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Abstract—It is uncertain whether the power of transformer architectures can complement existing convolutional neural networks. A
few recent attempts have combined convolution with transformer design through a range of structures in series, where the main
contribution of this paper is to explore a parallel design approach. While previous transformed-based approaches need to segment the
image into patch-wise tokens, we observe that the multi-head self-attention conducted on convolutional features is mainly sensitive to
global correlations and that the performance degrades when these correlations are not exhibited. We propose two parallel modules
along with multi-head self-attention to enhance the transformer. For local information, a dynamic local enhancement module leverages
convolution to dynamically and explicitly enhance positive local patches and suppress the response to less informative ones. For
mid-level structure, a novel unary co-occurrence excitation module utilizes convolution to actively search the local co-occurrence
between patches. The parallel-designed Dynamic Unary Convolution in Transformer (DUCT) blocks are aggregated into a deep
architecture, which is comprehensively evaluated across essential computer vision tasks in image-based classification, segmentation,
retrieval and density estimation. Both qualitative and quantitative results show our parallel convolutional-transformer approach with
dynamic and unary convolution outperforms existing series-designed structures.

Index Terms—Computer Vision, Transformer, Dynamic, Unary, Attention, Convolution
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1 INTRODUCTION

BACKBONE deep model design has become the essen-
tial computer vision task [1]. Embracing the power

of high-performance computing and rich visual contents
from online platforms, the current leading paradigm of
computer vision aims to pre-train a large-scale, multi-task,
multi-modality model that can be transferred to down-
stream tasks. While Convolution-based deep neural Net-
work (ConvNet) architectures have established a leading
position in key computer vision tasks, e.g., image detec-
tion, classification, segmentation, the community has been
seeking for multi-modal solutions since the last decade. An
inevitable and essential topic is about sequential-modeling
which has natural applications in videos, free-texts, audios,
and many other signals of wearable devices. The traditional
RNN-based paradigm was challenged by the transformer-
based neural Network (TransNet) architecture [2] which has
soon become a dominant approach. Recent research has
shown that the TransNet architecture can even outperform
ConvNet on pure vision tasks [3]. Debate has focused on
whether the vision and language tasks should be brought
together, and the model paradigm should be unified in the
new TransNet formula for better transition between multi-
modal tasks.

ConvNets have natural advantages in visual tasks due to
their spatial prior. The existing TransNet paradigm breaks
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Fig. 1. Fig. 1. Comparison of existing convolution (A) and transformer
(B) architecture designs with the proposed DUCT blocks. While previous
work integrates convolution and transformer layers in a separate series
(C), recent trends alternate transformer and convolution in a block-wise
way (D). Our DUCT (E) is the proposed parallel structure combining a
dynamic local enhancement module, a unary co-occurrence excitation
module, and multi-head self-attention in a block-wise design.

visual data into local patch tokens. The natural 2D or 3D
neighborhood dependence is broken into a 1D sequential or-
der. Fully-connected attention with dense tokens is needed
to capture the dependence, which makes TransNets suffer
from poor scalability and flexibility. A few recent attempts
introduce convolution to transformers and achieved promis-
ing results [4]. As it is shown in Fig. 1, most exiting deep
architectures adopt residual connections. Layers between
two residual connections can be regarded as a block. For
simplicity, the figure does not include normalization, acti-
vation, pooling, etc. Most TransNet also adapts residuals
as shown in Fig. 1 (B). A straightforward approach is to
break the low-level vision tasks using ConvNets and apply
TransNet onto the feature maps to process the high-level
information. Dai et al. has proposed a CoatNet that consists
of consecutive conv blocks followed by further transformer
layers [5]. This paradigm is illustrated in 1 (C). Further
attempts concentrate on introducing convolution to trans-
formers as a hybrid block as shown in 1 (D). It is intuitive
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Fig. 2. Illustration of our proposed Dynamic Local Enhancement (DLE) and Unary Co-occurrence Excitation (UCE) in different computer vision
tasks. DLE aims to assign weights to important local patches for convolution (in orange colour). UCE searches for unique co-occurrence between
a local patch and others. Such co-occurrence at the feature-map level can achieve higher invariance. DLE, UCE and multi-head self-attention are
combined to detect local, mid-level and global information in a complementary way.

to see that existing attempts for Conv-TransNet follow the
design in a series order. The ConvNet before the transformer
layer is interpreted as a tokenizer feature extraction of each
image’s local patch. The resulting feature maps are com-
posed of the global information. Without further constraint
or prior information, the following attention layer needs to
compute the dependency between all of these feature maps.
This property is particularly susceptible when the global
structure of local patches is severely shifted, e.g. incomplete
or occluded objects, or due to unseen viewing angles on the
test domain.

In this paper, we explore parallel design to enhance
the local and mid-level information as complementary to
the global attention model, where the fusion of diverse
features is hypothesized to boost the model performance
on various scenarios. Our motivation is illustrated in Fig. 2.
In most computer vision tasks, a few local patches are much
more informative than others. Also, some patches can cause
ambiguity and should be suppressed. When computing
the global attention in an unnatural sequential order, the
response from such local patch information is negated by
other tokens, resulting in a blurring effect. Therefore, we
first introduce a Dynamic Local Enhancement (DLE) module
to achieve dynamic local selection, i.e., force the model to
assign higher weights to important patches. For example, as
illustrated in Fig. 2 (C), the reflection of window light on the
floor can confuse the model and thus needs to be assigned
lower weights. In contrast, the actual window region will
receive high weights so that the convolution signal can be
safely preserved, complementing the global attention.

