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Spectral index selection method 
for remote moisture sensing 
under challenging illumination 
conditions
Christopher Graham1, John Girkin2 & Cyril Bourgenot1,2*

Remote sensing using passive solar illumination in the Short-Wave Infrared spectrum is exposed to 
strong intensity variation in the spectral bands due to atmospheric changing conditions and spectral 
absorption. More robust spectral analysis methods, insensitive to these effects, are increasingly 
required to improve the accuracy of the data analysis in the field and extend the use of the system to 
“non ideal” illumination condition. A computational hyperspectral image analysis method (named 
HIAM) for deriving optimal reflectance indices for use in remote sensing of soil moisture content is 
detailed and demonstrated. Using histogram analysis of hyperspectral images of wet and dry soil, 
contrast ratios and wavelength pairings were tested to find a suitable spectral index to recover soil 
moisture content. Measurements of local soil samples under laboratory and field conditions have 
been used to demonstrate the robustness of the index to varying lighting conditions, while publicly 
available databases have been used to test across a selection of soil classes. In both cases, the 
moisture was recovered with RMS error better than 5%. As the method is independent of material 
type, this method has the potential to also be applied across a variety of biological and man-made 
samples.

Soil moisture content is a key metric across a variety of industries, from civil engineering and micrometeorol-
ogy through to defense and  agriculture1–3. In agriculture, accurate estimation of soil moisture is important for 
managing water resources and irrigation to maximise crop yield and  quality4. The utility of remote soil moisture 
measurement has led to very active development in the field, with optical-near infra-red (NIR) instruments 
through to microwave and radio wave detectors developed for use on satellites and aircraft. Dedicated missions 
such as the Soil Moisture Active Passive (SMAP) satellite use L-band radiometers to recover information on soil 
moisture content over a global scale. While their high spatial coverage enables high temporal resolution global 
surveys, their low spatial resolution limits research over smaller regional  areas5,6. A large body of research has 
been based on using pre-existing multispectral and hyperspectral data sources, such as the Landsat and Sentinel 
satellites. More recently, development of compact hyperspectral imagers has enabled the use of small unmanned 
aerial vehicle (UAV) systems to record high spatial resolution hyperspectral  data7,8.

The range of instrumentation is matched by the large array of methods used to estimate soil moisture from 
spectral reflectance data, including spectral indices, general shape methods, and physically based radiative trans-
fer  models9. Each method has its own set of advantages and challenges, both in instrumentation required and in 
data post-processing. Spectral indices based on water absorption bands, such as Normalized Soil Moisture Index 
(NSMI) and Water Index SOIL (WISOIL), are simple to compute, but operate close to atmospheric absorption 
bands, requiring high quality atmospheric compensation post  processing10–12.

Radiative transfer models, such as those based on the Kubelka–Monk model or the multilayer radiative trans-
fer model of soil reflectance (MARMIT) model, can be more robust to atmospheric effects than absorption band 
 indices13,14. By inverting the radiative transfer model, and fitting observed reflectance spectra to a known dry 
soil spectrum, using one or more parameters, an estimate of soil moisture content can be made using a variety 
of wavelengths. One major downside to these methods is the reliance on prior soil reflectance measurements. 
Soil spectral measurements are sensitive to sampling conditions such as temperature, humidity, source-sample-
instrument  geometry15–17. The spectra can also be affected by sample preparation, such as differing sieving, 
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grinding or pulverization  methods18. This can make close fitting of spectra acquired through remote sensing to 
lab calibration data difficult.

In order to work around the difficulties of comparing spectra recorded in different environments over a 
broad spectral range, it is possible to invert and fit these radiative transfer models using only a single wavelength 
 band19. When using this method, care must be taken to fully characterise the noise of the camera sensor under 
measurement conditions, as small fluctuations can have a significant impact on the model inversion. Addition-
ally the complexity of the models can result in many local minima being found during the inversion process, 
necessitating the use of more robust and computationally expensive optimisers compared to index methods.

