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Measurement of retinal nerve 
fiber layer thickness with a deep 
learning algorithm in ischemic optic 
neuropathy and optic neuritis
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This work aims at determining the ability of a deep learning (DL) algorithm to measure retinal nerve 
fiber layer (RNFL) thickness from optical coherence tomography (OCT) scans in anterior ischemic optic 
neuropathy (NAION) and demyelinating optic neuritis (ON). The training/validation dataset included 
750 RNFL OCT B-scans. Performance of our algorithm was evaluated on 194 OCT B-scans from 70 
healthy eyes, 82 scans from 28 NAION eyes, and 84 scans of 29 ON eyes. Results were compared 
to manual segmentation as a ground-truth and to RNFL calculations from the built-in instrument 
software. The Dice coefficient for the test images was 0.87. The mean average RNFL thickness using 
our U-Net was not different from the manually segmented best estimate and OCT machine data 
in control and ON eyes. In NAION eyes, while the mean average RNFL thickness using our U-Net 
algorithm was not different from the manual segmented value, the OCT machine data were different 
from the manual segmented values. In NAION eyes, the MAE of the average RNFL thickness was 
1.18 ± 0.69 μm and 6.65 ± 5.37 μm in the U-Net algorithm segmentation and the conventional OCT 
machine data, respectively (P = 0.0001).

Optical coherence tomography (OCT) has been applied to measure peripapillary retinal nerve fiber layer (RNFL) 
thickness at a micrometer scale in several optic neuropathies such as non-arteritic anterior ischemic optic neu-
ropathy (NAION) and demyelinating optic neuritis (ON)1–3. In the early stages of NAION and papillitis, OCT of 
the RNFL may show thickening that decreases in the subacute phase. An accurate measurement of the thickness is 
important as RNFL thickness may be useful for detection of disease progression or  improvement2,3. Commercial 
OCT machines use automated retinal layer segmentation algorithms to detect the difference in signal intensity 
between adjacent retinal layers to calculate RNFL thickness. However, the scans can be affected by movement, 
media opacity, algorithm failure or poor signal to noise ratios and misidentification of the anterior and posterior 
boundaries of the RNFL and incomplete segmentation are artifacts that are consistently described in glaucoma 
 eyes4–6. In some studies, the artifact rates of 46.3% and 61.7% for OCT B scans in glaucoma eyes were  reported4,7. 
Such errors may cause false measurements of the thicknesses of the different layers and structures. Of note, the 
baseline errors persist into the subsequent scans, and errors are propagated  longitudinally8. Therefore, manual 
refinement of OCT retinal layer segmentation when assessing RNFL thickness by an operator is recommended, 
but this process is laborious and extremely time consuming. While previous studies have not determined the 
segmentation issues and artifacts in other optic neuropathies such as NAION and ON, it has been reported in 
a case report that segmentation errors can lead to clinical misdiagnosis of neuro-ophthalmic diseases if they go 
 unrecognized9.

Deep learning (DL) is a type of artificial intelligence that uses multilayer neural networks, and its algorithms 
outperform ophthalmologists in disease  detection10. Furthermore, DL algorithms have been trained to detect 
errors in automated RNFL segmentation of OCT scans in glaucoma, identifying the probability of a segmenta-
tion artifact as well as highlighting the location of these errors using a heat-map with an accuracy of 92.4%11. 
However, studies are lacking about the use of DL for RNFL segmentation in NAION and ON eyes.
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Since accurate RNFL thickness data is necessary for diagnosis and follow up of ischemic optic neuropathy 
and optic  neuritis10, we examined OCT machine segmentation errors in individuals with NAION and ON and 
hypothesized that a DL approach with accurate segmentation of the retinal layers would allow estimation of the 
thickness of the RNFL which is comparable to manual segmentation. In addition, we hypothesized this approach 
would outperform conventional OCT machine RNFL data segmentation algorithms.

Results
The training/validation dataset included 750 RNFL OCT B-scans from 250 eyes (60 eyes with NAION, 50 eyes 
with ON, and 140 control eyes). These study eyes were split into training (80% of the sample) and validation 
(20%) datasets.

Performance of our algorithm was evaluated in 370 scans acquired in 132 eyes from the test set. There was 
no overlap between the training and testing sets.

