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Using model explanations 
to guide deep learning models 
towards consistent explanations 
for EHR data
Matthew Watson 1*, Bashar Awwad Shiekh Hasan 1 & Noura Al Moubayed 1,2

It has been shown that identical deep learning (DL) architectures will produce distinct explanations 
when trained with different hyperparameters that are orthogonal to the task (e.g. random seed, 
training set order). In domains such as healthcare and finance, where transparency and explainability 
is paramount, this can be a significant barrier to DL adoption. In this study we present a further 
analysis of explanation (in)consistency on 6 tabular datasets/tasks, with a focus on Electronic Health 
Records data. We propose a novel deep learning ensemble architecture that trains its sub-models to 
produce consistent explanations, improving explanation consistency by as much as 315% (e.g. from 
0.02433 to 0.1011 on MIMIC-IV), and on average by 124% (e.g. from 0.12282 to 0.4450 on the BCW 
dataset). We evaluate the effectiveness of our proposed technique and discuss the implications our 
results have for both industrial applications of DL and explainability as well as future methodological 
work.

Recent advances in machine learning (ML) have resulted in models achieving (or in some cases  exceeding1) 
human accuracy, leading to applications in increasingly complex and critical scenarios. For example, ML has 
been applied to critical care in  medicine2 and metastatis  prediction3. In such applications there could be dire 
consequences should the ML models perform poorly and inconsistently in production. However, increasing 
accuracy is not the only goal of ML models in these scenarios. It is also imperative that users (both domain 
experts and end-users alike) are able to trust4,5 the model’s decision; this encompasses not only accuracy, but 
also the robustness and interpretability of model  output6.

In tandem with advances in the accuracy of models, much work has also been produced on the robustness 
and explainability of ML models’ output. Advances in robustness have seen the development of models and 
techniques to detect and protect against adversarial  attacks7–9, improve uncertainty  quantification10 and improve 
the ability of models to generalise to unseen  data11.

However, neural based machine learning models are still inherently black boxes, with the exact reasons behind 
a model’s decision being impossible to easily discern. This becomes more evident with the advent of increasingly 
large  models12, risking mistrust being placed in ML from both domain experts and end-users  alike13,14.

There is also rising concern over the gap between training distributions and test (real-world) distributions, and 
how this gap might affect the underlying causal structures of the  data15. There’s also a significant lack of under-
standing around why and how models  generalise16, especially with recent work showing that over-parameterised 
networks are absent of the classic U-shaped test error  curve17,18. The prevalence of shortcut learning in many 
neural  networks19 can be used alongside the presence of inconsistent  explanations8 to strengthen the argument 
the neural networks are not learning causal features.

For example, despite widespread claims of success in applying ML to COVID-19  tasks20, many of these models 
succumb to numerous pitfalls such as making spurious correlations or being unable to  generalise21,22. Further-
more, explainable machine learning has been used to show how state-of-the-art ML models are not robust to 
small changes in training  hyperparameters23, with identical models producing significantly different explanations 
when hyperparameters such as the random seed and training set order are changed. This lack of explanation 
consistency is of concern as it could completely erode the trust placed in these models.

In this paper we explore this problem further, by investigating and proposing solutions to the inconsistency 
between models trained on medical and biological tabular data. We focus on these applications as it is in these 
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sensitive situations that inconsistent models pose the most significant risks and barriers to the adoption of ML. 
These are also highly specialised areas of expertise where interpretation of model output can have significant 
influence and can also be directly challenged. We propose a novel ensemble architecture that takes advantage 
of explainability techniques during model training to produce an overall model that is more consistent than the 
sum of its parts. We evaluate the effectiveness of this new architecture on the same tabular datasets as our initial 
experiments, and compare our results to the current state of the art. Finally, we discuss how this technique could 
be used in practice and identify potential future directions.

Methods
We use the following notation to describe models and their explanations. A machine learning model mi is passed 
an input x to produce an output o, such that mi(x) = o . For classification tasks, the final prediction p of mi is then 
the class with the highest predicted probability argmax mi(x) = p . An explanation for input x on model mi is 
given as Emi (x) , with the importance value for a given feature xj,k given as Emi (xj,k).

Explanation ensembles. Explanation ensembles are a novel ensemble architecture that improves explana-
tion consistency. It has been shown in previous studies on the consistency of model explanations that ensemble 
models improve the explanation consistency when compared to non-ensemble  models23. Furthermore, it has 
been frequently shown that ensemble architectures out-perform non-ensemble models, reduce the risk of over-
fitting and perform more complex classification tasks than would be possible with a single model  alone24. More 
complex architectures have been shown to be more robust, be less susceptible to adversarial attacks and allow for 
better uncertainty  quantification10,11,25. In particular, hyperparameter ensemble models have recently been pro-
posed, wherein the ensembles not only combine weight diversity, but also hyperparameter  diversity10—however, 
despite improving in many areas upon baseline models, these models do not show any significant improvement 
in explanation  consistency8.

However, we have combined a modified ensemble architecture with a unique training procedure to create a 
model that produces consistent explanations by considering explanations from a wide set of models trained with 
differing hyperparameters. The final model is encouraged to use only important features that are shared between 
every model trained, resulting in a fully trained model that produces consistent explanations.