The aim of this work was to develop a method for finding simple, robust spectral indices that could be used 
for remote sensing of soil moisture content under a variety of lighting conditions. Using an automated method 
to determine best contrast within a set wavelength range, indices using wavelengths less impacted by atmos-
pheric absorption can be found. By using histogram based image analysis, with no assumptions made about the 
material under investigation, this method has potential to be applied to other materials and physical situations. 
As the focus of this work is to support the use of compact hyperspectral imagers designed for use on drones, 
the wavelength range analysed is restricted to the range available for compact, light weight cameras available 
commercially, which are InGaAs sensors.

In the following section, the Hyperspectral Image Analysis Method (HIAM) is described. In the first part 
of this section, we describe how the two optimal spectral indices are determined to achieve both wet and dry 
histogram separation and narrowness. In the second part, different contrast ratios are compared in term of 
wavelength determination. In the section “Experimental Data”, HIAM was then tested to recover soil moisture 
content under both controlled and solar illumination. In the section “Verifying with other soils”, the methods was 
computationally tested on publicly available databases of soil reflectances. Finally, the accuracy of the method 
and its range of application are discussed in the section “Discussion”.

Image analysis method
The analysis in this section was initially based on work done by David Kim et al.20. The main goal of this work 
was to create a method for automatically searching for suitable wavelengths to use in calculating soil moisture 
content from soil reflectance data under changeable lighting conditions. To do this, an automated method based 
on histogram and contrast space analysis was devised to search through a user selectable wavelength range to 
find a suitable ratio providing high contrast between wet and dry soils. Ideally, a ratio would be found so that, 
when applied to a datacube containing both wet and dry soil, the resulting histogram would be clearly bimodal.

This is demonstrated in Fig. 1. Figure 1a shows the per pixel ratio of the measured reflectance at 1602/1516 
nm of a local soil sample, prepared with specific wet and dry areas. A histogram comparing the per pixel ratios 
between the wet soil in the cross and dry soil in the shield of the Durham University logo is shown Fig. 1b, with 
a clear separation shown between the different moisture levels.

In order to determine the best wavelengths and ratio type (see Table 1) to produce the highest contrast 
between wet and dry soil, the metrics describing a useful histogram had to be identified. It was decided that the 
two main factors were the separation of the histogram means, and the standard deviations of the histograms. If 
the separation between the wet and dry histograms is too low, distinguishing between soils at different drying 
stages would be difficult. Similarly, ratios that produce histograms with high standard deviations could mask 
small changes in moisture content. This method offers a different and simpler approach to more commonly used 
statistical distance methods with the view to reduce the post processing required after the selection analysis. As 
statistical distance methods, such as the Bhattacharyya distance, could potentially output the same distance for 
a variety of histograms, some groups have resorted to manual sorting of results post-selection20.

To automate the process of choosing a suitable wavelength ratio, surface plots of the mean separation and 
standard deviation over a wavelength space were created. The mean contrast ratio separation is obtained by 

Figure 1.  (a) Ratio map of a local soil, wetted in the shape of the Durham University Shield, with the central 
cross and exterior (red end of the colour bar) being saturated. ROIs for wet and dry soil used in the histogram 
are shown, marked in green and white respectively (b) Histogram of per pixel ratio values within the marked 
ROIs.
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calculating the Euclidean distance between the mean contrast ratio of the dry soil and the mean contrast ratio 
of the wet soil, with the result plotted as a surface plot in Fig. 2a. For each wavelength combination covering 
the InGaAs sensitivity range of the FYMOS instrument used for this experiment, the following processing was 
performed:

To visualise how the standard deviation of the contrast ratio varies across the wavelength range, the standard 
deviation of the contrast ratio for each wavelength combination in the wet soil image was calculated and plotted 
in a similar way, shown in Fig. 2b. The following processing was performed:

Each wavelength pairing was then sorted and ranked based on these two surfaces, with each wavelength par-
ing being ranked highest to lowest based on the subtraction surface, and lowest to highest based on the standard 
deviation surface. The rankings for each test were summed, and then plotted to form the ranking surface shown 
in Fig. 2c, with the idea being that the pairing with the lowest overall rank would have the best combination of 
high separation and low standard deviation. A flow chart outlining this process is shown in Fig. 3. The same 
method was applied using the simple ratio mentioned above, and using the Weber and Michelson contrast ratios, 
shown in Table 1. The final ranking surface for these ratios is shown in Fig. 4. All 3 contrast ratios converged 
towards to the same pair of wavelengths. For this application the Michelson ratio produced the lowest contrast, 
while the simple and Weber ratios produced similar contrast values. For simplicity, the simple ratio was chosen 
for further investigation.

For the soil used in this experiment, the ratio of 1524/1480 nm was found to be best. However, these wave-
lengths are close to the 1400 nm atmospheric water absorption band, limiting the use of the ratio under certain 
lighting conditions, such as under variable cloud cover. Restricting the wavelength range to wavelengths available 
under solar illumination, a reflectance ratio of 1602/1516 nm was chosen.
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Table 1.  Contrast ratios considered in this analysis.

Contrast ratio Formula

Simple
Reflectance�1
Reflectance�2

Weber
Reflectance�1 − Reflectance�2

Reflectance�2

Michelson
Reflectance�1 − Reflectance�2
Reflectance�1 + Reflectance�2

Figure 2.  (a) Surface plot of the difference between reflectance ratios calculated for wet and dry soil (metric 1) 
(b) Standard deviation of per pixel reflectance ratio calculated for wet soil sample (metric 2) (c) Overall ranking 
surface, with darker blue colours best suited for differentiating wet and dry soil. The ratio picked for this analysis 
is marked with a white cross, chosen after atmospheric absorption bands were discarded (shown as greyed out).
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Figure 3.  Flow chart describing the hyperspectral image analysis method (HIAM).

Figure 4.  Ranking surface plots for (a) Weber contrast ratio and (b) Michelson contrast ratio.
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Experimental data
To test the utility of this reflectance ratio in remote soil moisture measurement, an initial experiment was 
performed in the lab under controlled illumination. Soil samples were prepared by placing oven dried, sieved 
soil into 9 cm diameter petri dishes. The dishes were then hydrated to saturation, and oven dried at 60 °C until 
reaching the desired weight. The samples were then sealed and allowed to cool for 24 h to aid in uniform dis-
tribution of water content.

A hyperspectral image of each soil sample was then taken using the FYMOS hyperspectral imager, set up 
normal to the soil surface and scanned using a rotation  stage8. The light source was an ASD Illuminator halogen 
lamp placed at a 15° angle to the soil surface. From the hyperspectral datacubes, a mean reflectance ratio for each 
sample was calculated to create a calibration curve. Two more sets of soil samples from the same area were then 
prepared in an identical way, with their ratios plotted against the calibration curve shown in Fig. 5a.

A similar set of soil samples were then measured outdoors under varying lighting conditions. The hyper-
spectral imager was set up on a tripod, orientated to prevent shadowing on the soil samples. One set of meas-
urements was taken under a clear sky with a low winter sun (solar elevation angle of 22.5°), shown in Fig. 5b. 
A 50% reflectance Lambertian panel was used to measure the incident solar illumination, and to calibrate the 
measured soil data to true reflectance factors. The ratios calculated for these samples agree strongly with the 
measurements taken in the lab.

Verifying with other soils
Using datasets provided by Dupiau et al.21, the wavelength ratio was tested against a range of various soil sam-
ples. As the spectra from these datasets have been captured using point spectrometers, the spatial imaging data 
required for the histogram analysis is not present. Instead, the best fit wavelengths found for the local soil were 
used for every database.