After excluding 10 scans due to centration and quality issues, the final test set consisted of 194 OCT B-scans 
from 70 healthy eyes, 82 scans from 28 NAION eyes, and 84 scans of 29 ON eyes. Five scans (7.1%) from healthy 
eyes, three scan (3.5%) from ON eyes, and 53 scan (64%) from NAION eyes had segmentation errors which were 
corrected manually (Chi-Square; P < 0.001). In addition, eight scans (9.7%) from NAION eyes and one scans 
from both ON and healthy eyes had epiretinal membrane (P < 0.001). Partially posterior vitreous detachment was 
seen in 20.7% (17) NAION scans and 10% (7) healthy scan and 9.5% (8) ON scans (P < 0.001). The mean of the 
manually corrected average RNFL thickness (ground-truth) was significantly lower in NAION (69.7 ± 19.3 μm) 
and ON (76.0 ± 16.2 μm) eyes compared to control (100.2 ± 10.8 μm) eyes (P < 0.001, Kruskal–Wallis). There 
was no difference in average RNFL thickness between ON and NAION eyes (P = 0.96). NAION scans had lower 
OCT quality scores than ON scans (23.7 ± 4.5 vs 25.7 ± 4, P = 0.03, Kruskal–Wallis) and control scans (26.8 ± 4, 
P < 0.001). In all datasets, the mean age at OCT scan was 62.8 ± 9.4 years in the NAION group, 30.8 ± 10.1 years 
in the ON group, and 42.3 ± 18.4 in the controls.

We conducted a two-step process to obtain our results: the first step was our U-net evaluation, and the second 
step was considering the RNFL thickness measurement using the U-net algorithm in the three different groups 
(control, ON, NAION) for the test  images12,13.

Our U-net model yielded high performance in the test and validation images. The sensitivity and specificity 
of our proposed model on the validation data sets were 0.91 and 0.90, respectively. The same measures on the 
test sets were 0.88 and 0.86, respectively. The Dice coefficient between our proposed segmentation and manual 
segmentation by an expert for validation data set was 0.90, and for the test images was 0.87.

We also compared the estimate of RNFL thickness measurements in seven sectors (average, nasal, temporal, 
superior-temporal, superior-nasal, inferior-temporal, inferior-nasal) by three different methods (our U-Net 
algorithm, conventional OCT machine data, and the manual segmented best estimate determined by the oph-
thalmologist) in the three different groups (Table 1):

RNFL thickness in the normal control group. There was no significant difference in average RNFL 
thickness amongst the three methods of measurements (P = 0.69, ANOVA). The mean average RNFL thickness 
using our U-Net algorithm segmentation was not different from the manual segmented best estimate (ground 
truth) (101.1 ± 10.8 µm, vs 100.2 ± 10.8 µm; P > 0.99). Similarly, there was no significant difference between the 
OCT machine average RNFL thickness (100.2 ± 11.2) and the manually segmented value (P > 0.99). Both RNFL 
thickness from U-Net algorithm segmentation and the conventional OCT machine data were strongly correlated 
with RNFL thickness obtained from manual segmentation  (r2 = 0.99 and 0.98) with no significant difference 
between two correlations (P = 0.33) (Fig. 1). Mean absolute error (MAE) of the average RNFL thickness was 
1.04 ± 0.74 μm and 0.18 ± 1.23 µm in the U-Net algorithm segmentation and the conventional OCT machine 
data, respectively. There was no significant difference between the two MAE numbers (P = 0.93).

Table 1.  Comparison of estimate of RNFL thickness measurements (µm) in seven sectors by three different 
methods in the control, non-arteritic anterior ischemic optic neuropathy (NAION) and demyelinating optic 
neuritis (ON).

Parameter

Control

P value

NAION

P value

ON

P value
Ground 
truth

OCT 
Machine U-Net

Ground 
truth

OCT 
Machine U-Net

Ground 
truth

OCT 
machine U-Net

Average 100.3 ± 10.9 100.2 ± 11.2 100.1 ± 10.8 0.69 69.7 ± 19.3 64.4 ± 21.3 70.5 ± 19.4 0.02 76.1 ± 16.2 75.8 ± 16.6 77.1 ± 16.1 0.66

Nasal 75.6 ± 12.6 75.4 ± 12.9 76.3 ± 12.3 0.79 54.5 ± 16.9 51.3 ± 23.9 55.5 ± 16.7 0.27 57.8 ± 14.6 57.8 ± 14.5 58.9 ± 14.5 0.60

Temporal 68.4 ± 10.8 68.4 ± 10.8 68.9 ± 10.9 0.88 51.9 ± 18.2 49.6 ± 21.1 53.1 ± 18.2 0.50 47.4 ± 16.2 47.3 ± 15.9 48.3 ± 15.9 0.65