The core idea of our new architecture is that each ensemble consists of S sub-models e1, . . . , eS , each of which 
is trained with a different hyperparameter setup. Note that only the random seed or order of the training set 
should be changed; hyperparameters such as learning rate and hidden layer size should remain identical across 
all S sub-models. The S sub-models are trained in tandem, with the loss function designed to force each ei to 
learn to use similar features (this is described in more detail in Section “The explanation ensemble discrimina-
tor”). The final explanation ensemble model is then an average across all sub-models, such that E(x) =

∑
S ei(x)
S  . 

In this section, we explain the explanation ensemble architecture in more detail, including the training process 
and discriminator that allows the sub-models to learn similar features.

The explanation ensemble discriminator. The aim of an explanation ensemble is to make each of the S sub-
models to learn to use a similar set of features, with this being achieved through the training of a discriminator 
D. If the S sub-models cover a wide range of hyperparameters, then we expect that they will cover a wide range 
of learned features (this is follows from the results of inconsistent explanations shown  in23), and as such the final 
model will have learned to ignore a large set of noisy (i.e. spurious) features. These two models are trained in 
tandem, in a minimax two-player game: the goal of D is to learn how to discern between real and fake samples 
while the goal of G is to learn the features of the true data distribution in order to fool D into making incorrect 
classifications.

We propose to use a discriminator D in the training of the ensemble model, which is trained on the explana-
tions from the ensemble sub-models; the purpose of this discriminator is to then classify which of the S sub-
models the explanation originated from. The goal of the training of the S sub-models is then to modify their 
weights such that the generated explanations then fool D into making incorrect decisions (whilst still balancing 
the final accuracy of the sub-models too). The exact details of this training process are described in Section 
“Explanation ensemble training”.

Our proposed discriminator D is a simple Multi-Layer Perceptron (MLP) with 1 hidden layer: there is an input 
layer (of the same size as the data samples), 1 hidden layer of size 32, a ReLU activation and finally an output layer 
(of size S, the number of sub-models). This discriminator joins S sub-models to create the whole explanation 
ensemble model, where each of the S sub-models can be of any architecture suited to the base task at hand (e.g. 
an MLP for classification or regression). Figure 1 shows an overview of our explanation ensemble architecture.

Explanation ensemble training. The training for explanation ensembles is the most important aspect of the 
model—there are a number of conflicting goals that it is aiming to achieve, and it is imperative that the training 
is setup in such a way that each of these goals can be achieved whilst also ensuring the model is easy to train. 
There are two objectives of the training process: (1) maximise model accuracy on the task at hand, and (2) 
minimise the difference between generated explanations of the S sub-models (i.e. maximise the error of D)—the 
resulting ensemble model should then have high performance/accuracy and, as the final feature importance 
values have been learnt across S different hyperparameters (and thus “averaged-out”), high(er) explanation con-
sistency. Summarising these two objectives leads to the following loss function for the explanation ensemble
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where CELoss(·, ·) is cross-entropy loss, y are the ground truth labels for the training task and β ∈ [0,∞) is a 
hyperparameter for specifying the weight the discriminator plays during training. For all experiments in this 
paper, we set β such that the two parts of the loss function have the same order of magnitude. This loss function 
requires that explanations are generated for each sub-model in each training epoch; any explanation technique 
(within the limits of the computational power available: many explanations techniques are too computationally 

(1)loss =
∑

i

CELoss(mi(x), y)− β · CELoss(D(Ei(x)), i)

Figure 1.  Diagram of our explanation ensemble architecture and data flow.
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intensive to make them viable options to be calculated across the whole training set S times each epoch) could 
be used here.

Equation (1) describes how the explanation ensemble model learns to fool the discriminator while minimising 
the classification (or regression, or other task-specific) loss. During an epoch where this loss function is used, only 
the weights of the S sub-models are updated—the discriminator remains the same. Thus, every n epochs just the 
discriminator D alone is trained (without back-propagating through the sub-models), allowing the discriminator 
to learn how to accurately classify which sub-model a given explanation was calculated from. Previous work on 
explanation consistency shows that, for many (if not most) tasks, this explanation classification task is easy for 
an ML model to learn to a high degree of  accuracy23 (in fact, this is a direct result of the fact that ML models so 
far have shown low levels of explanation consistency) and so D is able to learn how to do so in a single epoch. 
To summarise, the general training process of an explanation ensemble is as follows: 

1. For each i ∈ [S] run mi(x) with the correct hyperparameters (i.e. training seed)
2. Calculate the explanations Ei(x)
3. If e mod n = 0 update the discriminator D using the loss CELoss(Ei(x), i) , where e is the current epoch
4. Otherwise, update each of the S sub-models according to the loss function in Eq. (1)

  Training of our proposed architecture is inherently unstable; for instance, the loss of the discriminator is 
minimised if every feature in the data is given the same importance value—however, for this to be possible each 
of the sub-models must necessarily be outputting the same class, regardless of the input x. This leaves n as a 
hyperparameter that can be optimised (e.g. using a grid-search), though as an initial starting point n = 2 has 
been found to result in stable training across all experiments.

Explanation computation. To generate explanations for all of our models, we calculate the  SHAP26 values 
across the whole dataset. As discussed in Section “Explanation ensembles”, SHAP is highly versatile and can be 
applied to any data modality; alternative feature attribution methods such as Grad-CAM27 and Information 
Bottleneck  Attribution28 are restricted to certain data types. We follow the method detailed  in23 to calculate the 
explanation consistency for these models.

