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Control of dynamic sp3-C stereochemistry

Aisha N. Bismillah1, Toby G. Johnson    1, Burhan A. Hussein1, Andrew T. Turley1, 
Promeet K. Saha    1, Ho Chi Wong1, Juan A. Aguilar    1, Dmitry S. Yufit1  
& Paul R. McGonigal    1,2 

Stereogenic sp3-hybridized carbon centres are fundamental building blocks 
of chiral molecules. Unlike dynamic stereogenic motifs, such as sp3-nitrogen 
centres or atropisomeric biaryls, sp3-carbon centres are usually fixed, 
requiring intermolecular reactions to undergo configurational changes. 
Here we report the internal enantiomerization of fluxional carbon cages and 
the consequences of their adaptive configurations for the transmission of 
stereochemical information. The sp3-carbon stereochemistry of the rigid 
tricyclic cages is inverted through strain-assisted Cope rearrangements, 
emulating the low-barrier configurational dynamics typical for sp3-nitrogen 
inversion or conformational isomerism. This dynamic enantiomerization can 
be stopped, restarted or slowed by external reagents, while the configuration 
of the cage is controlled by neighbouring, fixed stereogenic centres. As part 
of a phosphoramidite–olefin ligand, the fluxional cage acts as a conduit to 
transmit stereochemical information from the ligand while also transferring 
its dynamic properties to chiral-at-metal coordination environments, 
influencing catalysis, ion pairing and ligand exchange energetics.

The hugely varied three-dimensional (3D) structures—and therefore 
the hugely varied properties—of many organic molecules emerge from 
combining just a few types of atomic building blocks. For example, 
19 of the 22 proteinogenic amino acids are formed solely from sp2- or  
sp3-hybridized carbon, nitrogen and oxygen atoms, capped by hydro-
gen substituents. Of this small array of elemental building blocks, it 
is tetrahedral sp3-carbon1–4 and sp3-nitrogen5–10 atoms that have the 
potential to form stereogenic centres, creating chiral structures.

Chirality also arises in organic molecules by virtue of motifs 
other than stereogenic atoms. However, although stereochemical 
inversion of some planar chiral motifs11–13, helices14–16 and stereogenic 
sp3-nitrogen centres7–10 can occur rapidly and reversibly through 
low-barrier conformational isomerism, sp3-carbon centres cannot 
generally undergo spontaneous stereochemical changes. For exam-
ple, the energy barrier to pyramidal inversion of methane is greater 
than its C–H bond dissociation energy17–19. Accordingly, unlike other 
stereogenic motifs11–16, sp3-carbon centres cannot generally adapt to 
surrounding chiral moieties and cannot be controllably switched by 
the application of external stimuli.

Instead, intermolecular reactions are usually necessary20,21 to 
invert individual stereogenic carbon centres, proceeding through 

mechanisms involving high-energy bond-breaking and bond-making 
steps22 with pentavalent transition states20 (for example, SN2 reactions) 
or trigonal intermediates21, such as carbocations, carbanions or radi-
cals. Of course, it is this stability of sp3-carbon’s tetrahedral geometry 
that makes it essential to the chiral skeletal diversity of organic com-
pounds. It allows for predictable synthesis of configurationally stable 
molecules. Yet, the stability also limits the extent to which the complex 
3D connectivity of aliphatic structures can exhibit dynamic, adaptive 
stereochemistry23.

There have been impressive, but rare, examples of small covalent 
systems24–28 capable of sp3-carbon enantiomerization by low-barrier 
intramolecular processes. However, they do so without external control 
of their rate or direction to a single stereoisomer. Only multicompo-
nent interlocked molecules, in which a ring shuttles along a prochiral 
axle29,30, have been amenable to external control. There have been 
no compact and controllable dynamic sp3-carbon building blocks. 
Therefore, it has not been possible to investigate the transmission of 
stereochemical information through such systems7,9,10.

In this Article we report a series of chiral fluxional carbon cages26–29 
that exhibit responsive sp3-carbon-centred stereochemistry, adapt-
ing to and transmitting surrounding stereochemical information.  
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remarkably low free energy of activation, ΔG‡, of 32.3 kJ mol−1 (Sup-
plementary Table 7)34–38, chiral 9-BB, 3-BB or 2,4-BB derivatives should 
undergo rapid enantiomerization.