Nasal inferior 117.1 ± 22.8 116.9 ± 23.1 117.8 ± 22.9 0.92 89.9 ± 40.0 89.1 ± 42.1 90.6 ± 39.7 0.92 91.5 ± 24.4 92.6 ± 24.3 92.6 ± 24.3 0.76

Temporal 
inferior 145.1 ± 22.2 145.1 ± 22.2 145.8 ± 22.0 0.93 101.7 ± 43.2 100.3 ± 45.7 102.9 ± 43 0.88 108.4 ± 33.1 108.3 ± 33 109.6 ± 32.9 0.89

Nasal supe-
rior 114.8 ± 20.8 115.1 ± 20.9 114.8 ± 22.4 0.99 70.7 ± 20.7 67 ± 27.1 71.9 ± 20.6 0.40 93 ± 23.2 92.6 ± 24.1 94.1 ± 23.1 0.79

Temporal 
superior 137.2 ± 18.1 137.2 ± 18.1 137.8 ± 18.1 0.93 82.3 ± 34.9 77.3 ± 36.2 83 ± 35.2 0.37 105.8 ± 25.8 105.4 ± 26.7 106.7 ± 25.8 0.88
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RNFL thickness in the NAION group. The Kruskal–Wallis test showed a significant difference in average 
RNFL thickness amongst the three methods of measurement (P = 0.02). While the mean average RNFL thickness 
using our U-Net algorithm was not different from the manually segmented value (ground truth) (70.5 ± 19.4 µm, 
vs 69.7 ± 19.3 µm, respectively; P > 0.99), the OCT machine RNFL thickness (64.4 ± 21.3 µm) was lower than the 
manual segmented value (P = 0.04). Furthermore, a significant difference was also found between U-Net calcu-
lated RNFL thickness and OCT machine thickness (P = 0.009). The correlation between the manually segmented 
RNFL thickness and the U-Net average RNFL thickness (r = 0.99) was stronger than the correlation between 
manually segmented RNFL thickness and the OCT machine RNFL thickness (r = 0.95) (P = 0.02) (Figs. 1, 2). The 
MAE of the average RNFL thickness was 1.18 ± 0.69 μm and 6.65 ± 5.37 μm in the U-Net algorithm segmentation 
and the conventional OCT machine data, respectively. There was a significant difference between the two MAE 
numbers (P = 0.0001). Specifically, the MAE for nasal, nasal superior, and temporal superior RNFL thicknesses 
with U-Net segmentation were 1.48 ± 1.26 μm, 1.64 ± 2.19 μm, and 1.69 ± 1.38 μm, respectively. The MAE for the 
corresponding thickness sectors with the conventional OCT machine were 6.16 ± 10.02 μm, 5.08 ± 10.47 μm, and 
6.26 ± 13.16 μm, respectively.

Figure 1.  Line graphs showing correlation between average retinal nerve fiber layer (RNFL) thickness 
estimated by our U-Net and ground-truth in three study groups. (A) In anterior ischemic optic neuropathy 
(AION), (B) in optic neuritis (ON) and (C) in normal data.
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RNFL thickness in the ON group. The average RNFL thickness was not significantly different amongst the 
three methods of measurement (P = 0.66 Kruskal–Wallis). The mean average RNFL thickness was 76.1 ± 16.2 µm 
with manual segmentation, and 77.1 ± 16 µm versus 75.9 ± 16.6 µm using U-net algorithm segmentation and 
the OCT machine, respectively. Both average RNFL thicknesses from U-net algorithm segmentation and the 
conventional OCT machine data were strongly correlated with RNFL thickness obtained from manual segmen-
tation without a significant difference between them (r = 0.99 and 0.99, respectively, P = 033) (Fig. 1). The MAE 
of the average RNFL thickness was 0.2 ± 1 μm and 1.2 ± 0.71 μm with OCT machine and U-Net segmentation 
without a significant difference between them (P = 0.93).

This study investigated quantification of peripapillary RNFL thickness on OCT with deep learning (U-Net) 
in NAION eyes, ON eyes and controls. We compared the manually segmented (ground-truth) estimate of RNFL 
thickness with our U-Net algorithm and conventional OCT machine data. First, we showed high performance 
of our U-Net model in the test and validation images. The Dice coefficient between our model and manual seg-
mentation for the validation data set was 0.90, and for the test images was 0.87. Second, both the RNFL thickness 
from U-Net algorithm segmentation and the conventional OCT machine data were similar to the RNFL thickness 
obtained from manual segmentation in control and ON eyes. However, in NAION eyes, the mean average RNFL 
thickness using the OCT machine was different from the manual segmentation (Fig. 3). In these eyes our U-Net 
algorithm was not different from the manually segmented value (ground truth).