The other novel idea comes from our observation of the
local co-occurrence property. For example, the local patch of
dog eyes often occurs within the (or nearby/alongside the)
nose and mouth area. Such a correlation is very sensitive
to shifting, e.g., view angles, occlusion, etc. Similarly, the

crowd counting problem—shown in Fig. 2 (D)—is where
crowded patches with similar heads are highly associated,
and also associated with other crowds compared to non-
crowded ones.

Taking advantage of the unnatural order of patch tokens,
we can compute the affinity matrix of the patch tokens.
Each row of the affinity matrix then represents the 1-to-n
correlation for each of the local patch tokens. We develop
a novel Unary Co-occurrence Excitation (UCE) module on
the 1-to-n correlation vector. The key idea is that relative
correlation can hold regardless of whether the positions are
changed. As it is shown in Fig. 2 (C), the windows often co-
occur with the lamp. In the two compared images, the patch
locations of windows and lamps are very different. But the
pair-wise or group-wise correlation score can hold for the
tokens of windows and lamps regardless of the position
shifting. It is named ‘unary’ because each patch token is
only assigned with a single unique convolutional kernel,
to search for similar score patterns. Also, it aims to search
for invariant groups or pair-wise token correlations for each
local patch. Such groups consist of several correlated patch
tokens as a part of the global structure. Therefore, Unary Co-
occurrence Excitation can provide mid-level information as
a bridge between the local and global gaps. We summarize
our main contributions as follows:

• The first attempt to integrate parallel structure within
a hybrid Conv-Trans block.

• We introduce a dynamic local enhancement module
to preserve highly informative local patch/token in-
formation.

• We propose a novel unary co-occurrence excitation
module that searches for position-invariant local co-
occurrence, achieved by convolution over group-
wise correlation scores between patch tokens.
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• The dynamic unary enhancement with Transformers
is combined as a 3-channel block. And an adaptive
patch merging process is designed to select diverse
features and reduce redundancy. Finally, the DUCT
deep architecture (consisting of aggregated DUCT
blocks) is comprehensively evaluated in four essen-
tial computer vision tasks, i.e., image-based classifi-
cation, segmentation, retrieval, and regression (den-
sity estimation). The proposed method outperforms
existing Conv-Trans design in series with state-of-
the-art results.

The proposed DUCT block and the parallel design aims
to bring new theoretical insights and help future work
build a large-scale architecture for extremely large datasets.
Yet the evaluation on lots of large-scale datasets is out of
the scope of this paper; our goal is to design a flexible
and generic Conv-TransNet on different computer vision
paradigms. The following paper is organized as follows.
In section two, our literature review examines both pure
transformers in vision and hybrid visual transformers. Our
technical details and methodology are introduced in section
three. In section four, we introduce the experimental design
and results discussion of the model performance on four
computer vision tasks. Theoretical statements are supported
by both a qualitative and quantitative ablation study. Our
work is summarized in the last section, where further work
and potential impacts are discussed.

2 RELATED WORK

Transformers benefit from the multi-head self-attention
mechanism, and have become the prominent model in natu-
ral language processing (NLP) [6], allowing for information
capture over different ranges. Recently, transformers and
their variants have shown encouraging potential on com-
puter vision tasks, and are considered to be alternative mod-
els to classical convolutional neural networks (CNNs). Here,
we aim to summarize and discuss the recent development
of pure transformer models and hybrid transformers.

2.1 Transformers in Computer Vision
Earlier research largely focuses on the differences between
words and pixels, with various methods that apply the word
embedding concept to image data. The interdependence
among pixels is critical to be captured by the self-attention
mechanism, hence Parmar et al. [7] conducted experiments
for image generation tasks by applying self-attention for
each query pixel instead of modeling them globally. With the
pixel-wise channel-specific embedding and multi-head self-
attention blocks, the proposed model achieved competitive
performance on image recognition task without using extra
convolutional blocks.

An alternative method to scale attention is to apply it
in blocks of varying sizes; Cordonnier et al. [8] applied
self-attention on top of 2x2 patches, although this does not
generalize to large-scale vision tasks. Also, some works tried
to increase the receptive field with different sizes of patches
to flexibly handle larger resolution images. In recent years,
transformers have emerged as the backbone that drives
advances in image classification—traditionally dominated