Diastereomeric adaptation
We targeted 9-BB 1 (Fig. 2) as a convenient example of the 9-BB substi-
tution pattern that bears a hydroxyl group for synthetic elaboration. 
The Cope rearrangement involving positions 2–8 of 1 (Fig. 2a) causes 
enantiomerization of the whole cage and formally inverts the stereo-
chemistry of position 9 by effectively ‘swapping’ the cyclopropyl and 
alkene substituents connected to the stereocentre. Compound 1 was 
synthesized (Supplementary Scheme 1) by a three-step route from 
ethynyl magnesium bromide and tropylium tetrafluoroborate, using a 
gold-catalysed enyne cycloisomerization39,40 to form the BB backbone. 
When labelling 1 and subsequent compounds, a single stereochemical 
descriptor is included to indicate the configuration at position 9 of the 
BB (Fig. 2a), for example, (R)-1 and (S)-1, omitting the additional stereo-
chemical labels of positions 1, 2, 5 and 8 for simplicity (Fig. 1). Treatment 
of 1 with Mosher’s acid chloride (Fig. 2a) produces a set of Mosher’s 
esters 2 in which the configurationally fixed stereocentre is introduced 
at a distance of three covalent bonds from the dynamic BB unit. An 
additional descriptor for the configuration of the Mosher’s ester group 
is included in the labels for 2. Derivatization with (S)-Mosher’s acid gives 
a dynamic mixture of two diastereomers, (R,S)-2 and (S,S)-2, whereas 
(R)-Mosher’s acid gives (Fig. 2a) the antipodal mixture, (S,R)-2 and 
(R,R)-2. Solutions of the two antipodal dynamic mixtures give opposite 
circular dichroism spectra (Fig. 3a), as would be expected.

DFT modelling using the ωB97X-D functional41, 6-311++G(d,p) 
basis set42,43 and a CS2 polarizable continuum solvent model using the 
integral equation formalism variant44 was employed to compare (Sup-
plementary Table 7) the stereoisomerization energetics of BB, 1 and 2. 
Using these parameters, the automerization of BB is predicted to pro-
ceed with a calculated activation free energy, ΔG‡

calc, of 38.5 kJ mol−1, 
which is ~6 kJ mol−1 higher than the experimentally measured35 activa-
tion free energy, ΔG‡

exp, of 32.3 kJ mol−1, in keeping with previous DFT 
investigations36,37. DFT methods systematically overestimate the 
energy barrier to Cope rearrangement of BBs, but nevertheless allow 
useful comparisons of trends in activation energies and are known to 
predict accurately the relative energy minima of isomers36,37. The com-
putationally predicted ΔG‡

calc  values for 1 (38.0 kJ mol−1) and 2 
(35.5 kJ mol−1) are very similar to BB, indicating that the hydroxyl or 
ester group substitutions at position 9 do not appreciably change the 
rapid kinetics.

The absence of the 𝜎𝜎′′v  mirror plane in 1 is evident (Fig. 3b) in its 
solution-state 1H NMR spectrum—H3 and H7 are magnetically inequiva-
lent, for example. However, the rapid enantiomerization induces a 𝜎𝜎′

v 
mirror plane to the time-averaged structure of 1, so only six distinct 
methine resonances are observed overall. The additional, fixed stereo-
centre of 2 breaks this 𝜎𝜎′

v symmetry. Consequently, nine distinct signals 
corresponding to the BB methine groups are observed (Fig. 3b).

An energy difference, ΔGcalc, of 4.5 kJ mol−1 is computed (Sup-
plementary Table 7) for the rearrangement of 2. The influence of 
the (S)-Mosher’s ester group moulds the configuration of the cage 
unit, which preferentially adopts its S form, biasing the equilibrium 
towards (S,S)-2. Consistent with this prediction, a single crystal  
(Fig. 2a) obtained from the dynamic (S)-Mosher’s ester mixture was 
found to contain (S,S)-2 as a frozen34, single stereoisomer. An equal and 
opposite outcome is observed from the (R)-Mosher’s ester mixture, 
giving the enantiomeric (R,R)-2 solid-state structure.

