), has enabled the creation of large, homogeneous redshift and
V samples. These samples have demonstrated better consistency
e.g. Davis et al. 2011 ). 

Studies using PVs have hence seen a resurgence, including in
he areas of cosmography (Springob et al. 2014 ; Tully et al. 2014 ;
raziani et al. 2019 ), measurements of the bulk flow and low-order
elocity moments (Watkins, Feldman & Hudson 2009 ; Feldman,
atkins & Hudson 2010 ; Nusser & Davis 2011 ; Ma & Scott

013 ; Scrimgeour et al. 2016 ; Qin et al. 2018 , 2019a ; Qin 2021 ;
in et al. 2021 ); testing � CDM and General Relativity via the
elocity correlation function or power spectrum (Johnson et al. 2014 ;
dams & Blake 2017 ; Howlett et al. 2017 ; Huterer et al. 2017 ;
o wlett 2019 ; Qin, Ho wlett & Stav ele y-Smith 2019b ; Adams &
lake 2020 ); and fitting cosmological parameters and the external

idal field using reconstructions of the velocity field from galaxy
edshifts (Carrick et al. (Carrick et al. 2015 ; Said et al. 2020 ;
oruah, Hudson & Lavaux 2020b ; Lilow & Nusser 2021 ; Stahl
t al. 2021 ). Furthermore, in the era of the Hubble tension (e.g.
erde, Treu & Riess 2019 ), the importance of robust and accurate
V measurements for correcting low-redshift distance measurements
rom Type Ia supernovae and gravitational waves has come to the
orefront (Scolnic et al. 2014 ; Guidorzi et al. 2017 ; Howlett & Davis
020 ; Boruah, Hudson & Lavaux 2020a ). 
In this paper, we capitalize on these pre vious ef forts, particularly

dFGSv and its predecessors EFAR (Wegner et al. 1996 ), SMAC
Hudson et al. 1999 ), and ENEAR (da Costa et al. 2000 ), to provide
istances and PVs for more than 30 000 early-type galaxies using
he FP relation and data from SDSS. This catalogue is ∼3 × larger
han either the 6dFGSv or the CF4-TF catalogue, and also larger
han the full ensemble of distances in Cosmicflows-III. The size of
his catalogue is in large part due to our inclusion of galaxies up to
 = 0.1, which extends the reach of our new measurements beyond
hose typically produced with the FP or TF relationships and into a
egion of the Universe that will likely be of increasing interest over
he coming years. Compared to previous measurements, our new
atalogue is limited to a relatively small sky area ( ∼7000 deg 2 ), but
as a substantially higher number density than other catalogues in
he same redshift regime. 

As a by-product of this work (specifically, of testing our pipeline
or converting the SDSS measurements to PVs), we also provide
 suite of 2048 highly realistic and well-calibrated simulations
f the SDSS PV catalogue. In combination with the data, these
dd significant value for future uses of this work, including for
osmological measurements, characterizing the local velocity field;
nd in understanding potential sources of statistical and systematic
rrors. The PV catalogue, input data, simulations, and associated data
roducts are all publicly available (see Data Availability). 
This paper is organized as follows: We describe the data in

ection 2 . In Section 3 we present the mock catalogues. Fitting the
P parameters is presented in Section 4 , while fitting the distances is
NRAS 515, 953–976 (2022) 
resented in Section 5 . In Section 6 , we provide an example use of the
ata and simulations by measuring the bulk flow of the catalogue. We
onclude in Section 7 . Finally, the Appendices provide information
n a useful straight-line fitting package we have created for data with
rrors on x and y , followed by some mathematical results simplifying
he application of a 3D Gaussian model for the FP. Unless otherwise
tated, in this paper, we assume a flat � CDM cosmological model
ith �m 

= 0.31 and H 0 = 100 h km s −1 Mpc −1 . All uses of ‘log’
hould be taken to mean logarithms taken to the base 10. 

 SDSS  DATA  

.1 Primary selection criteria 

he SDSS PV catalogue presented here is based on FP data presented
n Said et al. ( 2020 ), which was in turn extracted from imaging and
pectra provided with the SDSS Data Release 14 (DR14; Abolfathi
t al. 2018 ). 

As well as the baseline selection imposed on the SDSS data (which
s complete for extended sources at r -band Petrosian magnitudes
ess than 17.7), we apply a number of additional selection criteria.
hese again align closely with Said et al. ( 2020 ), although there are
ome differences, and so our full set of criteria are described below.
hese criteria are designed to isolate dispersion-supported, early-

ype galaxies with no evidence of recent star formation and robustly
easured z < 0.1 redshifts. We also make use of existing H α mea-

urements and velocity dispersions from the Portsmouth groups DR8
nd DR12 catalogues (Thomas et al. 2013 ). 1 By cross-matching with
he Portsmouth DR8 and DR12 catalogues we have stellar velocity
ispersions σ , uncorrected for fibre aperture effects. The numbers
f galaxies remaining after each successive selection criterion are
ummarized in Table 1 . Our selection criteria are as follows: 

(i) objects spectroscopically classified as GALAXY with redshift
arning flag ZWARN = 0 (i.e. no known problems); 
(ii) de Vaucouleurs magnitude in the SDSS r band in the range

0 . 0 ≤ m r ≤ 17 . 0; 
(iii) CMB-frame redshift range 0.0033 ≤ z ≤ 0.1; 
(iv) likelihood of the surface brightness profile fit with the de Vau-

ouleurs model is higher than with the exponential model in both i
nd r bands; 

(v) concentration index r 90 / r 50 in i and r bands greater than 2.5; 

https://www.sdss.org/dr12/spectro/galaxy_portsmouth/
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Figure 1. Extinction and k -corrected g − r colour versus r -band absolute magnitude for the SDSS PV catalogue in four different redshift bins. Hexbins and 
contours show the density of galaxies in the colour–magnitude space, while red points are averages in bins of absolute magnitude. Red lines show the fits to 
these points in the lowest three redshift bins, while the black line is the fit to the highest redshift bin, replicated in each of the panels. The dashed-line shows the 
colour-cut we apply to isolate red objects for our catalogue. The typical galaxy colours are extremely uniform across the entire redshift range of our sample, 
with a comparable slope between the red and black lines in all redshift bins and a maximum difference of ∼0.01 mag. Also of note is the clear impact of our 
apparent magnitude limit at higher redshifts, a selection effect that is accounted for when fitting the FP and reco v ering PVs. 
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(vi) axial ratio b / a greater than 0.3 (relatively face-on galaxies) in
 and r bands; 

(vii) within the SDSS North Galactic Cap contiguous area; 
(viii) H α measurements from the Portsmouth DR8 or DR12 

atalogues with equi v alent width < 1 Å; 
(ix) g − r colours in the range 0.63 − 0.02( M r + 20) ≤ g − r
1.03 − 0.02( M r + 20) (inspired by Masters, Springob & Huchra 

008 ); and 
(x) stellar velocity dispersion greater than 70 km s −1 (the SDSS 

pectral resolution limit) and less than 420 km s −1 (which remo v es
bjects with spurious measurements). 

Table 1 shows that the selection criteria that remo v e the largest
roportions of galaxies are the faint magnitude limit, the redshift 
ange, the requirement that a de Vaucouleurs profile is more likely 
han an exponential profile, and the lack of detectable H α. The

agnitude limit ensures that the later photometric properties we 
elect on are robust and trustworthy, while the maximum redshift 
emo v es objects that, even if they were on the FP, would have such
arge distance errors and such a high chance of introducing systematic 
ias (which is exacerbated as the redshift increases) that we do not
eel they are worth including. The cuts on profile likelihood and H α

re crucial and required to ensure that the galaxies in our sample are
 clean and representative set of early-type galaxies that are expected 
o be on the FP. As we will show in the next section, our selection
riteria are largely, but not perfectly, successful in reco v ering low- z 
arly-type galaxies, and we implement a further visual classification 
see Section 2.4 ) to remo v e remaining interloping spirals. 

We have critically e v aluated all the cuts listed abo v e and ensured
he y are e xtremely uniform in terms of the redshift distribution of
bjects they remove, especially the H α EW cut, the g − r colour
ut, and the visual inspection described in Section 2.4 . An example
the colour–magnitude diagram) is shown in Fig. 1 . This is relevant
ecause, in the course of this work, we found that small changes
i.e. 0.05 mag) in the galaxy properties with redshift can cause
arge (several hundred km s −1 ) biases in the average PV of objects
t the high redshift end of our sample. Previous works, limited
o lower redshift, have rightly assumed or demonstrated that such 
hanges are small enough not to cause a bias in their PVs. Ho we ver,
hotometric or spectroscopic systematics that would have previously 
een negligible are no longer so when we approach z = 0.1. 

.2 The FP input parameters 

ollowing our primary selection criteria presented in the previous 
ection, we have a number of SDSS photometric and spectroscopic 
easurements available for each of our galaxies. These include the 

 -band scale radius, r deV , magnitude m 

deV 
r , and axial ratio ( b / a ), all

btained from de Vaucouleurs profile fits to the SDSS photometry. 
MNRAS 515, 953–976 (2022) 
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3 As detailed here: https:// www.sdss.org/dr12/ spectro/ spectro basics/ . 
4 This equation differs slightly from that in Springob et al. ( 2014 ), which 
includes an additional factor log (1 + ̄z ) − log (1 + z group ). Ho we ver, this 
factor arises due to a common misconception in the conversion from angular 
diameter distance (which is proportional to the difference in ef fecti ve radii) 
to comoving distance. Although r is a physical size, as pointed out in 
Calcino & Davis ( 2017 ), the conversion from comoving distance to luminosity 
or angular diameter distance al w ays depends on heliocentric redshift, even 
when estimating the comoving distance from a distance indicator. As a 
result, the additional factor included by Springob et al. ( 2014 ) actually 
v anishes. Fortunately, the ef fect of incorrectly including this term only 
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e also have the de Vaucouleurs g -band magnitude, from which
e construct g − r colours and r -band Galactic extinctions A r 

Schlafly & Finkbeiner 2011 ). From the spectroscopy, we have
eliocentric redshifts z helio , from which we compute CMB-frame
edshifts z CMB using the angular coordinates of the galaxy and the
easured CMB dipole from Planck Collaboration I et al. ( 2020 ). 
We also further cross-match our input data with the Tempel et al.

 2011 ), Tempel et al. ( 2014 ), and Tempel et al. ( 2017 ) catalogues to
btain group-averaged CMB-frame redshifts z group and morphologies
 , where available. 2 The Tempel groups are constructed using SDSS
R12 data down to a limiting r -band Petrosian magnitude of 17.77

nd the robust Friends-of-Friends algorithm (Turner & Gott 1976 ).
lthough this is slightly older than the data that we used to construct

he PV sample, it is substantially deeper than our magnitude limit,
nd the z ≤ 0.1 data in SDSS is almost identical between DR12 and
R14 – only 418 of our galaxies are not found within the Tempel et al.

 2017 ) group catalogues, for which we assume no group membership.
Given all this input data, as well as uncertainties for these

arameters, we are then able to compute measured values and
ncertainties for the FP, our distance indicator. The FP relation has
he form 

log R e = a log σ0 + b log I e + c (1) 

here R e is the ef fecti ve radius (in h −1 kpc) and is derived from
wo quantities, the angular ef fecti ve radius θ e (in arcsec), which
an be measured from our photometry, and the distance, which is
he desired quantity. The distance-independent quantities in the FP
elation are the central velocity dispersion σ 0 (in km s −1 ) and the
ean surface brightness within the angular ef fecti ve radius, I e ; these

an be measured from spectroscopy and photometry respectively. The
oefficients of the FP are represented as a , b , and c . It is common for
he FP to be written in shorthand form as r = as + bi + c , where r =
og R e , s = log σ 0 , and i = log I e , a convention we also adopt in this
ork. 
To start, we convert the de Vaucouleurs scale radius to an angular

f fecti ve radius in arcseconds θ e , using 

e = r deV 
√ 

b/a . (2) 

rom this, we compute the distance-dependent quantity of the FP,
he physical ef fecti ve radius in units of h −1 kpc 

 z = log ( θe ) + log ( d( z group )) − log (1 + z helio ) + log ( π/ 648) , (3) 

here d ( z group ) is the comoving distance in h −1 Mpc to the group
edshift under our assumed fiducial cosmology. We have specifically
ncluded the subscript in r z to highlight that this is the physical
f fecti ve radius inferred using the observed redshifts rather than the
rue comoving distance to the galaxy. The last term accounts for the
onversion from arcseconds to h −1 kpc , and we have been careful
o distinguish between the use of group redshifts for the comoving
istance calculation, and heliocentric redshifts for the conversion
rom comoving to angular diameter distance (Calcino & Davis 2017 ).
n using the Tempel et al. ( 2017 ) group redshifts for equation ( 3 ), we
re neglecting intra-group PVs, which helps reduce non-linearities
n the final PV measurements. 

The second, distance-independent, FP parameter, the ef fecti ve
urface brightness in units of L � pc −2 , is computed from the same
ngular ef fecti ve radius, along with the apparent magnitude and a
NRAS 515, 953–976 (2022) 

 In doing so, we recompute the group-averaged redshifts ourselves to a v oid 
he additive redshift approximation used in Tempel et al. ( 2017 ). 

p
i
(
t
g

imilar unit conversion, 

 = 0 . 4( M 

r 
� − m 

deV 
r − 0 . 85 z group + k r + A r ) − log (2 πθ2 

e ) 

+ 4 log (1 + z helio ) + 2 log (64800 / π) . (4) 

he additional 4log (1 + z helio ) factor accounts for surface brightness
imming, while 0.85 z group is an evolution correction following
ernardi et al. ( 2003a ). k r is the k -correction computed using

he heliocentric redshift and g − r colour following Chilingarian,
elchior & Zolotukhin ( 2010 ), while M 

r 
� = 4 . 65 is the absolute

agnitude of the Sun in the SDSS r band (Willmer 2018 ). 
The last of our three parameters, the velocity dispersion in km s −1 ,

s simply derived as s ≡ log ( σ 0 ), where σ 0 is the central velocity
ispersion. This is obtained from the measured velocity dispersion
sing the aperture correction of Jorgensen, Franx & Kjaergaard
 1995 ) such that 

 = log ( σ ) − 0 . 04( log ( θe ) − log (8 θap )) , (5) 

here θ ap is the fibre radius used to obtain the galaxy spectrum. θ ap =
.5 arcsec for objects with SDSS plate number < 3510, whereas θ ap =
.0 arcsec for objects observed on later plates, as this demarcates the
ransition from the older 640-fibre SDSS spectrograph to the newer
000-fibre BOSS spectrograph. 3 

Equations ( 3 )–( 5 ) form the basis of our input catalogue and are
sed to fit the FP and, in turn, obtain PVs. An o v erview of how this
s done is co v ered in the next sub-section, with detailed descriptions
iven in Sections 4 and 5 . 