Alternative explanation consistency calculations. There are a number of other methods that can be 
used to measure the consistency of the model  explanations23. One alternative is to approach the problem from 
an information theoretic background, using statistical distance measures to quantify the difference between 
the produced explanations. Being symmetric, smooth, and bounded Jensen-Shannon Divergence (JSD) is aptly 
suited to this  task23,29, allowing the comparison between the probability distributions of the explanations for two 
models. The main disadvantage of this technique is that JSD is only defined for probability distributions, whereas 
we only have a finite number of samples for each model’s explanations. To alleviate this issue, we perform Kernel 
Density Estimation (KDE) on the explanations from a model to estimate the probability density function. For 
each dataset/task pair, we perform KDE on the explanations for each model (both baseline and explanation 
ensemble models). Then, for each pair of baseline models and each pair of explanation ensembles (for a given 
task), the JSD is calculated, with higher values indicating the two sets of explanations are dissimilar. This can be 
used to calculate the JSD consistency of the explanations

where J(a ‖ b) is the JSD between the explanations of model a and model b.

Explanation quality metrics. To test the faithfulness of our explanations to the models (that is, to ensure 
that the explanations are accurately describing the changes in the model), we use three different explainability 
quality metrics: explanation  sensitivity30, explanation  infidelity30 and explanation  accuracy12.

Statistical hypothesis testing. As well as reporting the results for both performance and consistency 
we also investigate the statistical significance of our results, performing statistical hypothesis tests on both the 
model performance results and the explanation consistency results. Note that we cannot assume that our data 
(i.e. the performance metrics and explanation consistency) is normally distributed, and so parametric tests such 
as Student’s t-test are not viable. Similarly, we cannot assume that the distribution of the differences between 
the baseline ensembles and explanation ensembles are symmetric and so the Wilcoxon Signed Rank test would 
also be invalid. Instead, a non-parametric version of these tests must be used—specifically, we use the Mann-
Whitney U test, setting the null hypothesis H0 as the two distributions being equal.

We calculate and report the test statistic U, and the corresponding p value, for each dataset, comparing 
both the performance metric and the separability between the baseline ensembles and explanation ensembles. 
We perform the hypothesis tests at the α = 0.05 significance level, meaning that the null hypothesis H0 will be 
rejected if p < 0.025 (as we are using a two-sided version of the Mann-Whitney U test).

Ablation study. Like any ensembling technique, explanation ensembles are more computationally expen-
sive during inference time than traditional models, and that this may have an impact on their use in production 
 environments31. It is also important for us to determine that all parts of our technique are critical to the end 

(2)CJSD = 1−

∑
(a,b) J(a � b)

α
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result, and that improved explanation consistency is not a result of a single part of the system. We test three 
post-training methods that attempt to address this issue: submodel averaging, random sub-model selection, and 
a combination of checkpoint and submodel averaging. Checkpoint averaging is a weight averaging technique 
that has been shown to lead to better model  generalisation32. We perform checkpoint averaging (by taking the 
10 most recent saved checkpoints at the end of training) on both the baseline models and the normal ensemble 
models, calculating the explanation consistency for these two techniques as detailed above. In submodel averag-
ing, we create a single model by averaging the model weights of each of the n sub-models trained in the expla-
nation ensemble—this results in just one model that will be much quicker to run at inference time. In random 
submodel choosing, we simply pick one of the sub-models of the explanation ensemble at random to use at 
inference time; with the intuition being that, as the model has still been trained to produce explanations similar 
to those of the other n− 1 sub-models, it should still produce better explanations than traditionally trained 
models. We also combine the checkpoint averaging technique that we have tested on normal architectures with 
submodel averaging.

Results
To thoroughly test the ability of our proposed explanation ensemble model to improve the consistency of the 
produced explanations, we train 6 different tasks on 4 distinct healthcare/biological datasets. First, we introduce 
the tasks and datasets, explain the motivation behind the inclusion of each dataset, then report the results of 
our experimentation.

Datasets and base model architectures. In an effort to keep these initial experiments as simple and 
interpretable as possible, we limit ourselves to tabular datasets. Decisions based on tabular data are inherently 
easier to understand and explain—there are a (typically small) number of distinct features, and often these fea-
tures will be well understood by domain experts. In contrast, features (and thus explanations) of more complex 
data modalities are harder to define. For example, in an image each individual pixel is a feature and yet humans 
(and indeed many ML models) will utilise superpixels (groups of pixels) when making decisions. This makes 
explanations on these data types more difficult to analyse. It also introduces difficulties when comparing the 
explanations of two different samples—in tabular data, feature importance values can be directly compared, 
whereas this comparison is difficult to accurately define as the features between most other data modalities are 
not necessarily aligned. For these reasons, we limit our evaluations in this study to the effectiveness of our pro-
posed methods on tabular data, and leave investigations on other data types to future work.