Errors in segmentation of the RNFL and estimates of its thickness are not uncommon and could lead to 
disease misdiagnosis. Several studies have demonstrated high rates of errors on peripapillary RNFL segmenta-
tion in glaucomatous eyes.4–7,14,15 Mansberger et al.5 have found that automated OCT machine data resulted in a 
1.6 μm thinner RNFL thickness than the ground-truth measurements determined by manual refinement. Manual 

Figure 2.  Line graphs showing correlation between each sector retinal nerve fiber layer (RNFL) thickness 
estimated by neural network and ground-truth in anterior ischemic optic neuropathy (AION) group. (A) Sector 
nasal (N), (B) sector temporal (T), (C) sector nasal inferior (NI), (D) sector temporal inferior (TI), (E) sector 
nasal superior (NS), (F) sector temporal superior (TS).
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refinement changed 8.5% of scans to a different global glaucoma classification wherein 23.7% of borderline clas-
sifications become normal. A few studies have shown RNFL segmentation problems in neuro-ophthalmology 
and its impact on disease follow  up9. In this study for the first time we showed high rate of OCT machine seg-
mentation errors in NAION eyes (64%) which causes 6.65 ± 5.37 μm mean absolute error in the mean global 
RNFL obtained from OCT machine automated segmentation compared to ground-truth manual segmentation. 
However, this error was significantly lower in ON eyes and controls. Such segmentation errors may cause false 
measurements of the RNFL thicknesses in post-acute NAION eyes which lead to poor prediction of patient’s 
vision  prognosis16,17. Therefore, OCT machine RNFL data in NAION eyes either should be refined manually 
or artificial intelligence guided software must be used. The reasons for segmentation error in NAION eyes are 
multifactorial. Another study found three common sources of RNFL imaging artifacts: posterior vitreous detach-
ments, high myopia, and epiretinal membranes, with the third being the most common  culprit14. Our NAION 
eyes, which were older than ON and control eyes, had a higher frequency of vitreous detachment and epiretinal 
membrane (20.7% and 9.7% respectively). Other studies also indicated that the difference between the auto-
mated and ground-truth thickness increased with older age, thinner RNFL thickness, and lower scan  quality5. 
Miki et al.15 also showed a 20.7% segmentation failure in glaucoma eyes, which is significantly correlated with 
low signal strength index and large disc  area15. Of note, our NAION scans had lower scan quality than ON and 
control scans. It seems that sub-optimal scan quality reduces the accuracy of automated segmentation. A reduc-
tion in signal strength from a media opacity such as dry eye, corneal opacities, and cataract or vitreous opacities 
can result in artifacts in layer segmentation and  interpretation9. Another study showed that RNFL thickness 
measurements from healthy and glaucoma eyes decreased as OCT scan quality decreased. They explained that 
more noise in lower quality images increases the likelihood that segmentation algorithms will not accurately 
identify boundary of RNFL layers. Increased noise also may adversely affect algorithms used for  centering18. 
In the present study we found higher segmentation error in NAION eyes due to poor scan quality, epiretinal 
membrane and partially posterior vitreous detachment compared to ON and healthy controls.

To address the issue of OCT layer segmentations, several studies have used deep learning algorithms for reti-
nal segmentation in normal and age-related macular degeneration  eyes19–21. In the optic nerve head scans, Devalla 
et al.22 developed a DL algorithm which achieved good accuracy when compared to manual segmentation. The 
same group proposed a 3D segmentation framework (ONH-Net) that is easily translatable across OCT devices 
in healthy and glaucoma eyes. While they did not quantify RNFL thickness in their study, they automatically 
segment OCT volumes from a new OCT device without having to re-train ONH-Net with manual segmentations 
from that  device23. Similar to our study Yow et al. used U-Net for RNFL segmentation and quantification with 
input image of cross-sectional OCT scans and generation of a binarized circumpapillary RNFL  mask24. Further-
more, Yow et al. used the segmented RNFL from a cross-sectional OCT image and blood flow information from 
an enface OCT angiography image to segregate retinal vascular and neuronal components within the RNFL for 
thickness  measurement25. In the view of clinical application of DL, Jammal et al.11 developed a DL algorithm 
that detects errors in RNFL segmentation in glaucoma and normal eyes. In this study, the test sample consisted 
of scans with at least one RNFL segmentation error and scans without error as defined by a human grader, and 
the algorithm was trained to output the probability of a segmentation error in test data. For a probability cut 
point of 0.5, the DL algorithm was 95.0% sensitive and correctly identified 1172 of the 1234 scans that had any 
segmentation error(s) in the test sample. The same group in another study predicted the RNFL thickness from 
raw unsegmented scans using  DL26. In images without segmentation errors, they found a high correlation of 
segmentation-free DL RNFL predictions with conventional OCT RNFL thickness calculations. In low-quality 
images with segmentation errors, segmentation-free DL predictions had higher correlation with the best avail-
able estimate compared to those from the conventional OCT machine. The MAE was 4.98 ± 5.85 μm for DL 
RNFL estimates and 8.59 ± 11.26 μm for OCT machine  estimates26. However, the ground truth in their study was 
considered the best available estimate from a good quality scan of the conventional OCT, rather than manual 
segmented data as a ground truth as in our work. We found MAE of the average RNFL thickness in NAION 