.3 From FP parameters to PVs 

he measured parameters r z , s , and i form the input for the FP.
ecause the observed group redshift has been used to obtain r z , it does
ot necessarily represent the true intrinsic size of the galaxy, which
e denote as r t – the PV of the group in which the galaxy resides

reates a difference between r z and r t equal to the log-distance ratio,
 z − r t = η ≡ log ( d ( z group ) /d ( ̄z )). This follows from a comparison
f how the physical size in equation ( 3 ) would be computed from the
ngular size if one were to use either the (known) group or (unknown,
ut desired) cosmological redshift (Springob et al. 2014 ). 4 

Hence, the PV of an object is derived from its offset from the
est-fitting FP in the r direction – the FP is fit using the ensemble of
easured r z , s , and i and for each galaxy can be used to predict r t and

hen η. Using η is convenient because if the FP is treated as Gaussian,
nd the uncertainties in each of the input parameters are Gaussian,
hen η is also Gaussian distributed (modulo some small skewness
ntroduced due to selection functions and other complexities in the
roduces a relative error in each galaxy’s log-distance ratio and PV v p that 
s approximately equal to two times its redshift: 	v p / v p ≈ ln(10) z/(1 + z) 
see Appendix D ). For the 6dFGSv, this means that the resulting errors in 
he measured PVs or log-distance ratios given by Springob et al. ( 2014 ) are 
enerally < 10 per cent of the typical statistical uncertainty. 

https://www.sdss.org/dr12/spectro/spectro_basics/.
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Figure 2. Normalized histograms of the best-fitting log-distance ratios for 
the SDSS PV sample using different E/S0 classifications. The top panel 
shows measurements for all galaxies classified by Tempel et al. ( 2014 ) as 
early-type/unsure, and further subdivided into those we keep (red) or reject 
(blue) after our visual inspection. The bottom panel shows the opposite; 
galaxies classified by us as photometrically clean early-types split into their 
Tempel et al. ( 2014 ) classification. In both cases there is a remaining subset 
of interlopers with log-distance ratios offset from the global mean, requiring 
us to adopt an either/or classification to remo v e. Note that the red histograms 
in both panels, despite containing the same numbers of objects, are not quite 
the same because the FP and log-distance ratios are fit to the full sample of 
galaxies (red + blue histograms), which differ between the two panels. 
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tting process). This is the main quantity provided in the SDSS PV
atalogue. 

From η we can compute the distance modulus, 

= 5 log (d( z CMB )) − 5 η + 25 , (6) 

here d ( z CMB ) is taken to be in units of Mpc. The PV can be
omputed fully by first numerically inverting the redshift-distance 
elation to convert from log-distance ratio to cosmological redshift 

¯ , then using the equation for propagating redshifts to obtain the 
V (Davis & Scrimgeour 2014 ). The downside of this procedure 

s that the distribution for the PV is no longer Gaussian and so
ust be expressed as a non-Gaussian PDF (taking into account the 

acobian of the transformation; Johnson et al. 2014 ), approximated 
i.e. Scrimgeour et al. 2016 ), or corrected for in some other manner
e.g. Hoffman et al. 2021 ; Qin 2021 ). 

An alternative, which is used in this work whenever a PV is
resented, is to use the approximate conversion (Watkins & Feldman 
015 ) 

 p ≈ cz mod 

1 + z mod 
ln (10) η, (7) 

nd 

 mod = z CMB [1 + 1 / 2(1 − q 0 ) z CMB − 1 / 6 

× ( j 0 − q 0 − 3 q 2 0 + 1) z 2 CMB ] , (8) 

here c is the speed of light, and q 0 and j 0 are the present day
eceleration and jerk parameters, which for our fiducial cosmology 
ave the values q 0 = −0.535 and j 0 = 1. This estimator retains
he same distribution as the original log-distance ratio. It is derived 
rom a Taylor expansion of ln(1 − v p / cz CMB ) and so is accurate as
ong as the true PV (not necessarily the measured value) satisfies
 p � cz CMB . Given the low-redshift cut applied to the SDSS PV
ata ( z CMB > 0.0033), we expect this approximation to work well –
owlett et al. ( 2017 ) demonstrated that this estimator holds even for

he much lower redshift 2MASS Tully–Fisher catalogue. 

.4 Contamination by spirals and other interlopers 

efore fitting the FP, there are a few caveats and additional steps that
ust be explored. Our selection of 42 170 galaxies in Section 2.1

s designed to select photometrically clean red E/S0 galaxies with 
o H α emission. Ho we ver, this is not suf ficient to isolate a clean
ample for the FP analysis. Additional steps are needed to remo v e
nsuitable objects that can act as outliers from the FP, resulting in
purious velocity measurements for these objects and a potential bias 
n the fit to the FP itself. 

In order to identify and remo v e these interlopers, we used the
orphological classifications from GalaxyZoo (Willett et al. 2013 ) 
empel et al. ( 2011 ), and Tempel et al. ( 2014 ), and we visually

nspected all galaxies on 1 × 1 arcmin colour cutouts extracted 
rom the Pan-STARRS1 (Chambers et al. 2016 ) and Legacy Survey 
mages (Dey et al. 2019 ). The deeper images of the Le gac y Surv e y,
articularly the model residual images, allow considerably better 
iscrimination than was possible with previous surv e y images. We 
dentified the following unsuitable objects: 

(i) spiral galaxies that had not been previously recognized in the 
hallower images; 

(ii) galaxies where the measurement of the FP photometric pa- 
ameters is likely to be unreliable due to o v erlapping sources (either
tars or other galaxies); 

(iii) galaxies with strong asymmetries; 
(iv) galaxies with strong central dust features, which are likely to 
ias the velocity dispersion measurements. 

While all visual inspection work is subjective, our aim was to
dentify galaxies that are clearly not suitable to be included in our
P analysis. 
Considering first the binary classifications provided by Tempel 

t al. ( 2014 ), we remo v e 5098 objects, confidently identified as spirals
 M = 1), fit the FP, and derive log-distance ratios (following the
rocedures detailed in Sections 4 and 5 ). We then compare histograms
f the log-distance ratios for the remaining objects based on whether
hey are flagged as E/S0s or rejected by our visual identification. As
hown in the top panel of Fig. 2 , we find that the remaining 2510
alaxies visually rejected by us pass the Tempel et al. ( 2014 ) criteria
nd exhibit log-distance ratios strongly offset from our clean E/S0 
lassification. These would hence need to be remo v ed as well. 

We then play the rev erse game, remo ving the 2990 galaxies that
e have visually rejected before fitting the FP and deriving log-
istance ratios. Unfortunately, as shown in the bottom panel of Fig. 2 ,
e then find a remaining 4618 objects that we classify as clean
/S0s but Tempel et al. ( 2014 ) classify as spirals that also exhibit
iased log-distance ratios. From these results, it is clear that both our
lassification and the Tempel et al. ( 2014 ) classification are picking
p different subsets of interlopers, both of which bias our sample.
his can be verified by looking at the FP parameters themselves (in
able 2 , see also Fig. 7 ); our rejects are situated primarily at the large
adius, low surface brightness end of the FP, whilst Tempel et al.
 2014 ) spirals are brighter and more compact. As such, we adopt a
ybrid classification, removing a combined total of 7608 galaxies 
rom our sample if either we or Tempel et al. ( 2014 ) have classified
he galaxy as a spiral/reject. It is worth noting that we did test using
uts in the GalaxyZoo probability itself for cleaning the sample, 
ut ultimately found that the combination of binary classifications 
MNRAS 515, 953–976 (2022) 
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Table 2. FP parameters for the SDSS PV sample and subsets. Columns 
M = = 1 and J = = 0 are subsets of spiral galaxies identified by Tempel et al. 
( 2014 ) and us, respectively. 

Parameter Fiducial M = = 1 J = = 0 

N gal 34 059 5033 2 931 
a 1.274 ± 0.027 1.153 1.296 
b −0.841 ± 0.009 −0.738 −0.821 
r̄ 0.161 ± 0.016 0.027 0.250 
s̄ 2.174 ± 0.008 2.154 2.198 
ī 2.688 ± 0.003 2.893 2.638 
σ 1 0.0537 ± 0.0006 0.0472 0.0517 
σ 2 0.335 ± 0.004 0.315 0.367 
σ 3 0.219 ± 0.005 0.191 0.179 
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emo v ed the contamination from spirals whilst retaining a larger total
umber of objects. The number of objects remaining after removing
pirals/rejects is 34 562. 

.5 Angular Mask 

he complete SDSS PV catalogue contains galaxies spread o v er the
ontiguous area of the SDSS Northern Galactic Cap. Ho we ver, the
ata comes from a combination of various SDSS releases up to and
ncluding Data Release 14 (DR14). In order to produce random and
ock galaxy catalogues that reproduce the angular distribution of

he data, we require an angular mask that describes which regions
f sky we expect to be present or missing from the catalogue due
o how the data was collected. However, the SDSS PV data is a
omplex combination of data from the SDSS DR8, plus additional
ow redshift objects from later data releases. To the best of our
nowledge, there are currently no publicly available angular masks
escribing the distribution of DR8 galaxies across the SDSS footprint
hat take into account holes arising from centreposts, bright stars, or
he tiling geometry of the surv e y, let alone when newer data up to
R14 is included. All of these are rele v ant for samples where the

lustering may be measured. 
As such, rather than tackling the difficult task of tracking back

he imaging, targeting, tiling, and veto masks for the SDSS PV
atalogue, we instead opt for the simpler solution of identifying
he SDSS PV galaxies that belong to a pre-existing, well-defined,
ngular mask and using only those galaxies for scenarios where the
ngular distribution may be important (for example in measuring
he clustering of the galaxy density field). For this purpose, we
se modified versions of the MANGLE (Hamilton & Tegmark 2004 ;
wanson et al. 2008 ) polygon files provided alongside the NYU
alue-Added Galaxy Catalogue Data Release 7 (DR7; Blanton et al.
005 ). 5 We then identify and flag any galaxies that are outside this
ask, and exclude them from clustering measurements and any

omputation requiring knowledge of the precise sky coverage of
he data (such as computing the number density per unit volume). It
hould be noted that all galaxies are still retained in the SDSS PV
atalogue and have measured PVs; those that are within the mask
re merely flagged in the data file as IN MASK . Of the 34 562 early-
ype galaxies retained in the sample so far, 944 are outside the DR7
ootprint; a small fraction that we expect to have little bearing on
urther analysis of the data. The total number of SDSS PV catalogue
alaxies in the mask is thus 33 618 and the total area co v ered by
he angular mask is 7016 deg 2 ; the sky coverage of the SDSS PV
NRAS 515, 953–976 (2022) 
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atalogue relative to existing PV data from 6dFGSv and the CF4-TF
ample is shown in Galactic coordinates in Fig. 3 . 

.6 Random catalogue 

n order to measure the clustering of the SDSS PV sample, both in
his and in future work, we require a random unclustered sample of
ata points that can be used to compute the relative overdensity of the
alaxies. Given the angular mask, we first use MANGLE to produce
 random sample of points that matches the angular distribution
f the data. The redshift distribution of the data was then fitted
ith a smoothed spline to capture the general shape of the surv e y

election function without incorporating real LSS along the line-of-
ight. We then used this smoothed spline to sample redshifts for
he random catalogues, and to down-sample the simulated galaxy
atalogues presented in Section 3 . The number of SDSS PV galaxies
s a function of redshift is shown in Fig. 4 alongside the 6dFGSv
nd CF4-TF data. We can see that the three samples are highly
omplementary, with the CF4-TF sample peaking at lower redshift
han the 6dFGSv or SDSS PV samples. The two FP samples contain
 similar number of objects at z < 0.055 (although not the same
umber density; 6dFGSv is spread o v er more than twice the area
f the SDSS PV), but the SDSS data extends to higher redshift,
p to z < 0.1, where the bulk of our new PV measurements lie.
his figure emphasizes that our new data push into a previously
nexplored redshift regime, although it is certainly important to point
ut that the impro v ements in terms of constraining power from SDSS
ompared to previous data sets are more modest than the number
f galaxies would suggest, as the points at higher redshifts have
roportionately larger errors on their PVs (see Sections 5 and 6 ). 

 M O C K  G A L A X Y  SURV EYS  

ock galaxy catalogues (mocks) that reproduce the clustering and
election functions of the PV data are essential for validating the
ethodology used to extract PVs from a distance indicator in the

resence of surv e y selection effects. The y are also a necessity for the
nterpretation of cosmological results from the data. In this section,
e describe the production of 2048 mocks for the SDSS PV data

hat are designed to reproduce all rele v ant aspects of the data while
ncapsulating the effects of cosmic variance on the PV field. 

.1 Characterising the SDSS data 

o begin, we first derive a series of simple fitting functions for
he properties of the SDSS data that will enable us to add realistic
ncertainties and observed quantities to the simulations. 

.1.1 Measurement uncertainties 

e start by looking at the errors in the measured FP parameters.
e denote the errors on r z , s , and i as e r , e s , and e i , respectively.

he y are deriv ed from the errors on r deV , b / a , m 

deV 
r , and σ provided

ith the publicly available SDSS data by error propagation through
quations ( 2 )–( 5 ). 

First, as the fainter galaxies in our sample have larger uncertainties
n their apparent magnitude, we find [via equation ( 4 )] a strong
orrelation of the surface brightness uncertainties ( e i ) with apparent
agnitude. The distribution of e i is found to be close to lognormal,

o we instead quantify the relationship between de Vaucouleurs r -
and magnitude and the logarithm of the uncertainty in the surface

http://sdss.physics.nyu.edu/vagc/
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Figure 3. The distribution of the SDSS PV data (blue) in Galactic coordinates compared to data from the 6 ◦ Field Galaxy Surv e y (red; Springob et al. 2014 ) 
and Cosmicflows-4 TF (green; Kourkchi et al. 2020 ). The shaded region shows areas of high galactic extinction around the plane of the Milky Way, grey-scaled 
by log [ E ( B − V )]. 
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Figure 4. The redshift distribution of the SDSS PV sample compared to the 
6-degree Field Galaxy Survey (red; Springob et al. 2014 ) and Cosmicflows-4 
TF (green; Kourkchi et al. 2020 ). Points show the number of galaxies per 
bin of width 1000 km s −1 , error bars encapsulate the cosmic variance from 

ensembles of simulated mock surv e ys (see Section 3 for our SDSS PV mocks 
and Qin et al. 2019b and Qin et al. 2021 for 6dFGSv and CF4-TF mocks 
respectively), and lines are the mean distributions from these mocks. 
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rightness, log ( e i ), by binning the data in magnitude bins and
tting the mean and standard deviation in each bin. e i , being the
easurement error, can only be positive and hence be treated in 

his manner. So, although the form of this quantity may appear 
trange (log ( e i ) being the log of the error in a quantity that is already
ogarithmic), we use this purely as it is more Gaussian distributed 
han the uncertainty itself, and hence allows us to randomly assign
rrors to the mocks more easily (fitting the e i as a function of apparent
agnitude instead and then drawing from a lognormal distribution 
ould be mathematically equi v alent). 
We find that the mean is well represented by a piece-wise function

hat is quadratic for faint galaxies and asymptotes to a constant 
or galaxies brighter than some limiting magnitude. The Gaussian 
catter, denoted σlog ( e i ) is fitted well by a straight line. Our best-fitting
elationship is given by 

 log ( e i ) 〉 = 

{−2 . 35 m 

deV 
r < 12 . 77 

0 . 02( m 

deV 
r ) 2 − 0 . 43 m 

deV 
r − 0 . 13 otherwise 

(9) 

log ( e i ) = 0 . 0034 m 

deV 
r + 0 . 0052 . (10) 

he data, binned mean and scatter, best-fitting relationship, and an 
xample set of random values generated using the above fitting 
ormulae are shown in the left-hand panel of Fig. 5 . 