Deep learning models are being increasingly used to analyse Electronic Health Record (EHR) datasets for 
the prediction of mortality, phenotyping, de-identification and other related  tasks33. Further examples of tabular 
dataset come from genome analysis, on tasks such as pattern identification and kingdom  classification34. The 
application of ML to both of these areas also rely heavily on model interpretability, and the trust of domain 
experts (e.g. clinicians and biologists)6, and so by extension consistent explanations from models are impera-
tive. The purpose of this paper is to investigate the (in)consistency of explanations produced by models on these 
datasets, and inspect whether our proposed explanation ensemble architecture improves upon the consistency. 
Therefore, for each dataset, we re-implement a state-of-the-art neural network for the given dataset and use this 
model as the base for our consistency experimentation. This results in a base model architecture for each dataset/
task which forms the basis of our experimentation. We then take these base model architectures and use them as 
sub-models to train a normal ensemble architecture, as well as our proposed Deep Explanation Ensemble (DEE) 
architecture. This allows comparison of our proposed network with both a standard baseline and an ensemble 
baseline. A summary of the datasets, tasks and baseline models (and hence ensemble sub-models) used can be 
found in Table 1.

Table 1.  Summary of the dataset and tasks used to evaluate Deep Explanation Ensembles alongside baseline 
model and training hyperparameters. Note that MIMI-IV is a time-series dataset and so each entry will have 
different numbers of features, and the KAIMRC (Regression) task has no target class as it is a regression 
problem.

Dataset name

Dataset descriptors Baseline model hyperparameters Baseline training hyperparameters

Task Num. samples Num. features Num. classes
Model 
architecture

Num. hidden 
layers Num. epochs Learning rate Batch size

Breast cancer 
Wisconsin

Binary classifica-
tion 569 10 2 MLP 2 14 0.001 64

KAIMRC Binary classifica-
tion 18,844 24 2 MLP 3 14 0.001 32

KAIMRC Regression 18,844 24 N/A MLP 3 14 0.001 32

MIMIC-IV Binary classifica-
tion 383,220 N/A 2 flexible-ehr 4 20 0.0005 128

Codon usage 
(Kingdom)

Multi-class clas-
sification 12,964 64 5 MLP 1 16 0.0001 32

Codon usage 
(DNA)

Multi-class clas-
sification 12,964 64 3 MLP 1 20 0.0001 32
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EHR datasets. We use three different EHR datasets. The Breast Cancer Wisconsin (BCW)  dataset35 is a small, 
classical ML dataset that has been used frequently as a baseline test for the performance of ML models on 
healthcare data. Each entry in the BCW dataset consists of a set of features extracted from a digitized image of 
a fine needle aspirate of a breast mass, with the features describing: radius, texture, perimeter, area, smoothness, 
compactness, concavity, concave points, symmetry and fractal dimension. The aim of the task is to train a clas-
sification model to predict which tumors are malignant. Following the results  of36, we use a small Multi Layer 
Percetpron (MLP) for this classification problem. The MLP consists of an input layer, a hidden layer of size 40, a 
second hidden layer of size 15 and then the output layer; we use the ReLU activation function, with LogSoftmax 
being used on the output of the final layer. The model is trained over 14 epochs, with a learning rate of 0.001, 
batch size of 64, Negative Log Likelihood (NLL) loss and the Adam optimiser.

The second EHR dataset we use is KAIMRC: a private EHR dataset collected from King Abdulaziz Medical 
City located in the central and western regions of Saudi  Arabia37. The dataset spans 2016 to 2018, and includes 
patient demographics (e.g. age and Body Mass Index), lab results (e.g. cholesterol levels) and vital signs during 
this period. For a detailed description of the features included in the dataset, and their clinical relevance, we refer 
the reader  to37. The dataset was collected to aid the development of ML models for diabetes prediction. We use 
this dataset for two separate, but related, tasks. (1) We train a classifier to predict patients with elevated HbA1c 
levels using longitudinal data, and (2) We train a regression model to predict HbA1c levels. The KAIMRC clas-
sification task is similar to the BCW task in that it is a binary classification problem, but the KAIMRC dataset 
is much larger and more complex than BCW and thus has been chosen to evaluate our proposed explanation 
ensemble models on real-world datasets. Similarly, the KAIMRC regression task is used to verify our proposed 
methods work on regression as well as classification. We follow the methods presented  in37 to create our MLP 
models. The KAIMRC classification MLP uses 3 hidden layers of sizes 48, 48, and 24 respectively, using ReLU 
activation functions after each hidden layer and Sigmoid on the output. Mean-squared error (MSE) was used 
for the loss function and the Adam optimiser was used. The KAIMRC regression model follows the same gen-
eral structure, with dropout with probabilities 0.2 and 0.1 after the first and second hidden layers respectively.

The final EHR dataset used is MIMIC-IV38. MIMIC-IV is a large, freely-available medical dataset collected 
from the critical care unit of Beth Israel Deaconess Medical Center from 2008 to 2019. MIMIC-IV contains 
patient information (e.g. age, weight, height, comorbidities), lab events (e.g. cholesterol, creatinine, bilirubin, 
HbA1c levels), vital signs and medication prescribed of 383,220 patients; for a more detailed description of the 
dataset, we direct the interested reader  to38. MIMIC-IV is a time-series dataset and as such each record (e.g. 
patient) will have a different number of features, and the exact features present for each record will vary. We fol-
low the flexible-ehr  framework39 to train a model for mortality prediction. flexible-ehr consists of an 
embedding layer (embedding the input to a layer of size 32) followed by a Long Short-Term Memory (LSTM) 
module (with a hidden dimension of size 256), which is then passed into an MLP (with 4 hidden layers of sizes 
32, 64, 128, and 256)40. We follow exactly the setup and hyperparameters suggested in the original paper, and 
report these in Table 1. This dataset and model architecture not only allows us to both test the ability of our 
explanation ensembles to perform on very large-scale datasets, but also the effectiveness of explanation ensembles 
on complex sub-model architectures; all other experiments in this paper use MLPs of varying layouts, whereas 
flexible-ehr is a much more complex architecture consisting of an embedding layer, LSTM and MLP.