Figure 3.  Sample OCT image of an eye with ischemic optic neuropathy. Retinal nerve fiber layer segmentation 
by OCT machine with error (A) and after manual correction (B). (C) The image input for our U-Net and (D) is 
the prediction mask output of our U-Net retinal nerve fiber layer segmentation, which is very similar to ground-
truth (B).
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eyes with lower scan quality was 1.18 ± 0.69 μm and 6.65 ± 5.37 μm in the U-Net algorithm segmentation and 
the OCT machine data, respectively. Interestingly, in ON and controls, both the average RNFL thicknesses from 
U-net algorithm segmentation and the conventional OCT machine data were strongly correlated with RNFL 
thickness obtained from manual segmentation without a significant difference between them.

Our study had several limitations. First, our data set was smaller than in glaucoma studies, which is expected 
in light of the relative rarity of other optic neuropathies compared to glaucoma. In addition, we do not know if the 
segmentation performance would improve when trained upon a larger data set. Second, our U-Net was trained 
with the images from the Spectralis OCT machine and therefore, we could not extrapolate our algorithm to scans 
of other OCT devices. Third, in the absence of external validation data set in our study we could not general-
ized our data. Finally, our supervised DL algorithm was trained to be only as good as the manual segmentation 
according to an ophthalmologist which was subject to bias.

Overall, using U-Net, we were able to segment the RNFL layer in three groups of eyes. When trained and 
tested on compensated images, there was good correlation with manual segmentation in control eyes, ON eyes, 
and NAION eyes. In contrast, conventional OCT machine segmentations were prone to errors in NAION eyes, 
resulting in inaccurate RNFL thickness measurements. In addition, in lower quality scans, our U-Net segmenta-
tion performance was similar to ground truth, and therefore this algorithm may provide robust RNFL thickness 
estimates both in good quality images as well as in those that are prone to segmentation errors such as may occur 
in NAION eyes. Such an algorithm could be helpful in clinical practice for assessing RNFL thickness in NAION 
eyes as well as ON eyes.

Material and methods
Subjects. This was a cross-sectional comparative study in eyes with post-acute ON and NAION that were 
examined at Farabi Eye Hospital between May 2015 and April 2020. The study was approved by the Ethics Com-
mittee of Tehran University of Medical Sciences, and all investigations adhered to the tenets of the Declaration 
of Helsinki.

Informed consent was obtained from all subjects and they underwent a standard ophthalmic evaluation, 
including best-corrected visual acuity (BCVA), slit-lamp biomicroscopy, and SD-OCT imaging (Spectralis, 
HEYEX software 6.0 Heidelberg Engineering, Heidelberg, Jena, Germany) for peripapillary RNFL thickness 
measurement.

Diagnosis of NAION was defined by: (1) a history of sudden visual loss > 3 months prior to enrollment, with 
documented acute optic disc edema, (2) complete resolution of disc edema at the time of study, and (3) optic 
disc-related visual field  defects10. Diagnosis of ON was defined by: (1) an attack of painful, subacute vision loss 
between 3 and 12 months prior to enrollment in patients age 18 to 50 years, and (2) a gadolinium-enhanced MRI 
demonstrating optic nerve enhancement with or without periventricular plaques typical of multiple  sclerosis27. 
In both groups, patients with other ocular pathology such as glaucoma and giant cell arteritis or a history of 
other autoimmune diseases were excluded.