by CNNs. Dosowitzky et al. [3] proposed a Visual Trans-
former (ViT), which has a similar form to those used in NLP
tasks. It performs well on image classification tasks directly
applied to image patch sequences. The network adopts a
similar approach to BERT’s tokenization method, where a
learnable embedding is applied to the sequence of embed-
ding patches. The state of this embedding serves as the
image representation. In addition, a learnable 1D positional
embedding was added to the patch embedding to retain
positional information. In most cases, ViT is pre-trained on
large datasets such as the ImageNet and then fine-tuned
for smaller downstream tasks. Beyond the ViT, a set of
variants were proposed to improve the performance; mainly
focusing on enhancing locality, improving self-attention
performance and architecture design. For excavating lo-
cal information in different scales and locations, TNT [9]
further divides the patch used in ViT into multiple sub-
patches, where a transformer-in-transformer architecture
was developed to capture the relationship between such
inner transformer blocks, and for patch-level information
exchange an outer transformer block was developed. Swin
Transformers [10], [11] conduct local attention within a win-
dow and introduce a shifted window partitioning approach
for cross-window connections. Shuffle Transformer [12] fur-
ther utilizes the spatial shuffle operation instead of shifted
window partitioning to achieve cross-window connections.
RegionViT [13] generates regional tokens and local tokens
from an image, and each forward token receives global
information via attention with regional tokens. However,
for vision tasks, recent work suggests that the transformers
focus more on the global features, where it is still uncertain
if other lower levels of information are necessary. In this
work, we observed that different levels of information are
still critical in a vision recognition network. This motivated
us to design a new paradigm of hybrid transformer network
to enhance representation learning inside and across the
different tokens.

2.2 Hybrid Vision Transformers

Many recent works have independently confirmed that
transformers can be successfully applied to various vision
tasks [14], [15], [16], [17], [18], [19], [20], as they are able
to capture long-range dependencies in inputs. However,
there are still gaps in performance when compared with
traditional CNN-based networks. The performance of ViT
is largely limited where the training data is inadequate,
especially compared with that of state-of-the-art ConvNets.
There have been some works that combine convolution with
self-attention in recent years. Although it seems that tok-
enized embedding works well, the transformers still need
to be enhanced to learn dense, repeatable patterns (e.g.,
textures and edges) which convolutions are significantly
more efficient at learning. And these early frameworks gen-
erally require a significant increase in computing resources
to outperform convolutional variants.

There has also been recent interest in combining CNNs
with forms of self-attention. Existing research focuses on im-
proving the capability of extracting local information. With
the image domain-specific inductive biases, [4] proposed
the CvT to combine CNNs and transformers to model both
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Fig. 3. (a) Architecture overview of the proposed hybrid transformer network DUCT. (b) The proposed hybrid transformer block for DUCT.

local and global dependencies for image classification in an
efficient way. Their model consists of two novel structural
changes. Firstly, they use convolutional projection modules
to replace the existing position-wise linear projection for
the attention operation. Secondly, they adopt a hierarchical
multi-stage structure to support varied resolutions of 2D
reshaped token maps, named convolutional token embed-
dings. Other works similarly analyzed the drawbacks of
directly applying transformers from NLP on image tasks,
such as [21], [22], [23]—focusing on either replacing or
combining the feedforward network (FFN) with convolu-
tional layers in each transformer module to better capture
the correlation between neighboring tokens.

It’s worth mentioning that there is also research into
leveraging self-attention-style techniques to boost the per-
formance of CNNs; [24] augment convolutions by con-
catenating convolutional feature maps with explicit self-
attention. This additionally validates the benefits of com-
bining both architectures. To enhance the model’s awareness
of global information, Wang et al., [25] proposed non-local
operations as a family of building blocks that can capture
long-range dependencies from sequences. Their approach
achieves more accurate classification results for videos than
2D and 3D ConvNets, and is efficient in utilizing computa-
tional resources. The next year [26] introduced a geometric
prior on the new local relation layer; the self-attention based
layer extracts more representative compositional structures
and adapts aggregation weights according to the spatial
context. Most of the existing hybrid transformer paradigms
attempted learning via series stream information, whereas
investigating the parallel order of integrating information is
an area that has not yet been well explored. This work aims
to design a novel parallel hybrid transformer paradigm,
where the goal is to enhance local, mid and high-level
information; we hypothesize such diverse features are able
to boost model performance in various vision tasks.

3 METHODOLOGY

The proposed approach aims to assemble off-the-shelf main-
stream deep learning components in the most appropriate
way to accomplish their mutual complementarity. Specifi-
cally, the details of each component in the proposed DUCT
network will be outlined in the following sections; the
Dynamic Local Enhancement module (DLE), the Unary
Co-occurrence Excitation (UCE) module, the Multi-Head
Vision Transformer (MHVT), together with discussions on
the convolution operations accordingly.

3.1 Projection-enhanced Transformer
Vision Transformers [27] introduce a way to process
input images in raster order, akin to word embeddings
in transformers for NLP tasks. They use self-attention to
substitute convolutional operations. Formally, given an
input RGB image I ∈ RH×W×3 (H and W represent the
height and width of the image respectively), the image is
partitioned to generate N square patches (a.k.a., tokens)
where each patch has a spatial resolution of

√
P ×

√
P and

N = H×W√
P×

√
P

. Note that there is no overlap between the
adjacent patches. The resulting patches are then flattened
and stacked to form X ∈ RN×P ·C , where C is the channel
of each patch. According to the original Vision Transformer
[27], X is linearly projected to a new embedding space
of dimension N × C ′ to learn the global dependencies of
tokens. However, the linear projection might potentially
overlook some useful information because it can only reflect
the local patterns represented by the split patches within
their limited context.