To establish the nature of the dynamic solution-state mixtures, 
we compared (Fig. 3c) the solid-state 13C{1H} NMR spectrum of enan-
tiopure (R,R)-2 crystals to a spectrum obtained using a sample of the 
(S,S)-2 crystals dissolved in 5:1 CS2–CD2Cl2, generating a dynamic 
mixture of (R,S)-2 and (S,S)-2. Cooling the solution to 159 K causes 
the BB 13C{1H} NMR resonances to enter the slow exchange regime. 

By applying density functional theory (DFT) calculations and solution- 
and solid-state NMR spectroscopy, in combination with X-ray crys-
tallography, we establish the extent to which their dynamic Cope 
rearrangements31,32 are controlled by neighbouring, fixed stereogenic 
centres. We have found that a substantial energetic bias of more than 
10 kJ mol−1 can be exercised over the stereochemical equilibria by a 
single fixed stereocentre. The rearrangements proceed rapidly at rates 
more commonly associated with low-barrier conformational changes 
of aliphatic systems (for example, a cyclohexane ring-flip energy bar-
rier of ~43 kJ mol−1) rather than a configurational change. We show 
that these rapid constitutional dynamics can be halted by covalent 
modification of the cage through a [2 + 2 + 2] cycloaddition reaction, 
then subsequently restarted after a cycloreversion. The rearrangement 
rate is also attenuated upon coordination of the fluxional cage to Pd(II) 
or Ru(II) as part of a phosphoramidite–olefin ligand. By its inclusion 
in the simple ligand design, the fluxional cage transmits stereochemi-
cal information to the metal ion—either through the covalent ligand 
backbone or by ion pairing with a chiral counterion. This property is 
exploited in enantioselective catalysis of an allylic substitution reac-
tion, as well as in creating chiral-at-metal stereogenic centres that adopt 
the configurational dynamics of the cage.

Results
The Cope rearrangement of barbaralane (BB) is an example (Fig. 1a) of 
a narcissistic25,33 automerization—it gives rise to a degenerate structure 
through a transition state (TS-BB) bearing an internal mirror plane (𝜎𝜎′

v) 
that is not present in the minimum energy structure. We noted that by 
desymmetrizing BB (Fig. 1b) using either a 9-BB, 3-BB or 2,4-BB substi-
tution pattern, the mirror plane present at the energy minimum (𝜎𝜎′′v) 
is lost, while the mirror plane formed in the transition state (𝜎𝜎′

v) is 
retained. As a result, the Cope rearrangement inverts simultaneously 
some, or all, of the four or five stereogenic centres present in the struc-
ture. Given that the rearrangement of BB is known to proceed with a 
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Fig. 1 | Multiple dynamic sp3-carbon centres. a,b, Fluxional sp3-carbon 
stereochemistry arises in BBs when the structures interchanged by their Cope 
rearrangements (a) are desymmetrized with any of the three substitution 
patterns shown in b. Cahn–Ingold–Prelog priorities are chosen to be R1 > C > R2 
for the assignment of absolute configuration. When assigning a descriptor to 
position 9 of 9-BB, the cyclopropyl bridgehead C1 has precedence over the divinyl 
bridgehead C5 (Supplementary Fig. 1). 3-BB and 2,4-BB each have four chirotopic 
(R/S) centres, whereas the 9-BB pattern gives rise to five stereogenic centres, of 
which three are chirotopic and two are achirotopic (r/s).
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As 159 K is only ~20 K below the observed coalescence temperature 
(Supplementary Fig. 66) for this low-barrier process, some resonances 
exhibit exchange broadening. At this low temperature, the decrease of 
available thermal energy causes the Boltzmann distribution to shift 
(Fig. 3d) further towards the lowest-energy isomer34. The solid-state 
chemical shifts of the BB sp3-carbons 1, 2, 5, 8 and 9 are assigned  
(Fig. 3b) by comparison to the calculated chemical shifts of (R,R)-2. The 
resonances of the solution sample match up well with those of (R,R)-2 
in the solid state, allowing us to assign the resolved solution-state 
diastereomer as (S,S)-2. The solution-state analysis is thus consistent 
with the diastereomeric preference predicted by DFT and observed 
in the solid state. The 9-BB cage undergoes dynamic diastereomeric 

adaptation under the influence of the configurationally fixed Mosher’s 
ester group.