Spectral-domain optical coherence tomography. Images of the peripapillary RNFL were acquired 
using the Spectralis SD-OCT, and two to four images for each study eye were used. Images with quality of less 
than 10 were not included. Segmentation lines were delineated by the conventional OCT software in the Spec-
tralis SD-OCT, including the anterior and posterior RNFL boundaries in the circle scan corresponded to the 
internal limiting membrane and the inner plexiform layer, respectively. The peripapillary RNFL measurements 
thus delineated by the OCT instrument were recorded. All OCT machine segmentations were inspected by an 
ophthalmologist (E.H) for possible segmentation errors, manual corrections of segmentation were made to the 
B-scans, and subsequently RNFL thickness data from corrected segmentations were recorded as “ground-truth” 
data.

Image processing and deep learning algorithm. We developed an algorithm for estimating RNFL 
thickness based on deep learning. At the first step, a preprocessing method was used to reduce speckle noise. 
After that, a segmentation algorithm based on a U-Net algorithm was implemented to delineate the contours 
of the RNFL. In a post-processing step, to eliminate any speckled patterns in the segmentation results, a mor-
phological method was applied. Finally, RNFL thickness was determined using a pipeline of image processing 
methods and the deep learning model.

Pre-processing. Speckle noise was reduced as the primary objective of the preprocessing step (Fig. 4). To 
minimize these image artifacts, morphological filters (using OpenCV version 4.5.1, kernel dimension: square; 
size: 3 × 3) were used.

Retinal nerve fiber layer segmentation using U-Net. In this study, the U-Net is adopted for segmen-
tation of the RNFL. U-Net is an accurate architecture developed by Ronneberger et al.12 (a detailed architecture 
is shown in Fig. 5). To train the network and make predictions on test images, images were resized to 256 × 256 
pixels by zero padding. The input image was passed to the network, and at the last convolution layer a binary 
mask was produced by the network that included the RNFL region. There are skip connections between encod-
ers and decoders in the U-Net architecture. Max-pooling is used to decrease the input size by a factor of two and 
to capture contextual information at different resolution levels. The resolution is restored to the original level 
in the decoder module by up-sampling using Up-Convolution, allowing for precise localization. Moreover, the 
input images are passed through a series of convolutional layers with the ReLU activation function. The designed 
U-net utilized increasing numbers of convolutional filters (16, 32, 64, 128, 256) in the encoder and the symmet-
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ric structure in the decoder. Binary cross entropy was used as a loss function for our model. The deep learning 
model was implemented with Python programming language (Python 3.5 Software Foundation, https:// www. 
python. org/). After training and validating the U-Net model using RNFL OCT images and their ground truth, 
we predicted the output of the unlabeled RNFL images in the test set.

Post-processing and average RNFL thickness estimation. After implementing the segmentation 
method, the resulting binary masks may contain gaps and speckles. The gaps were filled by implementing post-
processing methods based on a morphological algorithm. After the post-processing step, the average thickness 
of RNFL was measured by using a Euclidean distance transform  method13.

Performance metrics. We used specificity, sensitivity, and the Dice coefficient to evaluate the segmenta-
tion accuracy of our U-Net on the test sets. Specificity was used to assess the true negative rate of the proposed 
method and sensitivity was used to assess the true positive rate of the proposed method compared to the cor-
responding manually segmented images. The Dice coefficient, which measures the overlap between the manual 
and U-Net segmentation, is between 0 and 1, where 0 represents no overlap and 1 represents a complete overlap.

Finally, after calculating the RNFL thickness, mean absolute error (MAE) was reported to compare both the 
DL algorithmic RNFL results and the OCT machine RNFL data with the ground-truth, defined as the best avail-
able estimation of RNFL average thickness that the ophthalmologist determined manually.

Figure 4.  Image processing before (A) and after (B) denoising.

Figure 5.  U-Net architecture overview. Input X pass forward the network and prediction mask is created by 
network.

https://www.python.org/
https://www.python.org/
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Statistics. The normality assumption was verified using the Shapiro–Wilk test. Normal data were analyzed 
by one-way analysis of variance (ANOVA), and a Kruskal–Wallis test was used when we did not assume a nor-
mal distribution of the data. A Bonferroni correction was used to account for multiple comparisons. The cor-
relations between data were analyzed with the Pearson test, and the differences between the correlations was 
evaluated through the package “cocor” in R (http:// www.R- proje ct. org/; provided in the public domain by the 
R Foundation for Statistical Computing, Vienna, Austria). Differences were considered significant if the P value 
was less than 0.05.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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