Projective Token Enhancement To alleviate the impact of
linear token embedding, a projective token enhancement
module is proposed; a given input RGB image is split into
non-overlapping patches I’ ∈ R(H

4 ×W
4 )×C′

, which implies
that the dimension of the flattened token is C ′ = 4× 4× 3.
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The resulting patches are then fed into a projective token
embedding module, similar to Swin Transformer [10]—
composed of three linear mapping layers and normalization
layers—but introduces an additional non-linear activation
layer and the standard residual connection to generate the
preliminary features of tokens, denoted as X ∈ RN×D .

These features, from the embedded tokens, allow for
the low-level cues in each token to be preserved within the
hierarchically designed embedding module, complimenting
the convolution architecture. This early feature processing
is distinct from previous work [3], [21], in that we use the
transformer block to directly perform feature extraction on
the embedded tokens.

Self-Attention Mechanism The use of self-attention [2],
[27] allows for capturing global contextual dependencies
present in the N entries of embedded features X ∈ RN×D .
Specifically, X is encoded as the query Q, the key K, and the
value matrix V of dimensions Dq, Dk, and Dv respectively.
These act as the input of the self-attention layer. The output
of the self-attention layer is a weighted sum of the values:

Attention = Softmax

(
QK⊤
√
Dk

)
V. (1)

In other words, the weight for each value is assigned by the
scaled dot-product of each query and all keys.

Multi-Head Self-Attention Self-attention can be decom-
posed into multiple heads to support parallel and indepen-
dent computation while considering the diversity of con-
textual information between patches and the aggregation of
different representation subspaces. Specifically, with h as the
number of attention heads and the learnable projection ma-
trices WQ

i , WK
i , WV

i and WO , Multi-Head Self-Attention
(MHSA) is calculated in parallel:

MHSA (Q,K,V) = Concat (head1, . . . ,headh)WO

where headi = Attention
(
QWQ

i ,KWK
i ,VWV

i

)
,

(2)

and the output from the multi-head self-attention module is
denoted XT̃ ∈ RN×Dv .

MHSA enables the Vision Transformer to capture global
dependencies of the generated tokens without recursion.
However, this comes at the expense of scalability in various
computer vision tasks, which often require the proposed
model to have a more targeted response to the task [28].
For example, as stated in [29], the transformer can only
acquire effective local information by training on large-
scale datasets (even larger than ImageNet). To this end, as
shown in Fig. 3, we introduce a dynamic local enhance-
ment and unary co-occurrence excitation module induced
from standard convolutional operators to further enhance
the expressiveness of features at different scales, thereby
improving the modelling capability of the transformer for
various tasks.

3.2 Dynamic Local Enhancement
Convolution-based deep learning models can extract local
pixel information by means of using small filters, while

Fig. 4. The proposed Dynamic Local Enhancement (DLE) module. Given
the token features, it first summarizes the average response, which
is transformed to be the attention score. Then the attention score is
used to calculate the dynamic convolution kernel for the dynamic local
enhancement function.

the transformer blocks cannot explicitly model such fine-
scale in a way that is scalable [10], [13], [28]. To enhance
the ability of extracting the local features in each patch, a
Dynamic Local Enhancement (DLE) module is presented to
adaptively estimate a set of learnable convolution kernels
that can independently model the relevant spatial informa-
tion for an individual token (shown in Fig. 4). Given the
availability of the generated token features X ∈ RN×D ,
the statistical information represented for each token can
be reduced by averaging each row vector of X:

xS
n =

1

D

D∑
d=1

xn (1, d) , (3)

where xS
n denotes the output of nth row vector of X.

The overall representation XS ∈ RN×1 can be formed by
stacking the averaged outputs of N row vectors, which is
stable to the variations exhibited in the original features X.

The values in X that summarize the average responses
for all tokens are transformed to a set of attention scores by:

GS = Softmax
(
W2

(
τ
(
W1X

S
)))

, (4)

where W1 and W2 are two weighting parameters, and τ is
the ReLU activation function. Based on obtained attention
score GS ∈ RN×1, we dynamically estimate the learnable
kernels in order to enhance the variability of such attentive
responses, where:

Gw =
N∑

n=1

Gs
nW̃n, Gb =

N∑
n=1

Gs
nb̃n, (5)

and W̃ ∈ RN×N , b̃ ∈ RN×1 are the learnable weights and
biases respectively. These are used to dynamically estimate
the convolution kernel for different tokens. Furthermore,∑K

k=1 G
s
k = 1 with 0 ≤ Gs

k ≤ 1.
Based on the aggregation matrices Gw and Gb, the

locally enhanced features are obtained by:

XD̃ = τ
(
GwX+Gb

)
, (6)

where τ is the ReLU activation function. Gw and Gb denote
the matrix transformation of a 1D convolution. In contrast to
traditional 1D convolution, the weights of the convolution
are dynamically assigned by Gw and Gb. The resulting
features XD̃ are of shape N × Dd. Under the premise of
retaining the feature size of the input token, the proposed
DLE module can greatly increase the sensitivity of the local
informative features and expand the network’s ability to
capture diverse information.
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Fig. 5. The proposed Unary Co-occurrence Excitation (UCE) module.
A correlation matrix is first calculated, and then it is transferred to the
attention matrix by a unary convolution, which is used to enhance the
1-to-n correlation.