The dynamic stereochemical equilibrium can also be biased in the 
absence of a fixed stereogenic element. Dimerization of two 9-BB-type 
cages through a spirocylic linkage breaks the degeneracy of the equi-
librium. By treating (Fig. 2b) barbaralone 3 with Lawesson’s reagent, 
we isolated trithiolane 4, which undergoes dynamic rearrangements 
between an achiral isomer, meso-4, and a pair of enantiomers, (S,S)-4 
and (R,R)-4. A small ΔGcalc of 0.7 kJ mol−1 is predicted (Supplementary 
Table 7) to favour the pair of enantiomers over the meso form in the 
solution state. Single crystals grown from a solution of 4 contain a 
racemic mixture of the two chiral stereoisomers.
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Fig. 2 | Diastereomeric adaptation and manipulation of chiral BBs. a,b, 
The dynamic sp3-C stereochemical equilibrium of the BB cage is degenerate 
in 1 but becomes biased towards one stereoisomer upon attaching a chiral 
auxiliary (a) or by dimerization through a spirocyclic bridge (b). c, The position 
of the stereochemical equilibrium changes (and inverts) upon modifying the 
structure of a chiral auxiliary, remote from the BB unit. d, Further control of the 
sp3-C stereochemistry is exerted by a cycloaddition reaction, which freezes and 
symmetrizes the structure, before subsequent cycloreversion re-establishes the 
dynamic stereochemical equilibrium. Reagents and conditions: (i) 1. (S)-MTPA, 
(COCl)2, hexanes, DMF, room temperature (r.t.) to −20 °C, 16 h. 2. 1, DMAP, Et3N, 
CHCl3, r.t., 5 d, 58%. (ii) 1. (R)-MTPA, (COCl)2, hexanes, DMF, r.t. to −20 °C, 16 h. 2. 

1, DMAP, Et3N, CHCl3, r.t., 3 d, 79%. (iii) 3, Lawesson’s reagent, PhMe, 110 °C, 18 h, 
13%. (iv) 1. 3, (S)-1-phenylethylamine, AcOH, MeOH, r.t., 30 min. 2. NaBH3CN, 
100 °C, 16 h, 89%. (v) 5, PCl3, Et3N, CH2Cl2, 0 °C, 3 h. 2. 2,2′-methylenediphenol, 
CH2Cl2, 0 °C to r.t., 16 h, 44%. (vi) 6, PTAD, CH2Cl2, 50 °C, 24 h, 85%. (vii) 7, NaOH, 
iPrOH, 85 °C, 24 h, taken on crude. (viii) CuCl2, HCl(aq), 0 °C, 4 h, 48% from 7. 
X-ray structures are shown in stick representation. Compound 4 crystallizes 
in a centrosymmetric space group, that is, (S,S)-4 and (R,R)-4 are both present, 
but only (R,R)-4 is shown for clarity. Diffraction data for crystals of (R,S)-5 
allow only assignment of relative stereochemistry. MTPA, α-methoxy-α-
trifluoromethylphenylacetic acid; DMF, N,N-dimethylformamide; DMAP, 
4-(dimethylamino)pyridine; PTAD, phenyl-1,2,4-triazoline-3,5-dione.
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Further chemical modification to the substituent at position 9 
can substantially influence, and even invert, the cage’s equilibrium 
distribution. The chiral phosphoramidite–olefin45–47 ligand LBB1 was 
synthesized (Fig. 2c) by first subjecting 3 to reductive amination with  
(S)-1-phenylethylamine to afford a mixture of (S,S)-5 and (R,S)-5. Sequen-
tial treatment of the amine with PCl3 then 2,2′-methylenediphenol 
affords LBB1. The 2,2′-methylenediphenol functionality was selected as 
it lacks fixed stereochemistry but has been shown to adopt dynamically 
chiral conformations as part of phosphoramidite ligands45. Comparing 
LBB1 to 5 reveals that the differing size and shape of the substituent at 
position 9 drives the dynamic stereochemical equilibria of the fluxional 
cage towards opposite configurations. The solution-phase equilibrium 
of the secondary amine is weighted (Supplementary Table 7) towards 
the (R,S)-5 diastereomer by a ΔGcalc of 3.8 kJ mol−1, matching the struc-
ture observed by X-ray analysis (Fig. 2c) of a single crystal. By contrast, 
the (S,S)-LBB1 diastereomer of the phosphoramidite is favoured with a 
ΔGcalc of 20.2 kJ mol−1. The large magnitude of ΔGcalc for LBB1 highlights 
that the configurational dynamics of the 9-BB motif (Fig. 1) correlate 
with notable changes in its 3D shape34 and, therefore, its energy. At the 
same time, the opposing stereochemistry of cages 5 and LBB1 demon-
strates that the malleable sp3-carbon configuration adapts to changes 
in the nearby steric environment.