Genomic datasets. We utilise one genomic dataset for two different tasks. The codon usage  dataset41 consists of 
the usage frequency of 64 codons for more than 13,000 organisms. We follow the methods presented  in41 to train 
two different models; one to classify the organisms kingdom (from 5 distinct classes), and the other to classify 
the DNA type of the organisms (from 3 possible classes). We perform the same data pre-processing (removing 
organisms with less than 1000 codons and those with DNA types in categories 2 or higher), resulting in 12,964 
samples in the final dataset. As per their methods, both MLPs consist of a single hidden layer with 9 neurons. 
The purpose of evaluation our methods on these two tasks is to evaluate the performance of our explanation 
ensembles on multi-class classification problems (whereas previous classification-based experiments are exclu-
sively binary classification problems).

Model performance results. We train multiple versions of each baseline model and inspect how changing 
their training hyperparameters affects model performance and explanation consistency. For each training task 
we systematically change the training hyperparameters, changing only one hyperparameter at a time, in order to 
isolate the affect of each change. We investigate both changing the random seed and training set order. For each 
task we train 10 models with the same random seed but different training set orders, and another 10 models with 
different random seeds but the same training set order. Each model is given the same train/test split—it is only 
the order the training set is passed to the model that is changed.

Traditional ensemble models are also trained on each classification task. Each ensemble consists of 10 sub-
models, using the same architectures described in Section “Datasets and base model architectures”. We compare 
and contrast the results of these models with those from the explanation ensembles in order to discern whether 
any changes in model performance/consistency originates from the use of the general ensemble architecture or 
our specific explanation-based architecture.

We also train our proposed deep explanation ensemble architecture with the baseline model architectures 
for each task used as the deep explanation ensemble sub-model as detailed in Section “Datasets and base model 
architectures”. We begin by using 10 sub-models per ensemble. As detailed in Section “Explanation ensembles”, 
the discriminator is trained on alternate epochs and with a low learning rate of 0.00001. Qualitative experiments 
show that β should be set such that the discriminator loss is one order of magnitude less than that of the clas-
sification loss, and so β = 0.1 . 10 explanation ensemble models are trained with different random seeds (but 
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keeping the training set order the same) and 10 models are trained with different training set orders (but the same 
random seed). We repeat these experiments 3 times (with different seeds/orders) to allow for the calculation of 
standard error. We record the performance of the models and the consistency of the explanations, and compare 
the results with those from the base models. Similarly to our experiments on the normal ensembles and baseline 
models, we also test checkpoint averaging of explanation ensembles.

Tables 1, 2, 3 and 4 in the Supplementary material report the performance metrics and hyperparameters 
used for each individual baseline model trained, for the KAIMRC, BCW, Codon Usage and MIMIC-IV datasets 
respectively. We compare these results to the current state-of-the-art results for each dataset. The reason for this 
is twofold: (1) it ensures that when we compare the results of the explanation ensembles to the baseline models 
we can easily compare it to state of the art models, and (2) it will help to confirm that any explanation inconsist-
ency present in the baseline models are not the result of improper training. Table 2 shows a summary of the 
performance of our baseline models, alongside the variation in performance when training hyperparameters are 
changed. It also highlights how all of our baseline models achieve equal (or near-equal) levels of performance 
compared with the current state of the art for their respective tasks.

Similarly, we report the performance of our baseline “normal” ensemble models in the same way. Tables 5, 6 
and 7 in the Supplementary Material list the accuracy of each individual model trained, and the hyperparameters 
used during training. A summary of the spread of performance of the baseline, normal ensemble models is shown 
in Table 3—by comparing this table with the results in Table 2, we can see that the normal ensemble models 
neither improve nor degrade performance when compared to our baselines and the current state of the arts.

The performance of the baseline models is compared against the performance of explanation ensemble models 
trained on the same task. Tables 8, 9, 10, and 11 in the Supplementary Material report the individual performance 
of our explanation ensembles, alongside the hyperparameters used during training. Table 3 summarises these 
results, and also shows the degree of variation when training hyperparameters are changed. This information 
is summarised in Figs. 2a and 3, which highlight the differences in spread and location of model performance 
when training hyperparameters are changed. For all datasets the mean explanation ensemble performance is 
always within a 10% range of the base model performance; although this does represent a slight decrease in 
model performance when explanation ensembles are used, we argue that this is only a slight decrease that would 
be worth the trade-off given that explanation consistency is significantly improved.

Explanation consistency results. Table 4 reports the consistency, C8, on all tasks tested—C is calculated 
for all training variations and architectures. Table 4 shows that our proposed explanation ensemble architecture 
significantly improves the consistency of the produced explanations.