3.3 Unary Co-occurrence Excitation

Following the aforementioned observation of local co-
occurrence, it is crucial for the model to learn the 1-to-n
patterns to ensure that the correlations for different com-
binations of tokens are diverse regardless of changes in
patch positions. To achieve this goal, we propose a novel
Unary Co-occurrence Excitation (UCE) module, shown in
Fig. 5. Considering the embedded features of tokens as
X ∈ RN×D , the correlations between the tokens and chan-
nels are calculated as:

M = XIX⊤, (7)

where I = 1
D

(
I− 1

D1
)

with an identity matrix I ∈ RD×D

and a matrix of ones 1 ∈ RD×D . The obtained correlation
matrix M ∈ RN×N can better reflect the pair-wise 1-to-
n relationships among all tokens. More specifically, the
diagonal entries of M represent the variances and the other
entries represent the covariances between the tokens, mean-
ing that the dependencies of the corresponding token with
all other tokens are incorporated. Then, a unary convolution
is proposed to effectively encode such 1-to-n relationships.
Specifically, the matrix M is reshaped into M ∈ R1×N×N ,
enabling convolution kernels K of size 1×N to be applied.
This can be expressed by:

M̃ = σ (K1,N,N ·M1,N,N ) , (8)

where σ is the sigmoid function, and · denotes the dot
product indicating the convolution operation. The output
of the UCE module XŨ is then just a product between the
reshaped M̃ ∈ RN×1 and X ∈ RN×D :

XŨ = XM̃. (9)

Consequently, the resulting feature representations depicted
above are concatenated to form a unified representation
because they have identical dimensions. Formally, it is rep-
resented as:

X̂ = Conv
(

Concat
(
XD̃,XŨ,XT̃

))
, (10)

where XT̃ is the output from Multi-Head Self-Attention
(MHSA). The concatenated representation has the shape
3N ×D, which contains extensive useful information at dif-
ferent levels (low, mid and high levels), and the convolution
operation is applied to filter the most valuable information
while dropping the redundant information; the final output
is then obtained, denoted as X̂ ∈ RN×D′

.

3.4 Adaptive Patch Merging

Inspired by the recent work [4], [10], [30], a patch merging
module is applied to combine the distinct feature represen-
tations. However, as reported in [31], merely applying reg-
ular grid-aware convolutional operations on the reshaped
token sets [4], [30] may completely neglect the fact that
different tokens usually contribute unequally, and also that
tokens may have differing levels of interaction between
each other. To handle these issues, motivated by deformable
convolution [32], a group of offsets is introduced to effec-
tively sample those informative tokens adaptively and then
influence the process of merging tokens.

More formally, the unified features X̂ ∈ RN×D′
gener-

ated from Eq. (10) can be reshaped into X̂ ∈ R1×N×D′
. The

standard convolution operation at the location k of each
pixel can then be expressed as:

X̄ (k) =
∑

ki∈[K×K]

W (ki) · X̂ (k+ ki) , (11)

where ki enumerates the sampling locations in a convolu-
tion kernel (with size K×K). A learnable offset ∆ki is then
introduced into Eq.(11), yielding the adaptive patch merging
scheme:

X̄ (k) =
∑

ki∈[K×K]

W (ki) · X̂ (k+ ki +∆ki) , (12)

where the learnable offset ∆ki is estimated by an extra in-
dependent convolution layer. The output features are addi-
tionally transformed via a convolutional layer, a batch nor-
malization layer, and then a GELU activation function. The
dimensionality N is decreased to 1

4N , and D′ is increased
accordingly to provide more channels/features information
as in traditional convolutional neural networks. As the
network depth increases, patch merging is used to reduce
the number of tokens and control the channel dimension
[3], [10] via adaptively integrating the informative patches,
which allows for robust hierarchical representations giving
the final output.

4 EXPERIMENTS

Our experiments are conducted on four principal computer
vision tasks including classification, segmentation, retrieval
(person re-identification) and regression (crowd counting).

4.1 Model Configurations

Our model receives images of size 224×224 as input, which
are initially partitioned into 4× 4 patches. Then three linear
embedding layers with normalization and residual connec-
tions are employed to preserve the subtle local information,
and the output sequential token features are input to 3
hybrid transformer stages using the proposed DUCT blocks.
The details of the DUCT blocks are described below:

• Stage 1: Patch size is 2 and the channel dimension is
128, the number of MHSA heads is 4, the number of
transformer blocks is 4.

• Stage 2: Patch size is 2 and the channel dimension is
320, the number of MHSA heads is 6, the number of
transformer blocks is 6.
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TABLE 1
Comparisons with state-of-the-art methods on ImageNet-1K [29]

Method Type Network #Param.(M) Image Size FLOPs (G) top-1 (%)