Manipulating rates and transfer of 
stereochemistry
To exert further control over the fluxional enantiomerization, we 
sought to exploit the reactivity of the BBs’ skipped diene units. The 
fluxional rearrangements can be stopped entirely by engaging the alk-
ene units in covalent bonding, whereas coordination of the π electrons 
to a transition-metal ion38 modulates the rearrangement rate instead.

An enantiomerizing mixture of 9-(p-tolyl)barbaralol 6 engages 
(Fig. 2d) in a [2 + 2 + 2] cycloaddition reaction with phenyl-1,2, 
4-triazoline-3,5-dione48, giving rise to 7. This reaction halts the rear-
rangement while also symmetrizing the structure by forming a second 
cyclopropyl group. Subsequently, the fluxional cage can be regen-
erated (Fig. 2d) in a two-step transformation through diazinane 8 
(Supplementary Fig. 62), which undergoes cycloreversion with loss 
of N2 upon oxidation with CuCl2. Alternatively, coordination of Pd(II)  
(Fig. 4) or Ru(II) (Fig. 5) to LBB1 causes a reduction in the rate of the Cope 
rearrangement, as discussed below.

LBB1 and PdCl2 form (Fig. 4a) a chiral-at-metal49,50 complex,  
LBB1PdCl2, linking the sp3-carbon configurational inversion to the  
A/C isomerism51 of the distorted trigonal bipyramidal (TBPY-5-12) coor-
dination environment (Supplementary Fig. 2). Both possible stereoiso-
mers, arising from coordination of (S,S)-LBB1 or (R,S)-LBB1 through their 
phosphorus centre and an alkene, are observed (Fig. 4a) in the X-ray 
crystal structure of the LBB1PdCl2 complex. The alkene coordination 
is also evident (Fig. 4b) in the solution state by 1H NMR spectroscopy. 
For comparison, a monodentate LBB1AuCl complex (Fig. 4a) was pre-
pared, which shows only small changes in the 1H NMR chemical shifts 
of its alkene signals H3 and H7 relative to the free ligand (Fig. 4b). The 
room-temperature spectrum of LBB1PdCl2, on the other hand, reveals a 
large change in the chemical shift of H7, consistent with coordination 
of Pd(II) to the alkene on the same face as the phosphoramidite group.

At 240 K, the 1H NMR spectrum reveals (Fig. 4b) the two LBB1PdCl2 
isomers in slow exchange. Two sets of signals are observed in a 3:4 ratio, 
corresponding to a small free energy difference, ΔGexp, of 0.5 kJ mol−1 
between the two isomers. Consistent with this observation, DFT cal-
culations predict (Supplementary Table 7) a small ΔGcalc of 1.8 kJ mol−1 
in favour of (C,R,S)-LBB1PdCl2.