By construction, Said et al. ( 2020 ) set the uncertainty on the
f fecti ve radius r to be equal to half the uncertainty on the surface
rightness. They also set the correlation coefficient between r and 
 to be −1.0, i.e. perfectly anticorrelated giv en the y are produced
sing the same data, but have the opposite dependence on angular 
f fecti ve radius. We adopt the same procedure here, so e r = 0.5 e i . 

The only remaining measurement uncertainty to quantify is the 
rror on the velocity dispersion e s . When compared to the properties
f the input data, we find that this is correlated strongly with
pectral S/N – unsurprisingly, velocity dispersions can be measured 
ore accurately in spectra with a high S/N ratio. This in turn

ntroduces a correlation between velocity dispersion and apparent 
agnitude because brighter objects can reach a higher spectral S/N 
n fixed observing time. Ho we ver, for the purposes of generating
he simulations, we do not have spectral S/N ratios from which
e could draw velocity dispersion uncertainties. Furthermore, we 
pt not to use apparent magnitude for this, as to do so would
ntroduce correlations between the ef fecti ve radius/surface brightness 
nd velocity dispersion that are observational rather than intrinsic 
n nature. In fitting the FP in Section 4 , we treat the correlation
etween photometric and spectroscopic observational errors as zero, 
nd using apparent magnitude to generate mock velocity dispersion 
rrors would run counter to this. 
MNRAS 515, 953–976 (2022) 
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Figure 5. Characterization of the measurement errors in surface brightness and velocity dispersion ( e i and e s , respectively) and g − r colours in the SDSS PV 

sample. In each panel, the real data are shown as a hex-binned distribution colour-coded by the number of galaxies in each bin. The contours show a random 

distribution of points drawn using the x -axis values of the real data (de Vaucoleurs r -band magnitude, velocity dispersion, and heliocentric redshift, respectively, 
from left-hand to right-hand panel) and the fitting formulae provided in Section 3.1 . The points in each panel show the mean and scatter to which these formulae 
were fit, and the red lines show the fit itself. 
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We instead make use of a third correlation found between the
rror on the velocity dispersion and the velocity dispersion itself,
n the same way as was done in Scrimgeour et al. ( 2016 ) and
in et al. ( 2018 ). This correlation arises in combination with those
reviously identified – larger velocity dispersions can be measured
ore precisely both because it is easier to fit the absorption features,

ut also because the galaxies are, by virtue of the FP, brighter and
ave higher spectral signal-to-noise ratio. This choice has the benefit
f relying only on a spectral property, and one which we produce as
art of our simulations. 
To produce a fit, we follow the same method as before. We again

erify that e s is close to log-normally distributed, and so we work
ith log ( e s ) and find a good fit using the relation 

 log ( e s ) 〉 = −0 . 766 s − 0 . 121 (11) 

log ( e s ) = −0 . 049 s + 0 . 236 . (12) 

he data, fitted relationship, and an example distribution drawn from
his fit are shown in the middle panel of Fig. 5 . 

.1.2 Colours and k -corrections 

he final aspect of the data we need to characterize are the k -
orrections. We aim to reproduce these in our simulations so that
e can be sure that these are not impacting our reco v ered PVs for
alaxies close to the edge of the magnitude limit, where a small
hange in the k -correction can potentially scatter a galaxy in or out
f our sample. 
k -corrections in the SDSS PV data are obtained using the bi v ariate

ts from Chilingarian et al. ( 2010 ) as a function of g − r colour
nd heliocentric redshift. To replicate these in simulations, we need
o assign g − r colours to our mock galaxies based on some other
roperties that we already have to hand. Looking at the correlations
etween various aspects of the data, we find that the colour is strongly
orrelated with redshift. Such a trend can be inferred from Fig. 1 due
o the way intrinsically fainter, bluer galaxies fall out of the sample
s we go to higher redshifts. We also found a weaker correlation with
elocity dispersion, but that was difficult to model well due to large
catter, and not clearly causative because the velocity dispersion itself
lso increases with redshift. For simplicity in producing the mocks,
e therefore just fit the colour as a function of heliocentric redshift,
sing a lognormal distribution as abo v e. We note that this has the
enefit of simply reducing the k -corrections used in the mocks to a
NRAS 515, 953–976 (2022) 
ni v ariate redshift-dependent function. Our best-fitting relationship
s given by 

 log ( g − r) 〉 = 1 . 167 z helio − 0 . 140 (13) 

log ( g−r) = −0 . 042 z helio + 0 . 028 . (14) 

he right-hand panel of Fig. 5 shows the colours of the true SDSS
V data as a function of the colour modelled with this fit. The data
re scattered normally about the expected one-to-one line and is
ell reproduced by a random set of points drawn with the scatter
iv en abo v e. Giv en we can use these formulae to compute colours,
e can then combine these with the same redshifts to calculate a
 -correction. 

Ov erall, we hav e been able to ef fecti vely reproduce the most
mportant aspects of the SDSS PV data using a small number of
tting formulae. In the next section, these fitting formulas will be
sed to create a large ensemble of simulations that fully reproduce
he data. 

.2 Producing the simulations 

ur method for producing the simulations is presented in Qin
t al. ( 2019b ). First, an ensemble of 256 dark matter simulations
s produced using the approximate N-body code L-PICOLA . Each
imulation consists of 2560 3 dark matter particles in a box of edge
ength 1800 h −1 Mpc evolved to z = 0. Dark matter haloes are then
dentified in the simulation using the 3D friends-of-friends algorithm
Davis et al. 1985 ) with a minimum of 20 dark matter particles. This
orresponds to a minimum halo mass of ∼5 × 10 11 h −1 M �. From
ur simulations, we have catalogues of halo positions, velocities, and
asses. 
Galaxies are placed within these haloes using a variant of sub-halo

bundance matching (Conroy, Wechsler & Kravtsov 2006 ). Ho we ver,
he approximate nature of the L-PICOLA simulations means that only
aloes, not sub-haloes, can be reliably identified from the dark matter
eld using the friends-of-friends algorithm. Instead, we artificially
dd in sub-haloes by using a power law with two free parameters ( A
nd α) to describe the number of sub-haloes, N sub , as a function of
he mass ratio between parent haloes and sub-haloes, f M 

, 

 sub ( f M 

) = Af −α
M 

. (15) 

ntegrating this function between some minimum value of f M 

and 1
where we set the minimum using a sub-halo mass equi v alent to 20
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Figure 6. The spherically averaged density power spectrum of the SDSS PV 

sample (points) compared to the mean of the mocks (line). The error bars come 
from the variance in the mocks, which captures both cosmic variance and shot 
noise. The chi-squared value is calculated from the difference between the 
data and the mock-mean, and shows that the mocks reproduce the clustering 
in the data well. 
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ark matter particles) gives us the expected number of sub-haloes in 
ach parent halo. 

Ho we ver, to account for the observed scatter in the sub-halo to
alo mass distribution (Giocoli, Tormen & van den Bosch 2008 ; 
lahi et al. 2018 ), in practice we draw an actual number of sub-
alo masses using a Poisson distribution with mean N sub . The sub-
aloes are then placed within their parent haloes using a orbital 
adius and v elocity dra wn from the NFW profile (Navarro, Frenk &

hite 1997 ), using the algorithms/equations in Cole & Lacey ( 1996 ),
obotham & Howlett ( 2018 ), and mass–concentration relation from 

rada et al. ( 2012 ). 
Finally, galaxies are drawn from the FP distribution with the best-

tting SDSS parameters given in Table 2 . Given our set of halo
nd sub-halo positions, velocities and masses, these are assigned to 
he haloes and sub-haloes based on rank-ordering the masses and 
he value of 2 r + i (which acts as the proxy for luminosity). We
dd scatter to this rank-ordering based on a third free parameter, 
log L , between the log of the masses in units of M �, and the log of

he luminosities in units of L �. Galaxies are given the position and
elocity of their host halo/sub-halo. 

.2.1 Incorporating the selection function 

fter FP parameters have been generated, we apply the selection 
ffects and incorporate measurement uncertainties into the mocks. 
e place 8 separate observers in each of our 256 simulations spaced
aximally far apart ( ∼600h −1 Mpc) and for each one: 

(i) Use MANGLE and the angular mask from Section 2.5 to down- 
ample the mock catalogues to match the footprint of the data. 

(ii) Perturb the ef fecti ve radius r for each galaxy based on its PV
via the log-distance ratio). 

(iii) Generate g − r colours for the mock galaxies based on the 
t to the heliocentric redshift and velocity dispersion s identified in 
ection 3.1 . 
(iv) Generate r band k -corrections for each galaxy using the g −

 colour, heliocentric redshift and fitting formulae of Chilingarian 
t al. ( 2010 ). 

(v) Compute the r -band Milky Way extinction for each galaxy 
ased on its location on the sky using the implementation of the
chlafly & Finkbeiner ( 2011 ) dust maps in the Python DUSTMAPS

ackage (Green 2018 ). 6 

(vi) Combine the FP parameters with the k -correction, Galactic 
xtinction, and luminosity distance to each galaxy to compute the 
 -band apparent magnitude by inverting equations ( 3 ) and ( 4 ). 

(vii) Use the magnitude and FP parameters to produce correlated 
ncertainties on r , s , and i based on the fitting formulae in Section 3.1
nd then use these to generate observed FP measurements centred 
n the true values. 
(viii) Apply cuts to the simulated observ ed redshifts, v elocity 

ispersions and magnitudes, matching those in the SDSS data: 0.0033 
 z < 0.1, s > log (70) and m 

deV 
r < 17 . 0. 

(ix) Subsample the observed redshifts of the mock galaxies using 
he smooth spline fit to the data from Section 2.6 . After populating
he simulation with galaxies and applying the other selection effects, 
he number density of galaxies in the catalogues is larger than in the
ata by an approximately constant factor – the trend as a function of
edshift matches the data well due to the inclusion of the magnitude
nd velocity dispersion cuts, but our model is quite simplistic, is
 ht tps://dust maps.readt hedocs.io/en/lat est/

d  

i  

s  
t only to the monopole of the clustering (see Section 3.2.2 ), and
oes not account for things like the redshift success rate. All of
hese effects cause the number density obtained from the previous 
teps to be larger than in the data, which we remedy by randomly
ubsampling. Doing this randomly ensures the clustering properties 
f the mocks remain unchanged by the subsampling. 

.2.2 Tuning the mocks 

iven that the relationships between galaxy properties and 
ncertainties have been characterized in Section 3.1 , our selection 
unction is well-defined, and parent halo concentrations are 
omputed based on fits in the literature to high-resolution N-body 
imulations, our entire procedure contains three remaining free 
arameters, A , α, and σ log L . These are the slope and normalization
f the sub-halo mass ratio distribution and the scatter between 
alo/sub-halo mass and galaxy luminosity. 
These parameters are tuned by fitting the monopole of the SDSS

V galaxy density power spectrum. We optimize by brute-force; 
teratively populating the halo catalogues, applying the selection 
unction, then computing the galaxy power spectrum and computing 
he χ2 relative to the SDSS PV power spectrum. As the covariance 

atrix for this comparison itself has to be computed from mocks,
e repeat this entire optimisation process iteratively; using a first 
uess for the free parameters to generate the first set of mocks and
ovariance matrix, which is then subsequently used to tune the next
eneration of mocks. We perform the entire procedure o v er four
enerations, after which the best-fitting parameters do not change 
onsiderably between successive generations. In the end, we find 
est-fitting values of A = 1.850 and α = 1.175 for the power
aw amplitude and slope, respectively, and σ log L = 0.138 for the 
catter. These are comparable to the values found for 6dFGSv (Qin
t al. 2019b ), but with a lower slope and higher amplitude. This is
onsistent with our finding that the clustering amplitude (which is 
ainly set by α) is lower for SDSS than 6dFGSv, but the number

ensity (set mainly by the o v erall normalization, A ) is higher. After
terating, the clustering of the mocks reproduces the data well, as
hown in Fig. 6 . The χ2 difference between the power spectrum of
MNRAS 515, 953–976 (2022) 
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he data and the average of the mocks, computed using the covariance
atrix estimated from the mocks, is 40.3 for 34 degrees of freedom.
In the following section, we explain how we fit the FP from the

ata and the mocks, and demonstrate that the mocks satisfactorily
eproduce the expected distribution of the SDSS data. 

 FITTING  T H E  FP  

e calculate log-distance ratios and PVs from the SDSS PV FP
ata using the Maximum Likelihood Gaussian method introduced
y Saglia et al. ( 2001 ) and Colless et al. ( 2001 ) for analysis of the
FAR sample, and as also used for 6dFGSv data (Magoulas et al.
012 ; Springob et al. 2014 ). This is a three-step process, where
rst the FP itself is fit to the data assuming no PVs, then the offset
rom the best-fitting plane is used to infer the PV of the individual
alaxies. Finally, the zero-point of the FP is calibrated, which is akin
o correcting for the fact that the first step of the process assumed
n a verage b ulk motion of zero across the entire SDSS PV sample,
hich is unlikely to be true in reality. We note that the procedure can

ctually all be carried out in a single Bayesian hierarchical model,
s done in Dam ( 2020 ) and Said et al. ( 2020 ). Ho we ver, this is
omputationally e xpensiv e and so works best when the goal is to
 v aluate the posterior for a smaller number of derived parameters
such as the growth rate of structure or bulk flow) rather than to
roduce a catalogue of individual velocities for each galaxy. None
he less, this is a clear place for future work to impro v e on. 