Table 2.  Summary of mean accuracy/R2 (± standard deviation) for the baseline models when the seed and 
training set order is changed during training. The state of the art (SotA) model performance is also reported to 
confirm the models are properly trained.

Dataset (Task) Seed Shuffle Overall SotA performance

KAIMRC (Classification) 82.576 ± 0.4668 83.381 ± 0.1811 83.12 ± 0.4779 83.22

KAIMRC (Regression) 0.5927 ± 0.0113 0.579 ± 0.0122 0.5858 ± 0.01326 n/a

BCW 92.185 ± 1.7315 91.5 ± 2.8319 91.843 ± 2.3172 99.04

Codon usage (Kingdom) 85.280 ± 1.8029 85.38 ± 1.1778 85.33 ± 1.4367 84.25

Codon usage (DNA) 99.268 ± 0.0950 99.166 ± 0.0921 99.217 ± 0.1033 99.15

MIMIC-IV 76.362 ± 2.5808 79.736 ± 1.8906 78.049 ± 2.7769 84.72

Table 3.  Summary of mean accuracy/R2 (± standard deviation) for the normal ensemble models and 
explanation ensemble models (ours) when the seed and training set order is changed during training.

Model architecture Dataset (Task) Seed Shuffle Overall

Normal ensemble

KAIMRC (Classification) 83.244 ± 0.2367 83.212 ± 0.0920 83.228 ± 0.1702

KAIMRC (Regression) 0.51 ± 0.01673 0.524 ± 0.03007 0.517 ± 0.02532

BCW 77.890 ± 11.563 71.736 ± 11.466 74.813 ± 11.330

Codon usage (Kingdom) 90.134 ± 1.6527 90.568 ± 1.2715 90.351 ± 1.4088

Codon usage (DNA) 99.150 ± 0.2141 99.122 ±  0.2270 99.136 ± 0.2086

MIMIC-IV 77.23 ± 0.7935 75.96 ± 0.6299 76.60 ± 0.7520

Explanation ensemble (Ours)

KAIMRC (Classification) 72.173 ± 0.3998 72.423 ± 0.6856 72.298 ± 0.5365

KAIMRC (Regression) 0.5504 ± 0.0181 0.5408 ± 0.0243 0.5515 ± 0.0197

BCW 87.824 ± 4.0860 86.783 ± 2.5061 87.361 ± 3.3173

Codon usage (DNA) 98.032 ± 0.5420 97.6523 ± 0.5411 97.863 ± 0.5447

Codon usage (Kingdom) 89.176 ± 1.1797 89.055 ± 1.0404 89.110 ± 1.0497

MIMIC-IV 77.338 ± 0.000083667 77.32 ± 0.0001225 77.329 ± 0.0001370
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Table 4 also shows that the degree to which explanation consistency improves varies greatly on the dataset/
task—for example, the Codon Usage Kingdom classification task sees an increase of only 0.07167 whereas the 
KAIMRC classification task sees and increase of 0.35417. We hypothesise that this is due both to differences in the 
dataset and differences in the baseline model (and thus also the explanation ensemble sub-models) architectures. 
The KAIMRC dataset consists of only 2 classes and 24 features, whereas the Codon Usage Kingdom classification 
task has 5 classes and 64 features; intuitively, one would expect it would be easier for the explanation ensemble 
models to learn consistent features for the smaller, simpler KAIMRC dataset than the Codon Usage dataset.

Figure 2c demonstrates the difference in spread of the mean separability, S(a,b) = 2 ∗ |M(a,b) − 0.5| , between 
each individual training variation tested. This allows for a more fine-grained analysis of the explanation consist-
ency than the high-level summary that explanation consistency C provides, noting that the higher the separability 
the “worse” the results. Figure 2c shows that the mean separability of explanation ensembles is lower than that 
of the baselines across all datasets, and that the separability is also spread across a lower range of values than 
both the baseline models and baseline ensemble models. These figures confirm that the discriminator portion 
of the explanation ensemble architecture is successfully encouraging each ensemble sub-model to learn similar 
features, and that this is in turn successfully forces models with different training hyperparameters to learn 
similar features.

As also reported in Table 4, we verify these explanation consistency results by also calculating the JSD con-
sistency, CJSD (Eq. 2), for each dataset. These results conclusively confirm the results of the original consistency 
measure C, with the baseline models having low CJSD and explanation ensembles having higher CJSD values. 

Figure 2.  Figures comparing the explanation consistency C (a), JSD explanations consistency CJSD (b), and 
explanation separability (c) between baseline models and our proposed explanation ensembles across all tasks 
tested. Stars indicate datasets where the difference between the two architectures is statistically significant, 
following the results of a Mann-Whitney U test.
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Figure 2b showcases these difference in JSD values across the baseline and ensemble models—the similarity to 
Fig. 2c further confirms our results.