Further NMR and DFT analyses elucidate the mechanism by which 
the LBB1PdCl2 complex isomerizes. Depending on the placement and 
nature of substituents around the Cope substrate, metal coordination 
can either stabilize a charged, intermediate species as part of a stepwise 
associative rearrangement mechanism, or it can increase the rate of a 
concerted rearrangement pathway by stabilizing the transition state52. 
Consequently, Pd(II) salts and other cationic metal ions are known to 
accelerate Cope rearrangements53,54. Remarkably, coordination of the 
Pd(II) to one face of the fluxional cage in LBB1PdCl2 has the opposite 
effect, slowing down the Cope rearrangement. Unlike 2, for example, 
whose 1H NMR resonances (499 MHz) enter the slow exchange regime 
below 160 K (Supplementary Fig. 64), the slower rearrangement of 
LBB1PdCl2 is resolved by 1H NMR spectroscopy at the higher temperature 
of 240 K. Using 2D 1H–1H exchange spectroscopy (EXSY) at 240 K  
(Fig. 4c), we measured a rate of exchange, k, of 6.48 s−1, indicating a 
ΔG‡

exp of 54.6 kJ mol−1 for LBB1PdCl2 (Fig. 4d). The DFT-calculated 
transition-state structure (Fig. 4e) shows pairs of equidistant C–C 
bonds, as would be expected for a coordination-coupled Cope 
(cc-Cope) rearrangement (Fig. 4a) in which the Pd(II) remains bound 
to the cage through a concerted rearrangement step. The DFT-predicted 
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ΔG‡
calc of 60.6 kJ mol−1 for this cc-Cope mechanism matches well with 

the ΔG‡
exp of 54.6 kJ mol−1.

These data indicate that the metal ion ‘walks’ along one side of the 
BB cage as the Cope rearrangement proceeds, moving back and forth 
in sync with the pericyclic reaction52. Consequently, the BB not only 
transmits the stereochemical information from the fixed sp3-carbon 
stereocentre through its dynamic sp3-carbon framework, biasing the 
chiral-at-metal configuration, but it also imparts a novel mechanism 
of intramolecular configurational change at a pentavalent stereocen-
tre, which differs from the established pseudorotation and turnstile 
mechanisms55.

The dynamic sp3-carbon stereochemistry of LBB1 can also be linked 
to an intermolecular ligand exchange process. The cyclopentadienyl 
(Cp) half-sandwich Ru(II) complex56 LBB1RuCp(NCMe)·PF6 (Fig. 5) has 
a stereogenic, distorted square pyramidal Ru(II) centre (Supplemen-
tary Fig. 91) coordinated to a labile MeCN ligand. While cc-Cope rear-
rangements interconvert the SPY-5-21 and SPY-5-23 configurational 
isomers51 (Fig. 5a), MeCN dissociation forms the distorted tetrahedral 
(T-4) chiral-at-metal species LBB1RuCp·PF6, which mediates A/C stereo-
chemical inversion.

Ru(II) coordination slows the Cope rearrangement sufficiently 
for a single stereoisomer to be resolved as a metastable species 
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under ambient conditions (Fig. 5b). Upon dissolving single crystals of 
LBB1RuCp(NCMe)·PF6, obtained by slow evaporation, the 1H NMR spec-
trum shows the presence of a single complex (Fig. 5b) with resonances 
distinct from non-coordinated LBB1. After allowing the sample to fully 
equilibrate at room temperature for four hours, a new set of peaks is 
observed (Fig. 5b) at a ratio of 4:1 in favour of the initially observed 
isomer, equivalent to a ΔGexp of 4.0 kJ mol−1. X-ray analysis (Fig. 5c) of 
the crystalline sample reveals the identity of the energetically favoured 
isomer to be (C,R,S)-LBB1RuCp(NCMe)·PF6.