For the first two stages, we assume the FP is described by a
ensored 3D Gaussian, so that the probability of observing N galaxies
ith ef fecti v e radii, v elocity dispersions and surface brightnesses

x n = { r n , s n , i n } can be written 

 = 

N ∏ 

n = 1 

(
1 

(2 π) 3 / 2 | C n | 1 / 2 f n 

× exp 

[
−1 

2 
( x n − x̄ ) C 

−1 
n ( x n − x̄ ) T 

])1 /S n 

, (16) 

here x̄ = { ̄r , s̄ , ı̄ } is the mean of the FP and f n normalizes the
ikelihood of the observed galaxy n to 1 over the observed parameter
pace; f n < 1 unless the data is uncensored and contains no selection
ffects. S n is an inverse weighting to account for galaxies that are
issing from our sample due to the selection function and is based

n the commonly used 1/ V max weighting (Schmidt 1968 ). The full
ik elihood w ould properly require calculation of the integral of the
DF times the selection probability for each galaxy and FP model.
his is computationally e xpensiv e, and one can instead use a 1/ S n 
eighting to approximate the full likelihood. As discussed in Eadie,
rijard & James ( 1971 ), this results in the same maximum likelihood
P values, but underestimates the variance in the parameters. This

s fine for the purposes of our calculation, as we are only interested
n the best-fitting values for the FP, and estimate the uncertainties
sing the variance across our ensemble of mock catalogues, which
lso incorporate the effects of cosmic variance. 

Finally, the covariance matrix C n describes the scatter in the
P, which consists of both intrinsic scatter � and measurement
ncertainty E n . Assuming both of these individual components are
aussian and the measurements are unbiased (so that the inclusion
f measurement noise does not bias the measurements away from
he mean x̄ ), we write this as 

 n = � + E n = 

⎛ 

⎝ 

σ 2 
r σrs σri 

σrs σ
2 
s σsi 

σri σsi σ 2 
i 

⎞ 

⎠ + 

⎛ 

⎝ 

e 2 r + ε2 
r 0 −e r e i 

0 e 2 s 0 
−e r e i 0 e 2 i 

⎞ 

⎠ . (17) 
NRAS 515, 953–976 (2022) 
he components of the error matrix E n are obtained directly from the
 

th galaxy’s measurement uncertainties. We also assume a perfect
nticorrelation between r and i (cf. Section 3.1 and Said et al.
020 ), no correlation between the photometric and spectroscopically
btained measurements, and add a minimal contribution to the
ncertainty on r , εr = log(1 + 300/ cz n ), to account for non-linear
elocities that may bias the fit when the uncertainty on the ef fecti ve
adius for a given galaxy is small. 

Following Saglia et al. ( 2001 ) and Magoulas et al. ( 2012 ), the
catter matrix � is decomposed into orthogonal unit eigenvectors

ˆ  1 , ̂  v 2 , ̂  v 3 . These can be defined in terms of the FP parameters from
he relationship in equation ( 1 ). From these definitions, the Jacobian
an then be used to write the terms in equation ( 17 ) as functions
f the FP parameters a and b and the intrinsic scatter along each
rthogonal direction, σ 1 , σ 2 , and σ 3 . The conversions between the
wo coordinate systems are given in Appendix B . In our fit, we follow
aglia et al. ( 2001 ), Colless et al. ( 2001 ), and Magoulas et al. ( 2012 ),
nd assume a priori that the longest axis of the 3D Gaussian lies
xactly in the r - i plane. 

The best-fitting FP hence consists of a total of 8 free parameters:
 , b , r̄ , s̄ , ı̄ , σ 1 , σ 2 , and σ 3 . We fit these by maximising the
og of the likelihood function in equation ( 16 ). The maximisation
s done using SCIPY ’s implementation of the dif ferential e volution
ptimisation algorithm (Storn & Price 1997 ), which provides robust
ts in large, multidimensional parameter spaces without requiring
radients. The fitting algorithm can be made extremely fast (taking
ess than a minute to find the best fit on a single core) by utilising
nalytic computation wherever possible. This includes writing the
eterminant and inverse of the covariance matrix for each galaxy
s a function of the matrix components rather than numerically
nverting (tri vial gi ven this is only a 3 × 3 matrix), as this enables
he calculation o v er all galaxies to be fully vectorized. The only
emaining obstacle is the inclusion of selection effects, which as we
ill show in the next section can also be accounted for ‘analytically’

nd vectorized using elementary functions. 

.1 Selection effects 

he SDSS PV sample has several selection effects that need to be
ccounted for both when fitting the FP and deriving log-distance
atios. These are: 

(i) lower and upper redshifts limit of z min = 0.0033 and z max =
.1, respectively; 
(ii) a lower limit on velocity dispersions arising from the instru-
ental resolution of the SDSS spectrograph s min = log(70); and 
(iii) magnitudes limited to the range 10 . 0 ≤ m 

deV 
r ≤ 17 . 0. 

The likelihood function in equation ( 16 ) can account for these
election functions via the normalization f n and the 1/ S n weights.
o we ver, which of these are required and how they are computed
epends on what exactly is being fit and so changes whether we are
tting the FP or using the fitted FP to extract PVs for each galaxy. In

his section we will focus on the former; modelling of the selection
unction when fitting log-distance ratios will be tackled in Section 5 .

.1.1 Magnitude and redshift limits 

irstly, for a surv e y with both upper and lower redshift limits and a
agnitude limit, like ours, we need to account for the fact that our

bserved sample is not a complete representation of the underlying
P from which the galaxies are drawn. At certain distances, galaxies
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ill fall below the magnitude limit of the surv e y, which cuts a
lice through the FP as a function of r and i . To account for this,
e upweight the galaxies that we have observed using the 1/ S n 

actor. This is computed based on the fraction of the enclosed surv e y
olume in which each galaxy with apparent magnitude m 

deV 
r,n could 

e observed, 

 n = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 z lim 

≥ z max ,n 
d 3 L ( z lim ,n ) −d 3 L ( z min ) 

d 3 L ( z max ) −d 3 L ( z min ) 
z min < z lim ,n < z max 

0 z lim ,n ≤ z min , 

(18) 

here d L ( z) is the luminosity distance to the redshift z and d L ( z lim, n )
s the limiting distance for each galaxy. The latter is computed, 
iven our r -band magnitude limit, using d L ( z lim ,n ) = d L ( z group ,n ) ×
0 (17 −m 

deV 
r,n ) / 5 , where z group, n is the group-averaged redshift to galaxy 

 . The limiting redshift is then obtained from the limiting distance by
nverting the redshift-distance relation. The form of the S n calculation 
s such that for galaxies bright enough that the limiting redshift is
reater than the maximum redshift, we are complete and all possible
alaxies at this magnitude have been included in our sample (modulo 
he s min cut that will be discussed shortly); hence the weight is 1. For
alaxies with limiting redshift below z max , we have only observed, 
n average, S n of these galaxies. We account for the impact of the
issing galaxies on the FP fit by upweighting, taking the likelihood 

f the n th galaxy to the power 1/ S n . 

.1.2 Velocity dispersion limits 

s the S n weighting accounts for both the redshift and magnitude 
imits of our surv e y, only the v elocity dispersion remains to be to
ealt with. This is accounted for using the f n normalization to rescale
he PDF of each galaxy based on the volume of the FP parameter
pace that is not observed. Note that a similar approach could also
ave been utilized for the magnitude limits (and this is what is done
hen fitting the log-distance ratios). Ho we ver, while this is the more
rincipled approach (in a Bayesian sense), it is also far harder to
mplement than the S n weighting as it requires knowledge of the 

agnitudes and log-distance ratios of galaxies that by definition 
ave not been observed. This would require simulations for each set
f FP parameters enclosed within a Bayesian hierarchical model. 
uch an approach is not necessary for modelling only the s cut,
s the impact of this cut on each galaxy does not depend on the
alaxy’s cosmological distance. It is also not required for fitting the 
og-distance ratio for the galaxies that have successfully made it into 
ur sample once the FP parameters are fixed. 
Given the simplification that we only need to consider the limit

mposed by s min , the computation of f n can be written as a 3D
nte gral o v er the Gaussian in equation ( 16 ). Such an integral can be
educed to a single complementary error function, as demonstrated in 
ppendix C2 , which depends primarily on the value of s min , and only
eakly on the properties of each individual galaxy through the error
atrix. This dependence is simple to understand; the portion of the 
P missing from the observations is related to how far the velocity
ispersion cut is from the mean of the sample given the scatter. A
ample with a mean far higher than the cut and small scatter will be
f fecti vely complete, whereas a sample with cut close to or higher
han the mean will be heavily censored. For the SDSS PV sample, the
elocity dispersion cut is considerably lower than the sample mean, 
nd the covariance is dominated by the intrinsic scatter in the FP,
hich is the same for all galaxies, rather than the measurement errors.
onsequently, f n is similar, and close to unity, for most galaxies; 
9 per cent of the SDSS PV sample have f n ≥ 0.998. 
.2 Outlier Rejection 

sing the abo v e methodology, we fit the FP iterativ ely in order to
est the impact of outliers on the fitting procedure. At each iteration,
e fit the FP, compute the χ2 difference between each data point

nd the best-fitting model, and then compute the p -value for each
alaxy given the total log-likelihood of the fit and number of galaxies.
utliers are identified as galaxies with p < 0.01 and then excluded

rom the fit for the next iteration. The reduced χ2 is originally found
o be ∼0.9, similar to that found in Magoulas et al. ( 2012 ), which
ndicates that the best-fitting intrinsic scatter is being o v erestimated
o accommodate the outliers, but this quickly converges to 1.005 o v er
everal iterations as outliers are remo v ed. We find that the procedure
onverges after 5 iterations, with 503 outlier galaxies rejected from 

ur sample (these are remo v ed entirely from the PV catalogue),
eaving us with a total of 34,059. 

.3 Results 

he final best-fitting FP parameters for the SDSS data are given
n Table 2 . In the same table, we also provide FP fits for galaxies
dentified as spirals by Tempel et al. ( 2014 ) ( M = = 1) and/or rejected
y us ( J = = 0). In each case, we adopt our iterative outlier rejection
ethod. These fits demonstrate that the rejected galaxies clearly 

opulate distinct regions of the FP parameter space – as identified 
n Section 2.4 , the Tempel et al. ( 2014 ) spirals are typically more
ompact, being smaller with higher surface brightness, which is 
eflected in the drastic difference in r̄ and ̄ı compared to our fiducial
ample. The objects we reject are the opposite, being substantially 
arger in extent than our fiducial sample, and with smaller average
urface brightness (although in such a way that they seem to shift
long the plane in Fig. 7 ). Although comprising only ∼ 20 per cent
f the underlying sample, the rejected galaxies are enough to lead to
 systematic shift in the FP fit when they are included compared to
ur fiducial case. This would lead to biased log-distance ratios for
he rejects, and for the clean early-types if they were left in. 

We also apply the same fitting procedure to all of our mock galaxy
atalogues. This allows us to test how well our simulations match the
istribution of the data, and also estimate uncertainties on our fiducial
ample using the standard deviations between mock realisations. The 
istribution of mock FP parameters is shown in Fig. 7 . We see that
he mocks match the fit from the data extremely well. 

Ov erall, the ke y assumption in the abo v e fitting methodology is
hat the data is well described by a 3D Gaussian. Although we do
ot plot them here, looking at the individual distributions of r and i
rovided with the publicly released data file, one can see that this is
learly true. There is some skewness in s , with a slightly elongated tail
f low velocity dispersion galaxies. None the less, the small number
f outliers remo v ed during our fitting procedure, chi-squared per
egree of freedom very close to one and log-likelihood that is well-
eproduced by mocks that are , by construction, 3D Gaussian dis-
ributed, demonstrates that this skewness is not unduly affecting our 
ts and that the model works well for the SDSS PV data. We do cau-

ion, ho we ver, that this may not be the case for future, larger data sets.

 FITTING  T H E  LOG-DI STANCE  R AT I O S  

iven the relationship between log-distance ratio and the difference 
n ef fecti ve sizes described in Section 2.3 , one can then use the
robability distribution of the FP given in equation ( 16 ) to fit the log-
istance ratio of each galaxy by using the modified set of variables
MNRAS 515, 953–976 (2022) 
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M

Figure 7. A comparison of the data and mock FP and best-fitting parameters. Left-hand panel: The measured ef fecti ve radii against the predicted ef fecti ve radii 
based on the best-fitting FP parameters for the SDSS data, weighted by the 1/ S n factor (equation 18 ). Coloured bins show the sum of the 1/ S n weighted data 
points, contours show the a verage distrib ution of the mocks. The impact of the 1/ S n weights is to up-weight galaxies with small ef fecti ve radius that are generally 
faint enough they could have been missed at higher redshifts. The red line is the one-to-one line, which alongside the χ2 of our 3D Gaussian fit (102 704 for 
102 169 degrees of freedom), demonstrates excellent agreement between the predicted and measured ef fecti ve radii. The black line is the fit without including 
the 1/ S n weighting, which clearly demonstrates that the weighting is accounting for faint galaxies missing from our sample (which would have resided in the 
lower left corner of the FP). The blue and purple points show the mean and variance of the samples rejected by us, or because Tempel et al. ( 2014 ) classify them 

as spirals, respectively . Finally , the small ellipse in the lower right shows the average (correlated) uncertainties for the data. Right-hand panel: The distribution of 
FP parameters measured from the mocks (blue histograms), o v erlaid with a Gaussian centred on the mean of mocks and with variance given as the uncertainty 
on the data in Table 2 . The top left-hand sub-panel is the log-likelihood for the best-fitting FP. The vertical red-lines are the best-fitting parameters for the data, 
which are consistent with the distribution of mock realisations. 
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x n = { r n − ηn , s n , i n } and fixing x̄ and C n based on the best-fitting
P parameters and observational uncertainties for each galaxy. 
To ‘fit’ the log-distance ratio, we generate 1001 uniformly dis-

ributed candidate values for the log-distance ratio of each galaxy
n the range [ −1.5,1.5] and compute the log-likelihood for each.

e then combine this with a flat prior on the log-distance ratio
nd normalize to obtain a finely tabulated posterior PDF for each
alaxy, P ( ηn | r n , s n , i n , x̄ , C n ). Summary statistics are then produced
y assuming the posterior PDF of each galaxy can be represented
y a skew-normal distribution (O’Hagan & Leonard 1976 ; Azzalini
985 ) with location ( ξ n ), scale ( ω n ), and shape ( αn ) parameters 

 ( ηn | r n , s n , i n , x̄ , C n ) = 

1 √ 

2 πω n 

exp 

[
− ( ηn − ξn ) 2 

2 ω 

2 
n 

]

×
(

1 + erf 

[
αn 

ηn − ξn √ 

2 ω n 

])
, (19) 

here erf( z) is the error function. We find that this distribution
rovides an excellent representation of the SDSS galaxy posteriors,
nd captures the small skew in the log-distance ratio PDFs that
rises from the f n correction for the selection function described
elow. Example PDFs and corresponding skew-normal distributions
re shown in Fig. 8 , where we purposely plot the objects with the
argest/smallest skewness and mean, and the largest uncertainty. A
imilar distribution was used in Springob et al. ( 2014 ). The location,
cale, and shape parameters for each galaxy can be estimated from
he mean ( 〈 ηn 〉 ), standard deviation ( σηn 

), and skewness ( γ n ) of the
abulated posteriors using the following relations, 

ξn = 〈 ηn 〉 − ω n δn 

√ 

2 

π
, ω n = σηn 

√ 

π

π − 2 δ2 
n 

, 

n = 

δn √ 

1 − δ2 
n 

, | δn | = 

√ 

π| γn | 2 / 3 
2 | γn | 2 / 3 + ( 

√ 

2 (4 − π)) 2 / 3 
. (20) 
NRAS 515, 953–976 (2022) 
hen αn = 0, equation ( 19 ) reduces to a normal distribution with
he mean and standard deviation used abo v e. Though the αn values
hown in Fig. 8 are consistently non-zero, the skewness of the SDSS
alaxies is small enough that it will likely have a negligible effect on
ubsequent analyses of our catalogue, but we recommend confirming
his where possible. 