ResNet-50 [33] 25 224 × 224 4.1 76.2

ResNet-101 [33] 45 224 × 224 7.9 77.4

Convolution Neural Networks ResNet-152 [33] 60 224 × 224 11 78.3

RegNetY [34] 39 224 × 224 8 81.7

EfficientNet [35] 19 380 × 380 4.2 82.9

ViT-B/16 [3] 86 384 × 384 55.5 77.9

ViT-L/16 [3] 307 384 × 384 191.1 76.5

DeiT-S [36] 22 224 × 224 4.6 79.8

DeiT-B [36] 86 224 × 224 17.6 81.8

PVT-Small [30] 25 224 × 224 3.8 79.8

Transformers PVT-Medium [30] 44 224 × 224 6.7 81.2

T2T-ViTt-14 [37] 22 224 × 224 6.1 80.7

T2T-ViTt-19 [37] 39 224 × 224 9.8 81.4

TNT-S [9] 24 224 × 224 5.2 81.3

TNT-B [9] 66 224 × 224 14.1 82.8

Swin-T [10] 28 224 × 224 4.5 81.3

Swin-S [10] 50 224 × 224 8.7 83.0

CvT-13 [4] 20 224 × 224 4.5 81.6

CvT-21 [4] 32 224 × 224 7.1 82.5

Convolution + Transformers CoAtNet [5] 25 224 × 224 – 81.6

MobileViT [38] 5.6 256 × 256 – 78.4

DUCT224 31 224 × 224 12 83.1

Ours (Hybrid Transformer) DUCT384 31 384 × 384 43.1 84.7

Fig. 6. Examples of class response maps from the output to the input on
the ImageNet1K dataset.

• Stage 3: Patch size is 2 and the channel dimension is
512, the number of MHSA heads is 8, the number of
transformer blocks is 3.

4.2 Image Classification
The proposed DUCT is evaluated on five classification
benchmark datasets, which are ImageNet-1K [29], CIFAR-
10 [39], CIFAR-100 [39], Oxford Pet [40] and Oxford Flowers
[41]. These experiments are set up as follows:

• ImageNet-1K [29] is a large-scale dataset which con-
tains 1.28M training images and 50K validation im-
ages from 1,000 classes. The AdamW optimizer [42]

Fig. 7. The top-1 accuracy on ImageNet-1K [29] compared to other
methods with respect to model parameters.

with the cosine decay learning rate scheduler is used
to optimize the network. The model is trained for
300 epochs with a batch size of 1024. The initial
learning rate for training the entire model is set to
1e-3, and the weight decay is 0.005. The learning rate
for adaptive patch merging is separately set to 1e-5.
The top-1 accuracy and the computational costs are
summarized for comparison.

• CIFAR-10 [39] has 50,000 training images and 10,000
testing images. CIFAR-100 [39] has 100 categories,
each with 500 training images and 100 testing im-



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

ages per class. Oxford-Pets [40] has 37 categories,
each with about 200 images per class of which
50 are for training, 50 for validation, and 100 for
testing. Oxford-Flower [41] contains 102 flower cat-
egories and each class has around 40-258 images.
We follow the previous work [4], [41] to split the
train/validation/test sets. The model is fine-tuned
on the model that was pretrained on ImageNet1K.
The backbone is optimized using the SGD optimizer
with a learning rate of 1e-4 and momentum of 0.9.
It is trained for 200 epochs with input size 224×224
and batch size 256.

Table 1 shows the performance of DUCT on ImageNet1k
compared with existing state-of-the-art methods based on
CNNs, transformers and convolutional transformers. Also,
a concise overview is shown in Fig. 7, based on the top-1
accuracy with respect to model parameters.

Compared with most state-of-the-art convolutional neu-
ral networks, the proposed DUCT achieves significantly
higher top-1 accuracy. It also can be seen that DUCT
achieves a better trade-off between accuracy and speed
than existing CNN-based models. EfficientNet [35] and
RegNetY [34] are the most recent mainstream convolution-
based models; our model obtains competitive performance
when compared with them. But they are built on neural
architecture search [43] that usually requires a considerable
amount of compute during the architecture search.

Recent advances in vision-based transformers have
achieved great success in image recognition tasks and
are comparative with CNN-based models. However, some
transformer-based backbones require a considerable num-
ber of model parameters with only small improvements
in results: ViT-L/16 [3] Swin [10] and DeiT-B [36]. Incor-
porating convolutions into transformers easily reaches an
accuracy of 82%, where the proposed DUCT achieves com-
petitive results over existing work in top-1 accuracy.

TABLE 2
Model performance on downstream tasks (* indicates that the

experiments are conducted by ourselves.)

Method CIFAR 10 CIFAR 100 Pets Flowers 102
BiT-M [44] 98.91 92.17 94.46 99.30

ViT-B/16 [3] 98.95 91.67 94.43 99.38
ViT-L/16 [3] 99.16 93.44 94.73 99.61
ViT-H/16 [3] 99.27 93.82 94.82 99.51

EfficientNet [35] 98.90 91.7 95.40 98.8
RegNet* [3] 98.7 90.3 93.6 98.9
TNT-B [9] 99.1 91.1 95.0 99.0

CvT [4] 99.16 92.88 94.03 99.62
ours 99.32 94.31 94.76 99.55

Furthermore, to demystify the trustworthiness of the
DUCT decision-making process, we leverage class activa-
tion maps to visualize the class responses of the entire
DUCT model from output to input [45], [46]. Fig. 6 demon-
strates that the proposed DUCT can highlight the accurate
regions that are highly correlated with ground-truth seman-
tic areas.

Moreover, to investigate the transferability of the pre-
trained DUCT model, we also fine-tune and evaluate it
on several downstream datasets. Table 2 shows that the
proposed DUCT can achieve reliable performance on down-
stream tasks.

TABLE 3
Model performance of semantic segmentation task on ADE20K

dataset.