We measured the isomerization rate of (C,R,S)-LBB1RuCp(NCMe)·PF6 
by monitoring (Fig. 5d) the first-order growth in intensity of the reso-
nance at 3.1 ppm corresponding to the H9′ signal of (A,S,S)-LBB1RuCp 
(NCMe)·PF6—the isomer calculated (Fig. 5e) to be the next most stable 
stereoisomer. The kobs of 2.56 × 10−3 s−1 at 298 K allows us to determine a 
ΔG‡

exp of 87.8 kJ mol−1. Comparison of this value to (1) maxima of the 
computed potential energy surface (Fig. 5e), (2) a CD3CN exchange 
experiment (Supplementary Fig. 70) and (3) literature measurements 
of MeCN dissociation from Cp half-sandwich Ru(II) complexes55 suggests 
that the cc-Cope and MeCN exchange processes occur at similar rates. 
To achieve the (C,R,S)-to-(A,S,S) isomerization observed by NMR, the 
complex must undergo both ligand exchange and cc-Cope steps  
(Fig. 5e). Overall, the energetic bias towards (C,R,S)-LBB1RuCp(NCMe)·PF6 
and observation of its stepwise stereomutation to (A,S,S)-LBB1RuCp 
(NCMe)·PF6 illustrate that the fluxional sp3-carbon cage mediates the 
transfer of stereochemical information with high fidelity from the single, 
fixed benzylamino stereocentre through its rigid, tricyclic structure.

Dynamic stereocontrol by ion pairing
Having observed transmission of stereochemical information within 
the covalent frameworks of the LBB1 complexes, we investigated the 
influence of chiral counterions57 on the degenerate enantiomeriza-
tion (Fig. 6a) of the cationic LBB2RuCp(NCMe)+ complex, which lacks 
a fixed stereocentre in its ligand structure. The complex was synthe-
sized (Supplementary Scheme 3) as its hexafluorophosphate salt, 
LBB2RuCp(NCMe)·PF6, in a manner analogous to its permanently chi-
ral homologue LBB1RuCp(NCMe)·PF6 (Fig. 5). X-ray analysis of single 
crystals confirmed (Supplementary Fig. 94) the expected structure 
of LBB2RuCp(NCMe)·PF6 and revealed the presence (Supplementary  
Fig. 95) of both the (C,R)- and (A,S)-isomers in the crystal unit cell.

In the absence of chiral anions, a single 1H NMR signal is observed 
for the coordinated MeCN ligand of LBB2RuCp(NCMe)·PF6 in CDCl3 
solution (Fig. 6b). However, the addition of one molar equivalent of a 
chiral shift reagent, Bu4N·Δ-TRISPHAT58 (Fig. 6b) or Na·(S)-BORBIN59 
(Supplementary Fig. 71), splits the signal in two. Rapid and revers-
ible counterion exchange in the presence of Bu4N·Δ-TRISPHAT 
establishes an equilibrium mixture that includes diastereomeric ion 
pairs, for example, (C,R)-LBB2RuCp(NCMe)·Δ-TRISPHAT and (A,S)- 
LBB2RuCp(NCMe)·Δ-TRISPHAT, which give distinct NMR resonances. 
Therefore, by tracking the relative intensities of these resonances over 
time (Fig. 6b and Supplementary Fig. 72) we can monitor changes in 
sample composition as the chiral anion biases the LBB2RuCp(NCMe)+ 
complex towards one stereoisomer. Under these conditions, the 
Δ-TRISPHAT sample evolves from a 1:1 mixture of stereoisomers to a 
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in one stereoisomer (K = 1.2). c,d, The stereoinduction (c) arising from three 
phosphoramidite ligands was compared in an iridium-catalysed allylic 
substitution (d). We hypothesize that the chiral anion formed in situ biases the 
stereochemical equilibrium of the cationic LBB2Ir π-allyl intermediate, leading 
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2-naphtholato]borate; 1,5-cod, 1,5-cyclooctadiene; (R)-BDHP, (R)-1,1′-binaphthyl-
2,2′-diyl hydrogen phosphate.
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1:0.81 mixture over several hours, corresponding to an equilibrium 
constant, K, of 1.2, and ΔGexp ≈ 0.5 kJ mol−1. The timeframe of the sam-
ple’s evolution is consistent with the slow kinetics of isomerization 
measured (Fig. 5) for LBB1RuCp(NCMe)·PF6, suggesting that the stereo-
mutation is again proceeding by cc-Cope and MeCN ligand exchange. 
The (S)-BORBIN sample reaches (Supplementary Fig. 72) a K of 1.3 over 
a similar time period. Overall, these experiments establish a means of 
noncovalent control of the BB stereochemistry. In principle, K could 
be further increased by removal or omission of any competing achiral 
anions (such as PF6

−) from the reaction mixture and optimization of 
solvent and concentration.