When e v aluating the log-likelihood as a function of η there are
wo terms that complicate matters: a multiplication by 1/ S n and the
ddition of −ln ( f n ). Unlike the case when fitting the FP, we can now
gnore the 1/ S n weight because it is fixed for a given galaxy; ho we ver,
e cannot ignore the f n term. 

.1 f n correction 

 n describes the normalization of each galaxy’s PDF and mathemati-
ally encapsulates the ‘selection bias’ in our sample. Hence, it must
e accurately computed for each galaxy and each possible distance to
hat galaxy. The effect of including f n is to up-weight larger distances
or each galaxy to account for (1) the sampling of the FP being
ess complete at large distances where fainter galaxies drop below
ur magnitude limit and (2) observed galaxies being more likely at
arger distances than smaller distances because there is simply more
olume at larger distances. 

Mathematically, f n is the integral of the Gaussian likelihood, but
ith limits imposed by our selection function. These are a lower

imit for velocity dispersions, s > log (70), which doesn’t depend on
istance and so actually normalizes out of our fitting anyway, and
 limited range in magnitude, 10 . 0 ≤ m 

deV 
r ≤ 17 . 0. The latter cuts

hrough the FP in a way that can be written in terms of the minimum
nd maximum ef fecti ve sizes given a value for the surface brightness.
his can be seen by rearranging the relationship between apparent
agnitude, ef fecti ve radius, and surface brightness in equations ( 3 )

art/stac1681_f7.eps
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Figure 8. Top panel: The distribution of means, standard deviations, and 
skewness parameters for the SDSS PV data. Bottom panel: Example nor- 
malized probability distributions for the log-distance ratio of galaxies in the 
SDSS PV sample. We purposely plot the galaxies with the largest/smallest 
mean and skewness, and the largest uncertainty. In all cases, the skew-normal 
provides an excellent fit (red line), and the distributions are close to Gaussian. 
Note that these distributions include the f n correction described in Section 5.1 
and are plotted with 2.5 × fewer points than what is actually used in our 
fitting. 
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Figure 9. The f n normalization for each galaxy in the SDSS sample as a 
function of proposed distance. The vertical dotted line shows the comoving 
distance to the maximum redshift ( z = 0.1) of our sample assuming our 
fiducial cosmology. The light grey area shows the region in which all galaxies 
reside, while the dark grey region contains 95 per cent of the galaxies. In 
addition, curves for three individual galaxies are shown to highlight the typical 
shape of the curve and also the sources of variation in the relationship between 
galaxies. Galaxies with smaller k -corrections and extinctions have f n relations 
typically shifted to greater distances compared to those with larger values; if 
they both had the same ef fecti ve size and surface brightness, the one with the 
smaller sum of k -correction and extinction would be observable to a larger 
distance. In addition, galaxies with larger velocity dispersion uncertainties 
( e s ) are more likely to have scattered into the sample from below the velocity 
dispersion cut. 
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nd ( 4 ), and substituting in the magnitude limits. Hence, 

 n = 

1 

(2 π) 3 / 2 | C n | 1 / 2 
∫ ∞ 

−∞ 

∫ r max −i/ 2 

r min −i/ 2 

∫ ∞ 

s min 

d sd rd i 

× exp 

{
−1 

2 
( x n − x̄ ) C 

−1 
n ( x n − x̄ ) T 

}
(21) 

here 

 min = (10 + M 

r 
� + 5 log (1 + z helio ) − 0 . 85 z group 

−2 . 5 log (2 π) + k r + A r + 5 log ( d( ̄z )) − 17) / 5 , (22) 

 max = (10 + M 

r 
� + 5 log (1 + z helio ) − 0 . 85 z group 

−2 . 5 log (2 π) + k r + A r + 5 log ( d( ̄z )) − 10) / 5 , (23) 

nd both the cosmological redshift z̄ and the comoving distance to 
hat redshift, d( ̄z ), are computed based on each galaxy’s observed 
edshift and the candidate log-distance ratios. Hence there are 
ctually 1001 values of f n for each galaxy, varying as the proposed
istance to the galaxy increases. The individuality of the f n for each
alaxy in the SDSS sample is also apparent in the fact that the k -
orrection, extinction, and covariance matrix that enter into the above 
quations vary from g alaxy-to-g alaxy. 

The large number of galaxies in an FP sample means that 
 v aluating the abo v e inte gral becomes computationally demanding if
ne were to use numerical integration. To circumvent this, Springob 
t al. ( 2014 ) used simulations before and after the selection functions
ere applied as a form of Monte Carlo integration and assumed
he same correction for each galaxy. Besides this assumption, the 
isadvantage of this method is that the f n calculation remains quite
naccurate at large distances, where, by construction, the number of 

ock galaxies with which we can compute f n quickly goes to zero,
ven when large samples are generated. In Appendix C , we show
hat, although complex, the abo v e inte gral can actually be reduced to
 sum of elementary functions that are fast to e v aluate using standard
omputational libraries (such as SCIPY in Python) and give an exact
olution. As a result, we are able to compute f n for every galaxy in
he SDSS sample at each of their 1001 candidate distances in less
han a minute. 

The resulting function is shown in Fig. 9 . The characteristic shape
f f n as a function of distance is a peak lying in the range 10–
00 h −1 Mpc with a value close to unity (but not exactly, due to the
 min cut) that drops towards zero at very small distances and at larger
istances due to the bright and faint magnitude limits respectively. 
or about 95 per cent of galaxies, the curves are very similar, which
alidates the assumption made by Springob et al. ( 2014 ); however,
here are some outlying galaxies with more extreme distributions 
s a function of distance. Broadly speaking, the combination of 
 -correction and extinction that enters into the conversion from 

pparent magnitude to ef fecti ve radius and surface brightness varies
he distance scale of the f n relationship; two galaxies with the same
f fecti ve radius and surface brightness but different colours or at
ifferent proximity to the Galactic plane may not be observable to the
ame distance. The other trend seen in Fig. 9 is related to the galaxy’s
elocity dispersion uncertainty. Although all galaxies are assumed to 
e drawn from the same best-fitting FP and are subject to the same
 min cut, galaxies with larger velocity dispersion uncertainties are 
MNRAS 515, 953–976 (2022) 
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Figure 10. Bias in the measured log-distance ratios from SDSS PV mocks, 
binned as a function of redshift. Each data point corresponds to the error- 
weighted mean, while the error bar represents the standard deviation of the 
mocks in each bin ( not the standard error of the mean, which would be 

√ 

2048 
times smaller). Lines of constant PV are also shown. Our pipeline produces 
measured log-distance ratios that are unbiased across the entire redshift range 
of our sample and in excellent agreement with the truth values from the 
simulations. 
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Figure 11. A plot of the trend between absolute r -band magnitude and log- 
distance ratio seen in our mocks and data. Hexbins show real galaxies, with 
brighter colours indicating a higher density; contours show mock galaxies, 
with darker contours indicating a higher density. Red (blue) points are the 
average log-distance ratio of the mocks (data) in bins of absolute magnitude. 
The log-distance ratios clearly show a trend with absolute magnitude, but this 
does not lead to any biases. 
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ore likely to have scattered into the sample erroneously, and so, at
ts peak, the f n value is slightly further from unity. 

.2 Tests on mock catalogues and residual bias corrections 

iven the method for estimating the log-distance ratio in the presence
f selection effects described abo v e, we turn to v alidating ho w well
e reco v er the true log-distance ratios in our mocks. We test the

xtent of residual biases needing to be corrected in the data. This
lso allows us to assign realistic measured values and errors to the
ock data, which will be useful for computing (for instance) the

ncertainty on cosmological parameters measured from the SDSS
V sample. 

.2.1 Trends as a function of redshift 

e first examine the difference between the true and measured log-
istance ratios ( ηtrue and η, respectively) in the mocks as a function
f redshift. A bias as a function of redshift translates into a spurious
nflo w/outflo w, and e ven a small offset in log-distance ratio can lead
o a large bias in PV at the high redshift end of our data. Fig. 10
hows that our methodology for first fitting the FP, then extracting
og-distance ratios, when applied to all our mocks, produces results
hat are unbiased. There is excellent agreement between the measured
nd true log-distance ratios averaged over the 2048 simulations, and
here is no evidence that our pipeline is introducing spurious flows. 

.2.2 Trends as a function of magnitude 

urther investigation into the mock catalogues and data reveals a
rend between the absolute magnitude and the reco v ered log-distance
atios. In both the mock catalogues and the data, intrinsically bright
faint) galaxies have log-distance ratios that are systematically higher
lower) than the mean. This translates into a similar trend as function
f apparent magnitude, and is shown in Fig. 11 . 
NRAS 515, 953–976 (2022) 
Although at first glance, this is a concern, we have verified that
his trend is an expected result of identifying the best-fitting log-
istance ratio from the offset between r and the 3D Gaussian FP. This
an be understood by considering that, from equations ( 3 ) and ( 4 ),
he absolute magnitude of a galaxy M 

deV 
r ∝ r + 0 . 5 i. Ho we ver, the

aximum likelihood log-distance ratio is given by the offset from
he FP in the r -direction, which from equation ( 1 ) (ignoring the f n 
erm and other complexities) means η ∝ r + 0.841 i for the SDSS PV
ample (which has b = −0.841; see Table 2 ). Putting these together
learly shows that we expect η ∝ M 

deV 
r , albeit with some residual

ependence on the surface brightness and velocity dispersion. 
This can be seen graphically in Fig. 12 , where we plot the SDSS FP

ata as in Fig. 7 , but with each bin colour-coded by the average abso-
ute magnitude. Although subtle, there is a preference for intrinsically
righter/fainter galaxies to be situated abo v e/below the plane, which
hen results in the brighter/fainter galaxies having positiv e/ne gativ e
og-distance ratios, exactly as discussed mathematically above, and
een in Fig. 11 . This trend might be diminished if one were to use an
lternate method of fitting the FP and extracting log-distance ratios.
o we ver, Saglia et al. ( 2001 ) explored a number of these alternatives

nd found that the Maximum likelihood 3D Gaussian we use here
ives the most unbiased PVs, despite the apparent trend with absolute
agnitude, as it more accurately accounts for the range of sizes,

elocity dispersions and surface brightnesses seen in a typical FP
ample as well as simultaneous (and potentially correlated) errors in
ll three parameters. 

We did investigate whether this trend could lead to biases in
ubsequent uses of the SDSS PV catalogue and should be corrected.
e concluded that this trend does not result in a bias because: (i) we

ave already demonstrated that the mocks are unbiased as a function
f redshift (Fig. 10 ), even though there is a trend with absolute
agnitude; (ii) our sample is almost volume limited up to even

arge distances, at z = 0.05, corresponding to a comoving distance of
50h −1 Mpc , the limiting absolute magnitude is only M 

deV 
r ≤ −18 . 9;

iii) our tests of the bulk flow and growth rate measurements obtained
rom the mocks (presented here in Section 6 and in Lai et al.,
n prep., respectively) show no significant biases in the reco v ered
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Figure 12. The measured ef fecti ve radii against the predicted ef fecti ve radii 
based on the best-fitting FP parameters for the SDSS data, as per Fig. 7 , but 
with bins coloured according to the mean absolute magnitude. The black line 
shows the one-to-one line, and the vertical arrows show how the reco v ered 
log-distance ratio is related to this projection of the FP. One can see that there 
is a correlation between absolute magnitude and position abo v e/below the FP 
(rather than just along it) that inevitably creates the observed trend between 
reco v ered log-distance ratio and absolute magnitude. 
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Figure 13. Top panel: Number of SDSS PV galaxies as a function of group 
richness. Bottom panel: Average log-distance ratio in the SDSS PV catalogue 
as a function of Tempel et al. ( 2017 ) group richness. Red points show the 
log-distance ratios reco v ered using our default pipeline where all data is fit 
using a single FP, and that single set of FP parameters is used to reco v er log- 
distance ratios for the full sample. Blue points show the log-distance ratios 
when separate FPs are fit and used for different subsamples based on group 
richness as discussed in Section 5.3 and denoted by the vertical dotted lines. 
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easurements; and (iv) as discussed in the next section, we do find a
ias associated with group richness, that could concei v ably have been
ue to groups containing galaxies that do not span the full range of
bsolute magnitudes. Ho we ver, we implemented a correction forcing 
he log-distance ratio in the data and mocks to be flat as a function
f absolute magnitude, and found it had no effect on the bias with
roup richness (which is therefore corrected differently). Hence, we 
o not ‘correct’ for the trend between log-distance ratio and absolute 
agnitude seen here. 
It is important to note that this could cause bias in subsequent

nalyses if the data were later cut to a brighter magnitude limit and
v eraged o v er because the FP and f n correction for all galaxies in the
DSS sample have been fit/computed assuming a magnitude limit of 
7.0. If the data is cut to a brighter limit, then the correct procedure
ould be to refit the FP and log-distance ratios using the updated
agnitude limit. 

.3 Trends as a function of group richness 

n the previous sections, we have demonstrated that we are able to
eco v er log-distance ratios that are unbiased as a function of redshift,
nd the observed trend with absolute magnitude is as expected and 
oes not need correction. Ho we v er, we do observ e one source of
ystematic bias in the SDSS sample that does require correction: a 
orrelation between the reco v ered log-distance ratio and the number 
f galaxies in the same group. We verified that this is uncorrelated
ith the trend with absolute magnitude (i.e. due to the fact that groups
ith more members may contain different distributions of bright or 

aint galaxies), since forcing the average observed log-distance ratio 
o be constant as a function of absolute magnitude did not remo v e
he bias with group richness. 

The bias is demonstrated in Fig. 13 , where we plot the average
og-distance ratio o v er groups of different sizes, where for size we
se the number of galaxies (not all of which are in the SDSS PV
ample) belonging to the same Tempel et al. ( 2017 ) group. We see
 clear trend of decreasing log-distance ratio with increasing group 
ichness. This is a problem because larger groups will have more 
easured PVs, and it is common to average over the PVs within
ach group, exacerbating this bias. 

The existence and origin of environmental dependencies in the 
P, either in terms of local properties such as the distance from the
alaxy to the cluster centre, or global properties such as cluster
ichness or radius, is a long-standing question. Previous studies 
sing large samples of galaxies such as those of Bernardi et al.
 2003b ); D’Onofrio et al. ( 2008 ), La Barbera et al. ( 2010 ), Magoulas
t al. ( 2012 ), and Hou & Wang ( 2015 ) find correlations between
he FP offset/residuals with local surface density, but less evidence 
f correlations with group richness – although large differences are 
een between galaxies in groups (of any size) and in the field. One
ossibility is that the observed change in the FP with cluster richness
s the result of a more elementary correlation between the FP and the
tellar age of a galaxy, with richer clusters containing more evolved
tellar populations (d’Eugenio et. al. 2021 ). 