ADE20K mIoU #param.Method Backbone
DLab.v3+ [50] ResNet-101 [33] 44.1 63M
ACNet [51] ResNet-101 [33] 45.9 38.5
OCRNet [52] ResNet-101 [33] 45.3 56M
SemanticFPN [53] ResNet101 38.8 48M
SemanticFPN [53] PVT [30] 39.8 28M
SemanticFPN [53] RegNet [30] 35.4 44M
SemanticFPN [53] EfficientNet [30] 37.1 22M
SemanticFPN [53] Swin [10] 41.5 32M
SemanticFPN [48] DUCT (ours) 42.1 37M
UperNet [48] ResNet-101 [33] 44.9 86M
UperNet [48] DeiT [36] 44.0 52M
UperNet [48] Swin [10] 46.1 60M
UperNet [48] DUCT (ours) 47.2 61M

4.3 Image Segmentation

The widely-used semantic segmentation dataset ADE20K
[47] is utilized to evaluate the effectiveness of the proposed
DUCT backbone. ADE20K contains a total of 25k images
that are labeled into 150 semantic categories; 20K of these
images are used for training, 2K for validation and the
remaining 3K for testing. While there may exist various
other semantic segmentation frameworks, our goal is to
fairly evaluate the proposed backbone performance. Hence,
following the common practice [10], [30], we choose both
the semantic-FPN [48], [49] and the UperNet [48] as the
segmentation framework, and the model performance is
measured by mIoU. AdamW [42] is used for optimization
with a linear learning rate scheduler. The initial learning
rate is set to 6e-5 with a weight decay of 0.01. The model is
trained for 640k iterations with a batch size of 2.

Table 3 shows the semantic segmentation results on the
ADE20K dataset. In comparing the proposed DUCT back-
bone with both convolution-based and transformer-based
models, we find DUCT has superior performance in terms of
mIoU, where it only incurs a slightly higher computational
cost than others.

4.4 Density Estimation/Regression: Crowd Counting

To further reveal the generalizability of proposed DUCT, we
further evaluate it on a density estimation/regression task,
namely, crowd counting. Crowd density estimation aims to
predict the density map of the number of target objects
(e.g., people) in real-world images [54]. The experimental
settings are the same as the recent transformer-based model
[55] applied to the crowd counting. Benchmark datasets for
evaluating the proposed model with DUCT blocks include
ShanghaiTech PartA [56], ShanghaiTech Part B [56] and
UCF QNRF [57]. The model is trained for 2000 epochs and
optimized with the AdamW [42] optimizer. The batch size is
set to 4 with learning rate 1e-5. In addition, L2 regularization
is adopted as commonly used to avoid overfitting.

As can be seen in Table 4, the transformer-based method
[55] achieves competitive results compared to the latest
work based on convolutional operations. While the pro-
posed DUCT can further improve the estimation of crowd
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TABLE 4
Model performance on crowd counting tasks.

Method ST Part A ST Part B UCF QNRF
MAE MSE MAE MSE MAE MSE

PACNN [58] 62.4 102.0 7.6 11.8 - -
S-DCNet [59] 58.3 95.0 6.7 10.7 104.4 176.1
DSSI-Net [60] 60.6 96.0 6.8 10.3 99.1 159.2
BL [61] 62.8 101.8 7.7 12.7 88.7 154.8
RPNet [62] 61.2 96.9 8.1 11.6 - -
ASNet [63] 57.8 90.1 - - 91.5 159.7
LibraNet [64] 55.9 97.1 7.3 11.3 88.1 143.7
AMRNet [65] 61.5 98.3 7.0 11.0 86.6 152.2
NoisyCC [66] 61.9 99.6 7.4 11.3 85.5 150.6
DM-Count [66] 59.7 95.7 7.4 11.8 85.6 148.3
GL [67] 61.3 95.4 7.3 11.7 84.3 147.5
SUA-Fully [68] 66.9 125.6 12.3 17.9 119.2 213.3
P2PNet [54] 52.7 85.1 6.3 9.9 85.3 154.5
BCCT [69] 53.1 82.2 7.3 11.3 83.8 143.4
CCTrans [55] 52.3 84.9 6.2 9.9 82.8 142.3
Ours 52.1 83.6 6.1 8.6 82.1 141.5

Fig. 8. Examples of estimated crowd density maps. From the first row to
the last row, they represent the original images, the ground-truth density
maps and the estimated density maps as predicted by DUCT.

density by properly combining the different feature repre-
sentations. The qualitative visualizations of the estimated
density maps are shown in Fig. 8.

4.5 Image Retrieval: Person Re-Identification

Image retrieval tasks involve searching for targets (e.g.,
images) from a gallery to match the query samples. Per-
son re-identification, a prominent task in image retrieval,
is considered for evaluating the efficacy of the proposed
DUCT block. The experimental setup follows the recent
work [70], where the framework built with the DUCT blocks
is evaluated on Market1501 [71] and MSM17 [72] datasets.

Table 5 shows that recent transformer-based approaches
perform slightly better than most CNN-based methods. The
proposed backbone also achieves competitively with the
latest transformer-based methods. Exemplar retrievals as
obtained by the proposed backbone are shown in Fig. 9.