Table 5 reports the results of checkpoint averaging, submodel averaging, random submodel picking and 
checkpoint averaging followed by submodel averaging. The results are consistent across all architectures: neither 
checkpoint averaging, submodel averaging nor random submodel picking improves explanation consistency. 
When compared to the results of the baseline techniques in Table 4, explanation consistency decreases when 
these extra steps are added, confirming that our proposed method produces the best results. In the case of sub-
model and checkpoint averaging, we hypothesise that this is the result of the averaged model using noisy features 
from all of the models used in the averaging process, whereas our explanation ensemble technique is designed 
to instead encourage all models to learn to use similar features before the averaging takes place. Conversely, our 
explanation ensemble technique is not powerful enough to force each of the submodels to learn exactly the same 
set of features, with this explaining why using one of the trained explanation ensemble submodels (at random) 

Figure 3.  Violin plots showing distribution of model performance across all datasets, for both the base and 
explanation ensemble architectures. The dashed lines represent the 25th, 50th and 75h quantiles respectively. 
Performance for the Breast, DNA and Kingdom datasets is measured as accuracy100  , regression uses R̄2 and mortality 
AUROC. Stars denote datasets where there is a statistically significant difference in the two architectures, 
following the results of a Mann-Whitney U test.

Table 4.  Explanation Consistency (C) and JSD Explanation Consistency ( CJSD ) for the baseline models and 
explanation ensembles across all tasks tested. The percentage increase from baseline C ( CJSD ) to explanation 
ensemble C is shown in brackets. Significant values are in [bold].

Dataset (Task) Base mModel C Explanation ensemble C Base model CJSD Explanation ensemble CJSD

BCW 0.12282 0.4450 (262%) 0.24682 0.273065 (11%)

Diabetes (Classification) 0.58550 0.93697 (60%) 0.51667 0.543646 (5%)

Diabetes (Regression) 0.52691 0.600067 (13%) 0.35389 0.65568 (85%)

Codon Usage (DNA) 0.34279 0.5564 (62%) 0.28114 0.340558 (21%)

Codon usage (Kingdom) 0.22220 0.29387 (32%) 0.34702 0.39391 (14%)

MIMIC-IV 0.02433 0.10111 (315%) 0.15518 0.17912 (15%)
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doesn’t work as well; the averaging out of the (smaller than normal) set of noisy features across each of the sub-
models in the explanation ensemble plays a large part in the generation of consistent explanations.

We verify this hypothesis further by analysing the results of the checkpoint-averaging-followed-by-submodel-
averaging (CA-SA) experiments reported in Table 5. By analysing the results in the normal ensemble models 
we see that this combination of techniques increases the explanation consistency of the models, implying that 
averaging at both stages of the model is required. The results of the same experiment on explanation ensembles 
back this up, with our proposed architecture improving again upon the results of the normal ensemble CA-SA 
experiments. Thus, the benefits of explanation ensembles followed by CA-SA are two-fold: (1) it improves expla-
nation consistency even further, and (2) it results in a much smaller model that can be run at inference time, 
significantly reducing computational costs whilst adding very little to the (one-time) training cost.

Explanation ensemble size results. Research suggests that larger ensembles result in improved 
 performance10. We find this also transfers to our explanation ensembles with Fig. 4 showing how, in general, 
explanation consistency increases as the number of sub-models increases. Intuitively, this is to be expected—the 
more sub-models present in an ensemble, the wider the range of parameters available for the ensemble to “aver-
age out” over.

It is interesting to consider why the point at which the consistency beings to plateau differs across datasets 
(and even different tasks with the same dataset. We hypothesise this is due to the number of features that are 
causally related to target versus how many features are spuriously correlated with the target. Explanation ensem-
bles are designed such that the spurious correlations will be “averaged out” as the sub-models gradually learn to 
utilise only features present across all sub-models, and so in the ideal scenario the whole set of spurious features 
is covered by (at least) one of the explanation ensemble sub-models. Considering this hypothetical ideal scenario, 
it is clear that datasets with a smaller set of spurious features will require a smaller set of sub-models to achieve 
the best consistency by an explanation ensemble architecture possible. This hypothesis also extends to different 
tasks within the same dataset—each task will have a different subset of the dataset’s features, one of which will 
be smaller than the other. Although it is outside the scope of this introductory paper, it would be interesting for 
future work to consider this relationship in more detail.

Explanation quality metrics. Tables  12 and 13 in the Supplementary Material report the explanation 
infidelity and sensitivity  max30 on each individual baseline and explanation ensemble model tested. Across all 
datasets, each model has low explanation infidelity and sensitivity max—this confirms that SHAP is producing 
explanations that are faithful to the models. As the reported infidelity measure is the mean infidelity across the 
whole dataset, this also shows that the explanation methods provide global fidelity.

As Supplementary Table 13 shows, explanations generated from explanation ensembles are also high quality; 
the range and spread of the values is the same as the baseline models, implying that the new architecture does 
not affect the quality of the produced explanations. Importantly, this confirms that the explanations are also 
faithful to explanation ensembles, meaning that the improved explanation consistency is due to the changes in 
the architecture (i.e. the SHAP discriminator) rather than inconsistencies present in the explanation generation 
method (i.e. SHAP, in this case).

Statistical significance results. We report both the test statistic U and the p value for both the perfor-
mance metric and explanation separability comparisons between the baseline and explanation ensemble models. 

Table 5.  Explanation consistency, C, of checkpoint averaging, submodel averaging and random submodel 
picking on baseline models and both normal and explanation ensembles. CA-SA is checkpoint averaging 
followed by ensemble submodel averaging, CU the Codon Usage dataset, class. is classification and regr. 
regression.