Another likely possibility is that the trend arises due to data
ystematics. There are a number of other trends in the data correlated
ith group richness; including redshift, apparent magnitude, and 

ngular size. Ho we v er, a substantial fraction of this is to be e xpected
for a magnitude limited sample, richer groups contain, on average, 

ainter galaxies, which are found at lower redshifts with larger 
ngular sizes on the sky. This effect should be partially compensated
or by our accounting of the selection function when fitting the FP and
og-distance ratios, and we see no bias in our log-distance ratios with
edshift (which would clearly translate into a bias on group richness
f this also varies with redshift). The bias remains if we remo v e all
se of group redshifts in our FP data and fitting, which indicates it is
ot due to misidentification of, or misassociation with, groups. 
It is hence difficult to disentangle what proportion of the observed

rends are due to our sample being magnitude limited, data system-
tics or environmental effects, and we do not address this further in
MNRAS 515, 953–976 (2022) 
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Figure 14. Distributions of FP parameters for subsamples of the SDSS PV 

catalogue split as a function of group richness. Contours and histograms are 
derived from 200 simulations centred on the best-fitting parameters from 

the data, each with the same number of simulated data points as the real 
data subsamples. These are used to demonstrate the expected spread in 
FP parameters for each subsample. The black-dashed lines show the FP 
parameters fit to the full SDSS PV sample. There is considerable scatter in 
the best-fitting parameters with group richness, but the slope b and mean 
surface brightness ̄ı exhibit clear trends. 
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7 This adds up to more than 296 galaxies as some galaxies have measurements 
using multiple tracers. In this case, the individual CF3 measurements are 
averaged into a single value for the galaxy. 
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he current work. None the less, we seek a way to ensure this does
ot lead to biased PVs, which is most easily achieved by fitting the
P to different subsamples of our full data set based on the group
ichness. 

We do this by splitting our sample into roughly logarithmic bins
n group richness, where each subsample contains at least 1,500
alaxies and 70 distinct groups. We then run the separate subsamples
hrough our default fitting methodology, reco v ering both the best-
tting FP parameters and new log-distance ratios for each galaxy. 
The FP parameters for the most constraining sub-samples along

ith errors derived from 200 simulations centred on the fits from the
ata are shown in Fig. 14 . The simulations are generated as for the
ingle FP sample in Section 3 , but without populating an underlying
-body simulation (and so do not have any LSS or clustering). We

lso do not show the constraints for group sizes larger than 30, as the
arameter constraints are too weak to deduce anything meaningful.
one the less, there are clear systematic variations of the slope b and
ean surface brightness ı̄ , both of which decrease with increasing

roup richness. Correlations with other parameters are less clear.
he trends with b and ̄ı seem to be detected at high significance, but

or other parameters, the field population does not seem statistically
ifferent from the different size groups. 
The origin of this remains unclear – the trend identified by La

arbera et al. ( 2010 ) is with the parameter combination c = r̄ −
 ̄s − b ̄ı and not reproduced here, while Magoulas et al. ( 2012 ) did
ot see a strong correlation between b and group richness, but did
ith local galaxy surface density. Ho we ver, we find that performing

eparate fits by group richness and then combining the resulting
ubsamples leads to log-distance ratios that exhibit far less bias with
roup richness. This is shown in Fig. 13 as the blue points. 
NRAS 515, 953–976 (2022) 
As we are able to remo v e the bias associated with group richness
y simply fitting separate FPs to the subsamples of the data, we
se this as our empirical correction going forward. The ‘corrected’
og-distance ratios provided with the SDSS PV catalogue are those
btained using these multiple FP fits rather than a single fit to the
ntire sample. 

.4 Zero-point 

 key assumption when fitting the FP is that the net velocity of the
ample is zero. This is unlikely to be true in reality. To correct for
his assumption, we need to make one final ‘zero-point’ correction
o our sample. In Springob et al. ( 2014 ), this was done by assuming
hat a sample drawn from an approximate great circle (in this case,
lose to the celestial equator) truly does have net velocity equal
o zero. Ho we ver, this makes use of the hemispherical sk y-co v erage
fforded by 6dFGSv, which is not available with the smaller footprint
f the SDSS PV sample. Instead, we calculate the zero-point of the
DSS PV sample by cross-matching to o v erlapping galaxies that
lso contain distance measurements in the Cosmicflows-III catalogue
CF3; Tully et al. 2016 ), using the individual redshifts to convert from
istance moduli presented in CF3 to log-distance ratio. CF3 itself is
alibrated using a distance ladder containing first galaxies hosting
epheid variable stars (Freedman et al. 2012 ), Tip of the Red Giant
ranch stars (Rizzi et al. 2007 ) and maser emission (Humphreys
t al. 2013 ); then Type Ia Supernovae (Rest et al. 2014 ). By linking
he SDSS PV sample to CF3 we are hence extending this distance
adder and relying on the calibration of the intermediate rungs to
et our zero-point. This also means that our result for the bulk flow
n Section 6 will be strongly correlated with the same measurement
rom CF3. Ho we ver, we do v alidate our zero-point using independent
ata from the 2M ++ reconstruction of the local velocity field. 
We perform the calibration in two ways, careful to fairly compare

og-distance ratios before and after the correction for group richness
n Section 5.3 . We first look at the 296 individual galaxies in common
etween CF3 and the SDSS PV sample, of which 8, 6, 2, and 285
ave previous distances from Type Ia supernovae, surface brightness
uctuations, the TF relation, and the FP, respectively. 7 The CF3
P-based distances were derived from the EFAR, SMAC, ENEAR,
nd 6dFGSv surv e ys. The presence of SDSS PV measurements that
lso have TF distances is worrying, but both of the abo v e cases are
enticular galaxies where it is unclear from the visual inspection
hether the FP or TF relation (or indeed both!) is more appropriate.
o be conserv ati v e, we remo v e these from the zero-point calibration,
ut find that doing so changes the zero-point by only 0.1 σ . The
emaining 294 o v erlapping galaxies are distributed across the full
edshift range of the SDSS PV sample; ho we ver, the calibration is
ominated by low redshift objects – 90 per cent have z < 0.05. 
From the 294 galaxies, we compute the weighted mean difference

etween CF3 and log-distance ratios from our single FP fit to the full
ample (i.e. with no correction for group richness) as 

 ηCF3 − ηSDSS 〉 = −0 . 0028 ± 0 . 0080 , (24) 

The second way we compute the zero-point is by using groups that
hare both a CF3 and SDSS PV measurement. Using the (Tempel
t al. 2017 ) group catalogue, we identify 292 groups that contain
t least one CF3 and one SDSS PV measurement. We then first
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Figure 15. A comparison of log-distance ratios from galaxies in common, 
and distance moduli from groups in common, between the SDSS PV catalogue 
and CosmicFlows-III. We use log-distance ratios from single FP fits and 
multiple FP fits for the upper and lower plots respectively. The line and 
shaded region show the best-fitting and corresponding 1 σ region from a fit to 
the data after the zero-point correction, while the dashed-line is the expected 
one-to-one line. 
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verage the measurements within the two catalogues (i.e. if a group 
ontains two CF3 and four SDSS PV measurements, we average the 
wo to obtain a single CF3 consensus value, and the four to obtain a
ingle SDSS PV consensus v alue). We then compare the dif ference
t the group-av eraged lev el between CF3 and our log-distance ratios
btained from multiple FPs fit to the full sample as a function of
roup richness (i.e. correcting for the bias in Section 5.3 ). We find 

 ηCF3 − ηcorr 
SDSS 〉 = −0 . 0037 ± 0 . 0040 . (25) 

his is fully consistent with the zero-point from individual objects. 
o we ver, the use of group-averages provides a smaller uncertainty, 

nd so we adopt this as the official zero-point for the SDSS PV
ample. As a final check, we predict the velocities for each of the
DSS PV galaxies using the SDSS PV redshifts and reconstructed 
elocity field of 2M ++ (Carrick et al. 2015 ; processed as in Carr
t al. 2021 ). We then convert these to log-distance ratios and e v aluate
he zero-point. For the single FP fit and multiple FP fit log-distance
atios, we find 

 η2M ++ 

− ηSDSS 〉 = −0 . 0019 ± 0 . 0006 , (26) 

 η2M ++ 

− ηcorr 
SDSS 〉 = −0 . 0013 ± 0 . 0005 , (27) 

espectively, which are both also consistent with our other methods 
f determining the zero-point. We do caution that this last method 
s not fully model independent – the predicted velocities of Carrick 
t al. ( 2015 ) depend on cosmological parameters – and so this is used
nly as a cross-check of the empirical zero-point (equation 25 ) we
ctually adopt. 

A comparison of the log-distance ratios for individual objects 
n both CF3 and the SDSS PV sample, and distance moduli for
roups containing o v erlapping galaxies from both data sets after 
pplying our zero-point correction is shown in Fig. 15 . The best-
tting and 1 σ shaded regions are obtained by taking into account 

he uncertainties in both axes using HYPERFIT (Appendix A ). The fit
fter the correction is consistent with a one-to-one line, with small
ntrinsic scatter, demonstrating excellent agreement between the two 
ndependent sets of measurements. Given the close agreement across 
 wide range of values, we do not apply a change to the slope in
ddition to the zero-point offset. 

This choice is further justified in Fig. 16 , which shows the mean
og-distance ratio in bins of redshift. Aside from the presence of LSSs
long the line-of-sight, there is no evidence of radial systematics 
n the data (as would be hoped given the mock validation in Sec-
ion 5.2.1 ), and reasonable agreement between the three methods of
stimating the log-distance ratio. Note that the reconstruction of Car- 
ick et al. ( 2015 ) only extends up to z = 0.067, so beyond this the pre-
icted velocity is simply forced to gradually tend to zero and does not
nclude any inhomogeneities that may exist at these higher redshifts. 

It is important to note that we do not include the uncertainty on r̄ 
f 0.016 (most of which comes from cosmic variance) from Table 2
n the zero-point error budget in equation ( 25 ). As we are comparing

ultiple measurements for the same objects in this calibration, which 
re subject to the same cosmic variance, the expected error is hence
uch smaller than the 0.016 found from our ensemble of mocks. 
one the less, if one were to compare the log-distance ratios in our

atalogue to the prediction from LCDM (wherein cosmic variance 
ust be accounted for), the error in the zero-point that should be

onsidered would be the combination of the zero-point uncertainty 
rom the comparison to CF3 (0.0040) and that due to cosmic variance
0.016). How exactly that is done would depend on the method, as it
ay be that the cosmic variance contribution is instead incorporated 
nto the theory calculation (as is often done in bulk flow studies, see
ection 6 ), and so should be kept separate to a v oid double counting.
We also do not include the error in the zero-point from CF3

which for H 0 = 75 ± 2 km s −1 Mpc −1 gives an uncertainty on the
og-distance ratio of 0.0116). We do so as to enable other choices of
ero-point, Hubble Constant, or distance ladder anchor to be made. 
ny uncertainties in the calibration of the CF3 distances themselves 

o Cepheids or other local distance anchors should hence be included
s an additional error contribution to the 0.004 we quote. 

.5 Summary 

n this section, we hav e pro vided a thorough explanation for how
o extract measurements of the log-distance ratio and PV from a
ample of FP galaxies. Our approach includes a new analytic method
or accounting for selection bias, which makes it tractable for us to
pply the same technique to all our mocks. We have demonstrated that 
he method produces unbiased log-distance ratios, but that a residual 
orrelation between the group richness and log-distance ratio requires 
s to fit subsamples with different cluster sizes separately. Our final
ombined catalogue achieves a mean uncertainty on the log-distance 
MNRAS 515, 953–976 (2022) 
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Figure 16. Log-distance ratios in the SDSS PV catalogue (points) and 
simulations (faint lines/bands), binned as a function of redshift. The grey and 
blue filled-in bands and corresponding lines show the mean and 95 per cent 
(2 σ ) bounds for the simulations using the true and measured log-distance 
ratios, respectively, which are centred on the horizontal dashed line at η = 

0 as expected. We show log-distance ratio measurements from single and 
multiple FP fits as a function of group richness, and predicted from the 
2M ++ reconstruction of Carrick et al. ( 2015 ). 
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8 The reduced χ2 in Fig. 17 has been computed assuming the three directions 
are independent. This is not true in practice as they are fitted at the same 
time from data with only radial PVs. Ho we v er, we v erified that χ2 

red is similar 
when using the full 3 × 3 covariance for each mock or just summing the 
indi vidual χ2 v alues for each direction. This is demonstrated further by the 
fact that after rescaling the uncertainty on each individual direction so that 
the reduced chi-squared for each component is one, the reduced chi-squared 
accounting for the cross-correlation is also close to one ( χ2 = 1 . 08). 
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atio of 0.1 dex, which translates to a ∼ 23 per cent uncertainty
n the distance. This is slightly better than was achieved with
dFGSv (26 per cent ; Springob et al. 2014 ), and could potentially
e impro v ed further with a more detailed understanding of the
bserved correlation between group richness and the FP parameters.
inally, we tie the zero-point of our sample to the CosmicFlows-
II data, demonstrating consistency using both individual objects
nd objects within the same cluster, and reco v ering a relativ e zero-
oint uncertainty of 0.004 dex (not including cosmic variance or the
ncertainty in the CF3 zero-point itself). 

 BU LK  FLOW  

n the last part of this work, we present measurements of the bulk
ow from the data and mocks as an example of the analysis that
an be performed using our publicly available SDSS PV catalogue
nd associated simulations. All measurements are performed in
upergalactic Cartesian coordinates. 
In Fig. 17 , we show measurements of the bulk flow estimated from

ur 2048 mock catalogues using the Maximum Likelihood method
Kaiser 1988 ) applied directly to the log-distance ratios as in Qin
t al. ( 2018 ) and Qin et al. ( 2019a ). The ‘true’ bulk flow is defined
imply as the weighted average of the underlying velocities in each
irection, where the measurement error is used as the weight to
nsure that the two sets of bulk flows are at the same ef fecti ve depth.