Based on these results, we hypothesized that this counterion- 
directed stereochemistry of cationic LBB2 complexes could be exploited 
in enantioselective ion-pair catalysis60. Unusually, the fixed stereo-
chemistry of the chiral anion would be passed to the catalytically active, 
fluxional metal complex to transiently generate an enantioenriched 
ligand framework in situ. To probe this concept, we screened LBB2 and 
two control ligands (Fig. 6c) in the enantioselective synthesis of 9 
(Fig. 6d) through iridium-catalysed allylic substitution of alcohol 10 
by hydroxycoumarin 1161. We used chiral phosphoric acid (R)-BDHP, 
which we expected to protonate 10 and induce formation of the 
iridium-stabilized allylic cation intermediate while simultaneously 
generating an equivalent of a chiral phosphate anion. The optimized 
literature conditions61 for this allylic substitution employ an achiral 
Lewis acid (Yb(OTf)3) rather than a Brønsted acid to generate the allylic 
cation, in conjunction with enantiopure Carreira’s46 phosphoramidite–
olefin ligand, CL, to impart enantioselectivity. Pleasingly, replacing 
these reagents with (R)-BDHP and racemic (±)-CL leads to the forma-
tion of 9, albeit in just 14% isolated yield. Importantly, however, there 
is essentially no enantioinduction under the influence of (±)-CL. The 
product is obtained with a negligible enantiomeric excess (e.e.) of 
just 2%. It appears that the chiral phosphoric acid alone does little to 
override the stereochemical preference (or overall lack of it) arising 
from the racemic ligand. Using achiral phosphoramidite–olefin ligand 
LCP leads to a similar outcome. LCP bears many of the same structural 
features of LBB2, but with an achiral cyclopentene unit in place of the 
dynamically chiral 9-BB substructure. Compound 9 is produced in 49% 
yield and just 2% e.e. using LCP. Conversely, our fluxionally chiral ligand, 
LBB2, delivers an improved e.e. Using LBB2, we isolated 9 in 36% yield and 
30% e.e. Contrasting this result with the outcome of the reactions using 
LCP and (±)-CL supports the idea that the chiral phosphate counterion 
biases the covalent LBB2 ligand stereochemistry of the cationic inter-
mediate complex (Supplementary Scheme 5), which in turn improves 
the enantioinduction in the key bond-forming step. Although the 
resulting e.e. is moderate for this particular set of reaction conditions, 
it suggests that the use of fluxional sp3-carbon units may enhance the 
design of ligand frameworks for ion-pair catalysis60 and other forms 
of enantioselective synthesis.

Conclusions
Cope rearrangements of chiral 9-BB cages simultaneously invert every 
stereogenic sp3-carbon centre of their structures. These configurational 
rearrangements occur rapidly and reversibly, achieving the uncom-
mon property of dynamic sp3-carbon stereochemistry—one that has 
remained surprisingly rare since Le Bel1 and van’t Hoff2 first identified 
tetrahedral carbon as a source of molecular chirality in 1874. Both the 
rate of sp3-carbon inversion and the equilibrium distribution of iso-
mers are sensitive to changes in the 9-BB structure. On the one hand, 
the dynamics of the rearrangement processes are controlled through 
manipulation of covalent bonding or metal coordination of the 9-BB 
olefin groups, providing convenient functional handles. On the other 
hand, the cage adapts its configuration to minimize steric interactions 
with nearby fixed stereogenic elements and, in so doing, is able to trans-
mit the stereochemical information across its rigid, tricyclic backbone. 
When interfaced with transition-metal complexes, the dynamic cage 

conveys a stereochemical preference to the chiral-at-metal49,50 centre. 
Controllable and adaptable sp3-carbon stereochemistry of this kind 
can be exploited in enantioselective synthesis7,9,10,30,45,62,63 and chiral 
functional materials64.
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