The datasets chosen for validation were Les08, Lob02, Bab16 and Dup20, described  in13,21. These datasets were 
chosen as their soil sample preparation methods and measurement geometry closely matched the experiments 
used in deriving the ratio. As each dataset contains a large number of soil samples, for brevity a set of 6 samples 
covering a range of soil texture characteristics was chosen for illustration here. Figure 6 shows the calculated 
reflectance ratio plotted against gravimetric soil moisture content for a variety of hydration levels and soil com-
positions. Individual soil samples have been removed where there was a suspicion of specular reflectance marked 
in the database. In Fig. 6c–f, a calibration curve for has been calculated for each individual data set, with the fit 
being good for most soil types. Where multiple sets of soil samples from the same region were available, they 
were plotted together, with a mean best fit curve calculated. The fit between these soil samples is still good, with 
examples of this are shown in Fig. 6a and b.

Feeding the calibration curves from Fig. 6 back into the same datasets, the predicted and measured soil 
moisture contents can be compared, shown in Fig. 7. The predicted values for Fig. 7a and b were based off the 
mean best fit curves for each region. Generally, there is good agreement between the predicted and measured 
soil moisture contents, with an RMSE under 5% for all datasets. The fit of the model tends to struggle at low soil 
moisture contents ( < 5% ), but tends to hold well from 10% SMC up until soil saturation. Sensitivity at lower 
moisture contents may be better in sandy soils, shown in Fig. 7e and f. While simple linear fits work for the 
majority of the soil datasets, some soils such as shown in Fig. 7c would benefit from non linear modeling. This 
suggests that the best performance could be found by calibrating the model independently for different soil types.

Discussion
When performing this analysis, the two images chosen were of soil samples hydrated to the two extremes of soil 
moisture content, with one being oven dried and the other brought close to saturation. As this method is purely 
image analysis based, no underlying model of soil reflectance is included, which should make this method mate-
rial agnostic. So long as the material exhibits a changing reflectance with varying moisture content, this method 

Figure 5.  (a) Soil ratios from two sets of samples plotted against a mean calibration curve. These samples were 
measured under controlled illumination. The predicted and measured SMCg values agree within a 3% error. (b) 
Soil samples measured under solar illumination, plotted against the same calibration curve.
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should be applicable. Besides soil, simple lab experiments have shown this to work with other biological samples, 
such as detached leaves, along with man made materials such as fabric cloth and paper.

By carefully selecting the spectral range considered in the analysis, the index was chosen so that the wave-
lengths used are not heavily impacted by atmospheric absorption. This increases the robustness of the index to 
changing lighting conditions, as shown in Fig. 5. A comparison of the wavelengths used in this work compared 
to WISOIL and NSMI is shown in Fig. 8, plotted against the atmospheric transmission spectrum. While other 
published indices such as NINSOL and NINSON have been developed for atmospheric robustness, these use 
wavelengths beyond the 2200 nm cut-off found in many commercially available InGaAs focal plane arrays at 
 present12.

From analysis on publicly available data sets, this index performs best at medium to high soil moisture 
contents. The performance is similar across a variety of soil classes, with marginally lower RMSE values found 
for clay loam/silty clay loam soils, where soil class data is available. However, only around half of the data sets 
contained textural information, making conclusions on the effects of soil texture difficult to draw.

Figure 6.  Calibration curves created for datasets provided  by21.
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Conclusions
A computational image analysis method for deriving reflectance indices for remotely recovering soil moisture 
content has been presented. From hyperspectral imagery of local soil samples, a simple reflectance index was 
identified, with the wavelengths chosen to enable the use of the index easily under solar illumination. Using 
local soil samples and publicly available databases, the index was tested in both laboratory and field conditions, 
and across a variety of soil classes, with an RMSE under 5% for all data sets. With the method based entirely on 
hyperspectral image analysis, this method can be applied to materials beyond soil, including both biological 
and man made materials.

Figure 7.  Predicted vs measured soil moisture content from calibration curves created in Fig. 6.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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