Fig. 17 shows that we reco v er bulk flow measurements that are, on
verage, unbiased and well correlated with the true bulk flow in each
imulation. Ho we ver, the error bars do not represent well the scatter
etween the measured and true values, as can be seen by the very large
educed χ2 difference between the observed and true values from the
ocks in each of the three separate directions included in the figure.
 similar result can be seen in Qin et al. ( 2018 , 2021 ) and other work
sing the Maximum Likelihood Estimator. Possible reasons for this
re a failure of our assumption that the velocity of each galaxy can be
epresented simply as a bulk flow, without higher order components,
nd/or that the distribution of each measured velocity can be treated
NRAS 515, 953–976 (2022) 
s an independent Gaussian. Ho we v er, we leav e detailed testing of
his hypothesis, and of whether the scatter can be reduced or the error
ars made more reasonable, for future work. Instead, when necessary
n this work, we simply enlarge the observational errors in each of the
hree components by a factor equal to 

√ 

χ2 
red , such that the reduced

hi-squared is renormalized to one. 8 

We also find that the uncertainty is smallest and most underes-
imated in the y -axis. This is interesting because our use of the
upergalactic coordinate system places the y axis almost perfectly
long the observer’s line of sight, with x- and z- transverse to this. The
DSS PV surv e y is a somewhat narrow but long cone (compared to
 surv e y like 6dFGSv) and so the large χ2 

red in this direction indicates
hat there is likely some systematic in the measurement technique
i.e. neglecting higher-order moments) that becomes more important
hen we are able to average over a larger volume. 
Our results applying the same procedure to the full set of data

re shown in Table 3 . In Fig. 18 , we show the same measurements
ut cutting the upper redshift limit of the data at seventeen different
alues of z max ∈ (0.02, 0.10) with 	z max = 0.005. When making such
easurements, we remo v e an y data with log-distance ratios scattered
ore than 4 σ from the mean to ensure objects with outlying PVs do

ot bias our results. We also correct all the observational uncertainties
or the data by the same factor as was found to be necessary to bring
he true and measured values for the mocks into statistical agreement.

e compute this scaling separately for each value of z max . 
In both the table and figure we also provide the theoretical, cosmic-

ariance expectation of a � CDM model with our fiducial/simulation
osmology (given at the end of Section 1 ) accounting for the actual
eometry of the SDSS PV catalogue and the uncertainty on each
easurement. This is done using the methods of Feldman et al.

 2010 ) and Ma, Gordon & Feldman ( 2011 ), where the theoretical
ovariance between each PV measurement is computed using 

 mn = 

�1 . 1 
m 

H 

2 
0 

2 π2 

∫ 
f mn ( k ) P ( k ) dk , (28) 

hich depends on both the fiducial cosmological model (through the
atter power spectrum, P ( k ), matter density �m and Hubble constant
 0 ) and the relative location of each pair of galaxies in the SDSS
V sample (through f mn ; which is given in Equation A11 of Ma et al.
011 ). For the SDSS PV catalogue W mn is a 34, 059 × 34, 059 matrix.
o reduce this down to the theoretical covariance matrix for the 3
ulk flow components R 

( v) 
pq , we multiply by the vector of Maximum

ikelihood weights for each galaxy n , R pq = w p,m 

w q,n W mn (where
e adopt the Einstein summation convention), and where 

 p,n = A 

−1 
pj 

ˆ x j,n 

σ 2 
v,n + σ 2 ∗

; A pj = 

ˆ x p,n ̂  x j,n 

σ 2 
v,n + σ 2 ∗

. (29) 

hese weights depend only on the unit vector defining the position
f the galaxy with respect to our three bulk flow directions ˆ x , and
he uncertainty on the PV measurement. We convert the errors on the
og-distance ratio to those on velocities using the approximation of

atkins & Feldman ( 2015 ), σv,n = ln (10) cz mod / (1 + z mod ) × ση,n ,
red 
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Figure 17. A comparison of the measured and true bulk flow in the Supergalactic x -, y - and z-directions (left-hand, middle, and right-hand columns, respectively) 
in the SDSS mocks. The solid lines and shaded regions show a linear fit, plus 1 σ errors on the fit, where we have assumed the reported errors are accurate. In 
this case, we reco v er the e xpected one-to-one line (dashed black line) to within 1 σ . Ho we ver, the error bars are not fully representative of the scatter seen in 
the measurements, as can be seen from the reduced chi-squared χ2 

red between the observed and true values from the mocks. This can also be seen in Qin et al. 
( 2018 , 2021 ) and thus requires further study in subsequent work to impro v e. 

Figure 18. Bulk flow measurements from the SDSS PV catalogue as a function of weighted depth. Each point is computed by cutting the full catalogue to 
dif ferent v alues of z max ∈ (0.02, 0.10) with 	z max = 0.005. Circles and squares show measurements using log-distance ratios for the sample with single and 
multiple FP fits as a function of group richness, respectively. Crosses are measurements for the multiple FP-fitting sample, but where we offset the zero-point by 
+ 0.01 dex (a 2.5 σ shift compared to our zero-point uncertainty), to demonstrate that such errors have only a small effect on the x - and z-directions. Error bars 
have been corrected for the underestimation seen in the mocks and are of similar size for all three data samples, so, are only plotted for one set for clarity. The 
shaded regions show the 1 and 2 σ expectations for our fiducial � CDM model. 
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nd add a small additional contribution to the measurement uncer- 
ainties, σ∗ = 350 km s −1 to account for non-linearities in the velocity 
eld. In this way, the weights encode the relative contribution of each
alaxy in the sample to the o v erall bulk flow measurement, and so
he theoretical prediction also takes into account that galaxies with 
arger errors will contribute less, and galaxies with radial PVs aligned 
ith, for example, the y -direction will not contribute to the x or z
irection bulk flow. 
Finally, we compute the chi-squared value for a measured bulk 

o w B gi ven our theoretical model using 

2 
BF = B p ( R 

( v) 
pq + βp βq R 

( ε) 
pq ) 

−1 B 

T 
q (30) 

here we have included the measurement error for the bulk flow, 
 

( ε) 
pq scaled by β to account for the underestimation of the errors seen

n the mocks (Fig. 17 ). 
Considering both cosmic variance and the measurement error, the 

robability of obtaining a larger bulk flow in � CDM is 20 . 0 per cent
nd 10 . 8 per cent for the single and multiple FP fit samples, respec-
ively – too high to rule out the null hypothesis (that our fiducial
 CDM model is correct). Ho we ver, looking in more detail at the
easurements when cutting the SDSS data at different depths, we see

hat there is a preference for a larger-than-expected bulk flow in the
 direction that is persistent when including data abo v e z = 0.08 and
ctually more discrepant with the � CDM prediction when the highest 
edshift data is not included. Using only data for z ≤ 0.08, we find
 ( >χ2 ) = 8 . 1 per cent and 6 . 1 per cent for the single and multiple
P fits, respectively, which is closer to the 5 per cent confidence 

evel but still not enough to disfa v our � CDM with confidence. The
easurements using our preferred multiple FP fits as a function of

roup richness are not quite consistent with those for a single FP fit
o the full sample, which is perhaps not surprising given the bias in
he ‘single FP’ sample identified in Section 5.3 . None the less, we
resent both to highlight that (regardless of the choice of data) both
eco v er slightly larger than expected bulk flows at large distances, at
east in the x -direction. 

This is interesting because several other studies have reported 
arger -than-expected b ulk flows at similar depth (Pike & Hudson
005 ; Feldman & Watkins 2008 ; Kashlinsky et al. 2008 ; Feldman
MNRAS 515, 953–976 (2022) 
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M

Table 3. Estimates of the bulk flow from the SDSS data. ‘Data’ columns 
correspond to bulk flows measured from the SDSS PV catalogue using 
either a single FP fit to the entire sample, or our preferred method of 
fitting separate FP’s to the sample as a function of group richness to remo v e 
the bias demonstrated in Section 5.3 . In both cases, the uncertainties have 
been increased by a constant factor to correct for the underestimation of the 
observational uncertainties seen in the mocks (Fig. 17 ). ‘ � CDM’ columns 
correspond to the predictions from our fiducial cosmological model for the 
SDSS surv e y geometry. We list the three individual components B i (for 
which the expected value is al w ays 0), the bulk flow amplitude | B | , and the 
weighted depth of the measurements d MLE . The last row gives the probability 
of reco v ering a χ2 difference between the data and � CDM that is larger than 
the value we actually find. For the individual components, the expectation is 
a Gaussian with a zero-mean and standard deviation ∼120 km s −1 and for the 
bulk flow amplitude (which is Maxwell–Boltzmann distributed), we list the 
‘most probable’ value and 68 per cent confidence limits. 

Single FP fit Multiple FP fits 
Data � CDM Data � CDM 

B x ( km s −1 ) −224 + 73 
−97 ±118 −345 + 66 

−101 ±119 

B y ( km s −1 ) −106 + 39 
−34 ±131 −88 + 40 

−29 ±131 

B z ( km s −1 ) 190 + 140 
−105 ±107 −75 + 107 

−132 ±107 

| B | ( km s −1 ) 323 + 82 
−76 98 + 50 

−43 381 + 85 
−79 99 + 51 

−43 

d MLE (h −1 Mpc ) 139 139 
P ( >χ2 ) 20.0 per cent 10.8 per cent 

Figure 19. Map of the SDSS PV catalogue (black points) alongside a 
−1 h −1 Mpc < SGZ < 1 h −1 Mpc slice of the 2M ++ reconstruction of the 
local density field (Carrick et al. 2015 ) in Supergalactic coordinates. The large 
o v erdensity at SGX ≈ −125 h −1 Mpc , SGY ≈ 75 h −1 Mpc is the Shapley 
supercluster, which provides a possible explanation for our larger-than- 
expected bulk flow measurement. 
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t al. 2010 ; Lavaux et al. 2010 ). One possible explanation for our
esult is systematic errors, but we would typically expect the impact
f any residual systematics to only become larger when the higher
edshift data is included, and, moreo v er, the choice of coordinates
sed in this bulk flow analysis places the axis of increasing redshift
which is the one most prone to systematic errors) almost purely in
he Cartesian y -direction. It is in this direction that any zero-point
alibration errors would be mostly confined – as can be seen in
ig. 18 , a change to the zero-point of + 0.01 dex (a 2.5 σ change)
auses only a small change in the x - and z-direction bulk flow
ompared to the y -direction. 

As a physical explanation, it is worth noting that the direction of
ur measured bulk flow aligns well with the position of the Shapley
upercluster, as can be seen in Fig. 19 using the reconstructed density
eld from 2M ++ (Carrick et al. 2015 ). Ho we ver, it is dif ficult to say
hether the amplitude of our measurement is in agreement with
NRAS 515, 953–976 (2022) 
hat would be expected given the gravitational influence from this
tructure. This hence provides an interesting avenue for further study,
ither with impro v ed techniques for measuring the bulk flow (such as
he Minimum Variance estimator; Watkins et al. 2009 ), such that we
an a v oid ha ving to correct the observational uncertainties as done
ere, or with data at the same or larger depths and o v er a wider area,
hich may be possible with upcoming surv e ys. 

 C O N C L U S I O N S  

n this paper, we present the SDSS PV catalogue, a collection of
4,059 high-quality PV measurements up to z = 0.1, subtending an
rea of 7016 deg 2 . We also provide a detailed analysis of the char-
cteristics of the data, identifying and correcting systematic errors,
nd find excellent agreement with overlapping measurements from
 xisting surv e ys. A ke y finding is the trend between mean surface
rightness, slope b , and group richness. Whether this reflects an
ntrinsic dependence of the FP due to the differing assembly histories
n different environments, or is due to unresolved systematics remains
nclear. Ho we ver, for the purposes of the PV catalogue, we account
or this by fitting separate FPs to samples of different group richness.

Alongside our data, we make public an ensemble of 2,048
imulated catalogues that almost exactly reproduce the selection
unction and quality of the data and were run through the same
ipeline to enable accurate systematic calibration. As a necessary
tep towards this, we created impro v ed techniques for fast fitting of
he FP and extraction of PVs, which also set the stage for next-
eneration samples of data that we may expect from upcoming
urv e ys such as DESI (DESI Collaboration et al. 2016 ) or Southern
emisphere surv e ys on the 4MOST facility (4HS; PIs Cluver and
aylor). Ho we ver, we caution that the 3D Gaussian model that we
ssume here may need to be extended to better incorporate skewness
rising from the inclusion of fainter galaxies from these samples, in
hich case our analytic corrections for the selection functions will

lso need to be revisited. 
In terms of future work, our preliminary tests weakly suggest

 bulk flow from the SDSS PV data that is higher than expected
rom � CDM. We have demonstrated that the alignment of this flow
mplies it is not a result of either our correction for group richness
r an inaccurate zero-point calibration, but could be a result of the
roximity of our data to the Shapley supercluster. Further work is
equired to unco v er the full origin of this large bulk flow. We hope that
he publicly available SDSS PV data and associated data products
ill provide all the necessary ingredients to do just that, as well

s enabling further cosmological and cosmographic analysis of our
ocal Universe. 
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lotting library (Hunter 2007 ), and the CHAINCONSUMER and 
MCEE packages (Hinton 2016 ; F oreman-Macke y et al. 2013 ).
omputations were performed on the OzSTAR national facility 
t Swinburne University of Technology, which receives funding 
n part from the Astronomy National Collaborative Research 
nfrastructure Strategy (NCRIS) allocation provided by the 
ustralian Go v ernment, and with the assistance of resources and 

ervices from the National Computational Infrastructure (NCI), 
hich is also supported by the Australian Go v ernment. 

ATA  AVA ILA BILITY  

he SDSS PV catalogue and associated data products and simula- 
ions are available on Zenodo: https://zenodo.org/r ecor d/6640513 . 
he catalogue can also be accessed in a modified form with 
light additional metadata at the Extragalactic Distance Data base 
ttps:// edd.ifa.hawaii.edu/ in the section Summary Distances, in a 
le called FP: SDSS Distances. Raw SDSS data was obtained from

he SDSS Casjobs server. Exact queries used for the SDSS PV data
nd its supersets in Table 1 will be shared upon reasonable request
o the corresponding author, as will all other codes or data. 
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PPENDIX  A :  HYPERFIT  

n the course of this work, we have frequently required a fast,
imple method to fit a line or plane to data, allowing for either,
r both, intrinsic scatter and (potentially correlated) errors on all
he input variables (i.e. in both the ‘ x ’ and ’ y ’ variables for a 2D
t). A general method for such fitting is detailed in Robotham &
breschkow ( 2015 ) and implemented through the associated R-
ackage HYPERFIT . For our purposes, we found it useful to produce a
imilar package in Python. This package has been fully documented
nd made ‘pip-installable’. It provides vectorized methods to simply
nd the best fit given the data or to return a full set of posterior
amples for the model given the data. Real, astrophysical, test data
s provided with the package, demonstrating that it typically takes
nly a few seconds to find the best fit or a couple of minutes
or a fully converged MCMC run. More details can be found at
t tps://hyperfit .readt hedocs.io/en/lat est/. 