BCW Diabetes (Class.) Diabetes (Regr.) CU (DNA) CU (Kingdom) MIMIC-IV

Baseline models Checkpoint 
averaging 0.2117 0.75322 0.53356 0.06585 0.06378 0.1527

Normal ensemble 
models

Checkpoint 
averaging 0.2497 0.2790 0.5604 0.0007 0.2264 n/a

Random sub-
model 0.1392 0.3062 0.5075 0.0440 0.01722 n/a

Submodel averag-
ing 0.1952 0.4597 0.4713 0.3882 0.1738 n/a

CA-SA 0.2906 0.551 0.5193 0.5654 0.1638 n/a

Explanation 
ensemble models

Checkpoint 
averaging 0.2485 0.0175 0.5322 0.2510 0.2695 0.2954

Random sub-
model 0.1365 0.2641 0.0625 0.2939 0.0193 0.01333

Submodel averag-
ing 0.2983 0.0355 0.8389 0.0953 0.0330 0.2080

CA-SA 0.3964 0.89222 0.8529 0.6462 0.3481 0.1784
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Figures 2c and 3 also show for which datasets we report statistically significant results. Table 6 reports the rel-
evant values for each dataset.

Across all datasets, the results of the Mann-Whitney tests support our conclusion that our proposed explana-
tion ensemble architecture results in significantly improved explanation consistency C; all of the hypothesis tests 
result in significant results, highlighting that there is a significant difference between the results. This, coupled 
with the visualisation of explanation separability and JSD in Fig. 2b and c, provide strong evidence that our 
proposed technique significantly increases explanation consistency.

Figure 4.  Explanation consistency (± standard error) of explanation ensembles as the number of sub-models 
within an ensemble increases across all datasets.

Table 6.  U test statistic and p values as calculated for the differences between the model performance and 
explanation separability S(a,b) of the baseline and explanation ensemble models; a two-sided test was used.

Dataset (Task)

Model performance Explanation consistency

U Statistic p value U statistic p value

BCW 75 0.00249292 774 0.009378

KAIMRC (Regression) 81 0.00040946 6475 1.634× 10−6

KAIMRC (Classification) 51 0.04988344 3066 6.382× 10−13

Codon usage (DNA) 81 0.00039825 5606.5 3.855× 10−13

Codon usage (Kingdom) 0 0.00018267 11205 1.179× 10−12

MIMIC-IV 72 0.10397974 1350 8.226× 10−16



12

Vol:.(1234567890)

Scientific Reports |        (2022) 12:19899  | https://doi.org/10.1038/s41598-022-24356-6

www.nature.com/scientificreports/

Discussion
It is clear from both our initial consistency results on the baseline models, and from the corresponding studies 
carried out  in23, that the inconsistency of explanations is an important issue that is present in across a range 
of deep learning models; we hypothesise that it is a direct result of the stochasticity of training. Recent reports 
from  industry42–44 underline the importance of having explainable ML in industry (especially in sectors such as 
healthcare and finance), and how the lack of good quality explanations and the “unpredictable” nature of ML 
(which is highlighted by the inconsistency of explanations) are seen as barriers to wider adoption.

In this paper, we have presented an entirely new architecture that can be trained specifically to learn more 
consistently. Through thorough experimentation on tabular data, we have shown that both of these methods 
are able to produce significantly better explanations (in regards to their consistency) whilst still retaining high 
levels of model performance and explanation quality (as measured through other, non-consistency, quantities. 
Through the use of a wide range of tasks we have demonstrated that our proposed methods are able to work 
across both binary and multi-class classification, as well as regression, tasks and have exhibited the usefulness 
of our techniques in the healthcare sector by focusing on healthcare datasets.

Through experimentation with multiple different model weight averaging techniques, we have shown that 
checkpoint averaging followed by ensemble submodel averaging can improve explanation consistency. Through 
the application of this technique to our explanation ensemble architecture, we show that our architecture can beat 
the explanation consistency of current state of the art techniques even further whilst also significantly reducing 
the cost of running our proposed network at inference time. The final result is a comprehensive step towards 
creating consistent, robust models that can be deployed in sensitive domains such as healthcare and finance.

Future work should investigate the applicability of our proposed techniques to different data modalities such 
as images and text, along with the wide range of differing model architectures used for these different modali-
ties. Furthermore, we encourage further improvements to explanation consistency to be explored: although our 
techniques see impressive improvements of up to 4 times the explanation consistency of the baseline models, 
the consistency for some of the datasets/tasks tested is still relatively low. This raises another question for future 
study: what properties of a dataset makes it easier for consistent (and, as an extension, causal) features to be 
learned. It would be interesting to explore the implications our technique has on the causality of the produced 
models—future work could investigate the degree to which causal features are learned by our model rather than 
correlated features.

Data availability
The Breast Cancer Wisconsin data is freely available: https:// archi ve. ics. uci. edu/ ml/ datas ets/ breast+ cancer+ wisco 
nsin+ (diagn ostic). The Codon Usage dataset is also publicly available: https:// archi ve. ics. uci. edu/ ml/ datas ets/ 
Codon+ usage. The KAIMRC dataset used is a third-party private clinical data that is not publicly available. The 
MIMIC-IV dataset is freely available to researchers after completing data privacy accreditation as set out by MIT, 
the data owner: https:// mimic. mit. edu. This process is in place for privacy and legal purposes.
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