PPENDIX  B:  TR ANSFORMATION  BETWEEN  

P  E I G E N V E C TO R S  A N D  PA R A M E T E R S  

n the most general 3D Gaussian method (Saglia et al. 2001 ; Colless
t al. 2001 ; Magoulas et al. 2012 ), the FP is defined by three
NRAS 515, 953–976 (2022) 
rthonormal unit eigenvectors, 

ˆ  1 = 

ˆ r − a ̂  s − b ̂ i 
| v 1 | 

ˆ  2 = 

b ̂  r − bk ̂ s + (1 − ka) ̂ i 
| v 2 | 

ˆ  3 = 

( k a 2 − a + k b 2 ) ̂ r + ( k a − 1 − b 2 ) ̂ s + ( k b + ab) ̂ i 
| v 1 || v 2 | (B1) 

here 

 v 1 | = 

√ 

(1 + a 2 + b 2 ) 

 v 2 | = 

√ 

1 + b 2 + k 2 ( a 2 + b 2 − 2 a/k) . (B2) 

sing these expressions and the Jacobian, we can write the scatter
atrix components for the FP parameter space shown in equa-

ion ( 17 ) in terms of σ 1 , σ 2 , σ 3 (the scatter in each of the orthonormal
oordinates) as 

2 
r = 

σ 2 
1 

| v 1 | 2 + 

b 2 σ 2 
2 

| v 2 | 2 + 

( ka 2 − a + kb 2 ) 2 σ 2 
3 

| v 1 | 2 | v 2 | 2 (B3) 

2 
s = 

a 2 σ 2 
1 

| v 1 | 2 + 

k 2 b 2 σ 2 
2 

| v 2 | 2 + 

( ka − 1 − b 2 ) 2 σ 2 
3 

| v 1 | 2 | v 2 | 2 (B4) 

2 
i = 

b 2 σ 2 
1 

| v 1 | 2 + 

(1 − ka) 2 σ 2 
2 

| v 2 | 2 + 

( kb + ab) 2 σ 2 
3 

| v 1 | 2 | v 2 | 2 (B5) 

rs = − aσ 2 
1 

| v 1 | 2 −
kb 2 σ 2 

2 

| v 2 | 2 + 

( ka − a + k b 2 )( k a − 1 − b 2 ) σ 2 
3 

| v 1 | 2 | v 2 | 2 (B6) 

ri = − bσ 2 
1 

| v 1 | 2 + 

b(1 − ka) σ 2 
2 

| v 2 | 2 + 

( ka − a + k b 2 )( k b + ab) σ 2 
3 

| v 1 | 2 | v 2 | 2 (B7) 

si = 

abσ 2 
1 

| v 1 | 2 − kb(1 − ka) σ 2 
2 

| v 2 | 2 + 

( ka − 1 − b 2 )( kb + ab) σ 2 
3 

| v 1 | 2 | v 2 | 2 . (B8) 

In practice, previous works (Saglia et al. 2001 ; Colless et al. 2001 ;
agoulas et al. 2012 ) all found that the second eigenvector has a very
eak dependence on s , so that the longest axis of the 3D Gaussian

s confined to the r –i plane. If one assumes a priori that this is true,
hen k = 0 in the abo v e e xpressions. We make the same assumption
n our fits. 

PPENDI X  C :  D E R I VAT I O N  O F  A NA LY T I C  f n 

n this appendix, we derive the expression for the inte gral o v er the
D Gaussian of the FP in terms of elementary functions. Although
he exact deri v ation here is somewhat specific to the typical selection
unction imposed on FP measurements, it can be adapted to other
cenarios requiring the integral over a 3D Gaussian function. 9 

1 General case 

he integral we seek to solve has the form 

 n = 

1 

(2 π) 3 / 2 | C | 1 / 2 
∫ ∞ 

−∞ 

∫ r max −i/ 2 

r min −i/ 2 

∫ ∞ 

s min 

d sd rd i 

× exp 

{
−1 

2 
( x − x̄ ) C 

−1 ( x − x̄ ) T 
}

, (C1) 
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here x = ( r, s, i), x̄ = ( ̄r , ̄s , ̄i ) and 

 

−1 = 

⎛ 

⎝ 

� rr � rs � ri 

� rs � ss � si 

� ri � si � ii 

⎞ 

⎠ . (C2) 

or our FP scenario, the values of r max(min) and the covariance matrix
 change for each galaxy n ; r max(min) also vary as a function of
istance. The first thing to note is that we are free to re-centre the
ntegral about the mean values by performing a simple change of
ase, 

 n = 

1 

(2 π) 3 / 2 | C | 1 / 2 
∫ ∞ 

−∞ 

∫ r max −r̄ −ī / 2 −i/ 2 

r min −r̄ −ī / 2 −i/ 2 

∫ ∞ 

s min −s̄ 

d sd rd i 

exp 

{
−1 

2 
x C 

−1 x T 
}

. (C3) 

ocussing on the integrand, we can expand the exponent as 

x C 

−1 x T = � ss 

(
s + 

� si i + � rs r 

� ss 

)2 

+ 

(
� ii − � 

2 
si 

� ss 

)
i 2 

+ 

(
� rr − � 

2 
rs 

� ss 

)
r 2 + 2 

(
� ri − � rs � si 

� ss 

)
ri. (C4) 

ubstituting this into equation ( C3 ), we can solve the integral over
 , 

 n = 

1 

4 π
√ 

� ss | C | 

∫ ∞ 

−∞ 

∫ r max −r̄ −ī / 2 −i/ 2 

r min −r̄ −ī / 2 −i/ 2 
d rd i exp 

{
−1 

2 

×
[(

� ii − � 

2 
si 

� ss 

)
i 2 + 

(
� rr − � 

2 
rs 

� ss 

)
r 2 

+ 2 

(
� ri − � rs � si 

� ss 

)
ri 

]}

×erfc 

(
� si i + � rs r + � ss ( s min − s̄ ) √ 

2 � ss 

)
, (C5) 

here erfc( u ) = 1 − erf( u ) is the complementary error func-
ion. We now make the substitution u = ( � si i + � rs r + � ss ( s min −
¯ )) / 

√ 

2 � ss , so that 

 n = 

− exp 

{
− 1 

2 ( s min − s̄ ) 2 � ss 

(
� ss � ii 

� 

2 
si 

− 1 

)}
� si 

√ 

8 π2 | C | 

∫ ∞ 

−∞ 

∫ � max 

� min 

d rd u 

×erfc ( u ) exp 

{
−
(

� ss � ii 

� 

2 
si 

− 1 

)

×
(

u 

2 −
√ 

2 � ss ( s min − s̄ ) u 

)}

× exp 

{
−1 

2 

[
2 
√ 

2 � ss 

� si 

(
� ri − � rs � ii 

� si 

)

×
(

u −
√ 

2 � ss ( s min − s̄ ) 

)
r 

+ 

� rs 

� si 

(
� rs � ii 

� si 

+ 

� rr � si 

� rs 

− 2 � ri 

)
r 2 
]}

, (C6) 

here 

 min(max) = 

2 � si ( r min(max) − r̄ − ī / 2) − √ 

2 � ss u + � ss ( s min − s̄ ) 

2 � si − � rs 

. 

(C7) 

t first glance it, may seem that our choice of substitution is a poor
ne and the resulting expression is untenable. Ho we v er, what we hav e
ctually done is isolate the parts of the integral that depend on r in a
ingle exponential. In doing so, we have arrived at an expression of
he form 

∫ � min 

� min 
exp [ −1 / 2( Ar + Br 2 )] dr , which can be expressed as a

ifference of error functions times an exponential. After performing 
his integral, substituting � min(max) , and an exhaustive amount of 
lgebra, 

 n = 

1 

4 
√ 

πδ| C | 

∫ ∞ 

−∞ 

du erfc ( u ) exp 

{
− 1 

δ| C | f 
2 ( u ) 

}

×
[

erf 

{
Gf ( u ) √ 

δ
+ R min 

}
−erf 

{
Gf ( u ) √ 

δ
+ R max 

}]
, (C8) 

here 

 ( u ) = u −
√ 

� ss 

2 
( s min − s̄ ) , (C9) 

 min(max) = 

√ 

2 δ( r min(max) − r̄ − ī / 2) 

2 � si − � rs 

, (C10) 

= � rr � 

2 
si + � ii � 

2 
rs − 2 � si � rs � ri , (C11) 

 = 

√ 

� ss 

� ri (2 � si + � rs ) − � rr � si − 2 � ii � rs 

2 � si − � rs 

. (C12) 

e have managed to reduce the original 3D Gaussian integral 
o a single integration. Although this is complex to write, it is
ignificantly faster to compute. Ho we ver, we can go further still.
o make clear how, we rewrite this expression using the substitution

 = 

√ 

1 
δ| C | f ( u ), so 

 n = 

1 

4 
√ 

π

∫ ∞ 

−∞ 

dx exp {−x 2 } erfc 

{√ 

δ| C | x + 

√ 

� ss 

2 
( s min − s̄ ) 

}

×
[

erf 

{
G 

√ 

| C | x + R min 

}
−erf 

{
G 

√ 

| C | x + R max 

}]
. 

(C13) 

sing the relationship between the standard and complementary error 
unctions, this last integral can be written as the addition/subtraction 
f four separate integrals of the form 

∫ ∞ 

−∞ 

exp [ −x 2 ] erfc [ Ax + B]
r 
∫ ∞ 

−∞ 

exp [ −x 2 ] erfc [ Ax + B] erfc [ Cx + D]. Both of these can be
olved by differentiating under the integral sign using the Leibniz 
ntegration rule, sometimes called the ‘Feynman integration trick’. 10 

he following identities for these integrals are ∫ ∞ 

−∞ 

exp [ −x 2 ] erfc [ Ax + B] = 

√ 

πerfc 

[
B √ 

1 + A 

2 

]
(C14) 

nd ∫ ∞ 

−∞ 

exp [ −x 2 ] erfc [ Ax + B] erfc [ Cx + D] 

= 

√ 

π

[
1 + 4 T ( F 1 , F 2 ) + 4 T ( F 3 , F 4 ) + 

2 

π
tan −1 ( F 5 ) 

− 2 

π
tan −1 ( F 2 ) − 2 

π
tan −1 ( F 4 ) + erf 

(
F 1 √ 

2 

)
+ erf 

(
F 3 √ 

2 

)]
, (C15) 

here T ( h , x ) is Owen’s T function and 

 1 = 

−√ 

2 B √ 

1 + A 

2 
, F 2 = 

ABC − (1 + A 

2 ) D 

B 

√ 

1 + A 

2 + C 

2 
, F 3 = 

−√ 

2 D √ 

1 + C 

2 
, 

(C16) 
MNRAS 515, 953–976 (2022) 



976 C. Howlett et al. 

M

F

U  

e  

f

f

w

G

G

H

H

a
 

e  

i  

m  

o  

v  

o  

n  

m  

e  

p  

g  

p

C

W  

t  

o  

f

f

w  

F  

c  

e

f

 

W

f

T  

e

A
D

T  

(

η

w  

c  

r

(

w  

i

η

T  

(

w  

e  

w

η

H  

t

T  

i  

r

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/515/1/953/6611706 by guest on 23 August 2022
 4 = 

ACD − (1 + C 

2 ) B 

D 

√ 

1 + A 

2 + C 

2 
, F 5 = 

AC √ 

1 + A 

2 + C 

2 
. (C17) 

tilizing these identities and comparing them to the expression in
quation ( C13 ), we arrive at our final result, a sum of elementary
unctions, 

 n = 

1 

4 
erf 

(
G 

max 
0 √ 

2 

)
−1 

4 
erf 

(
G 

min 
0 √ 

2 

)
+ 

1 ∑ 

j= 0 

[
T ( G 

max 
j , H 

max 
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(C18) 

here 
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nd δ, R min(max) , and G are as defined in equations ( C10 )–( C12 ). 
This result is a little complex but can still be coded up relatively

asily. Ho we v er, the benefit o v er numerically e v aluating the 3D
ntegral is substantial: it is both exact and can be e v aluated much,
uch faster. This is especially true when the determinant and inverse

f the covariance matrix are also computed in terms of the indi-
idual elements ‘manually’ rather than relying on numerical matrix
perations, which is trivial for a 3 × 3 matrix. As a comparison,
umerically computing the determinant and inverse of the covariance
atrix and using these as input to SCIPY.TPLQUAD takes ∼1s to
 v aluate numerically for a single galaxy at one distance to reasonable
recision. The analytic form abo v e can be easily vectorized for many
alaxies or values of r min(max) and then requires on average only ∼1 μs
er e v aluation, a f actor of ∼1000 000 times f aster. 

2 Deri v ation without magnitude limits 

hen fitting the FP parameters, rather than the individual distances
o each galaxy, we do not need to account for the magnitude limits
f the data in the f n term as explained in Section 4 . In this case, the
 n term becomes 

 n = 

1 

(2 π) 3 / 2 | C | 1 / 2 
∫ ∞ 

−∞ 

∫ ∞ 

−∞ 

∫ ∞ 

s min 

d sd rd i 

× exp 

{
−1 

2 
( x − x̄ ) C 

−1 ( x − x̄ ) T 
}

, (C23) 

hich can also be e v aluated in terms of elementary functions.
ollowing the steps in the pre vious deri v ation, we see this integral
NRAS 515, 953–976 (2022) 
an be solved by substituting R min = −∞ and R max = ∞ into
quation ( C13 ), leaving 

 n = 
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2 
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π
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dx exp {−x 2 } erfc 

{√ 
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(C24)

e can again use the identity in equation ( C14 ) to write this as 

 n = 

1 

2 
erfc 

(
−G 

min 
1 √ 

2 

)
. (C25) 

his is equi v alent to the 1D integral in Appendix A of Magoulas
t al. ( 2012 ), but again is much faster to compute. 

PPENDI X  D :  PV  E R RO R  F RO M  I N C O R R E C T  

I STANCE  RATI O  

he correct relation between the log-distance ratio and physical size
ef fecti ve radius) is 

= log R e ( z) − log R e ( ̄z ) , (D1) 

here z is the observed redshift, and z̄ is the cosmological redshift
orresponding to the true comoving distance. These redshifts are
elated by 

1 + z) = (1 + ̄z )(1 + z p ) , (D2) 

here z p is the redshift corresponding to the PV, v p = cz p . The
ncorrect relation used by Springob et al. ( 2014 ) is 

′ = log R e ( z) − log R e ( ̄z ) + log [ (1 + z) / (1 + ̄z ) ] (D3)(D4)(D5) 

= log R e ( z) − log R e ( ̄z ) ) + log (1 + z p ) 

= η + log (1 + z p ) . 

o proceed, we use the velocity estimator of Watkins & Feldman
 2015 ). This allows us to write 

v p 

c 
≈ z 

1 + z 
ln (10) η, (D6) 

hich is accurate as long as v p � cz . Substituting this into
quation ( D5 ) and performing a Taylor expansion around v p = 0,
e find 

′ ≈ η

(
1 − z 

1 + z 
ln (10) 

)
. (D7) 

ence, the relative error in the log-distance [and the PV, according
o equation ( D6 )] is given by 

ηv p 

v p 
≡ v ′ p − v p 

v p 
≈ z 

1 + z 
ln (10) . (D8) 

hus, the relative error in the peculiar redshift (or PV) from using the
ncorrect relation is approximately equal to two times the observed
edshift. 
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