5 FURTHER DISCUSSION

In this section we discuss some key aspects of DUCT and its
impact, primarily based on Fig. 10 and Table 6, where Fig.
10 shows the different levels of information (i.e., local, mid-
level and global) learned by our model and Table 6 presents

TABLE 5
Model performance of person re-identification tasks.

Backbone Method Market1501 MSMT17
mAP R1 mAP R1

CBN [54] 77.3 91.3 42.9 72.8
OSNet [73] 84.9 94.8 52.9 78.7
MGN [74] 86.9 95.7 52.1 76.9
RGA-SC [75] 88.4 96.1 57.5 80.3
SAN [76] 88.0 96.1 55.7 79.2

CNN SCSN [77] 88.5 95.7 58.5 83.8
ABDNet [78] 88.3 95.6 60.8 82.3
PGFA [79] 76.8 91.2 - -
HOReID [80] 84.9 94.2 - -
ISP [81] 88.6 95.3 - -
TransReID(DeiT) [70] 88.1 94.9 65.5 83.5

Transformer TransReID(ViT) [70] 88.8 95.0 66.6 84.6
DUCT(ours) 89.1 95.1 67.4 85.9

(b)

(a)

(d)

(c)

Fig. 9. Person retrieval samples from the Market1501 dataset. The first
column is the query image, where others are retrieved images from the
gallery, which is ranked according to the similarity scores. (a) and (c)
are the results based on ViT-B/16. (b) and (d) are the results based on
the proposed DUCT. GREEN indicates correctly matched samples and
RED indicates mismatched samples.

the quantitative performance of each of the proposed com-
ponents.

The impact of Dynamic Local Enhancement Since existing
transformers are designed mainly for capturing long-range
global information, one of our goals in this work is to
enhance the local dependency. In Fig. 10 Row-2 blue curves,
we observe that our proposed DLE module is able to high-
light the potential response that global MHSA otherwise
ignored. As the DLE is conducted based on summarizing
each token, different local information is re-weighted from
each token in a way that is complimentary for global infor-
mation. Also, in Table 6, we can see that DLE quantitatively
contributes to the final performance improvement.
The impact of Unary Co-occurrence Excitation The UCE
module aims to leverage the mid-level information from
groups of tokens. Rather than directly model different to-
ken information in a dense way, as MHSA, the mid-level
information acts as the feature selector (Row-3 in Fig. 10)
to assign the higher weights for correlated combinations
of tokens—which can help discover finer information than
dense MHSA from different token groups. The proposed
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TABLE 6
Ablation study of the proposed components on different datasets and different tasks.

MHSA APM Dynamic Unary cifar100
(acc)

ImgNet
(acc)

ADE20K
(mIoU)

ST A
(MAE)

ST B
(MAE)

Market1501
(mAP)

MSMT17
(mAP)

✓ 90.14 80.3 38.2 57.8 7.4 86.4 61.1

✓ ✓ 90.73 81.2 39.3 57.0 7.1 87.1 61.9

✓ ✓ ✓ 91.83 81.9 40.7 53.4 6.6 87.6 63.5

✓ ✓ ✓ 93.43 82.4 41.9 54.5 6.9 88.8 65.9

✓ ✓ ✓ ✓ 94.31 83.1 42.1 52.1 6.1 89.1 67.4

Fig. 10. Quantitative analysis of the response values of MHSA global attention, Dynamic Local Enhancement and Unary Co-occurrence Excitation.
(Row-1) Visualization of the attention map. (Row-2) Comparison of Dynamic Local Enhancement (DLE) in the blue colour against global attention
(MHSA) in the rainbow colour over local tokens. The x-axis is the tokens and the y-axis is the normalized attention response. (Row-3) Visualization
of the correlation map in the Unary Co-occurrence Excitation module.

UCE also clearly contributes the final performance improve-
ment as shown in Table 6.

Interaction/Limitation of different information levels The
class response maps in Fig. 10 (Row-1) demonstrate that
the proposed backbone can learn to precisely attend to the
most relevant regions. Consistently, in the first column, the
DLE and MHSA assigned similar weights on similar tokens,
and the UCE unambiguously selects the most informative
groups of tokens. A similar observation is also shown in
the second column. In the third column, the DLE focuses
on smaller regions of tokens since the black-white keys are
the most distinct feature to recognize the piano, while the
MHSA may further consider other parts of the piano. Also,
the UCE still hold the capability to combine the accurate
patterns/combination of different token groups. The last
three columns show some failure examples, where we can
see that there exists an obvious contradiction between DLE
and MHSA, which has misguided the model’s attention.
Such failures are likely caused by a lack of controllable
information selection. Since transformer architecture design
is still a recent challenge and our main goal in this paper
has been to design a novel parallel transformer architec-

ture, we have directly concatenated the information using
simple convolutional layers to select different information
as learned by different components, whereas in the future,
improvement could likely be made with improved selection
of information from different blocks.

Design transformer for diverse vision tasks Existing
transformer-based works mainly focus on popular vision
tasks (e.g., classification, segmentation). In this paper, we
also benchmarked our model on some other vision tasks
like density estimation, image retrieval and downstream
task transfer. The results demonstrate the potential of the
DUCT framework and the importance of considering dif-
ferent levels of information. In previous years, CNNs have
led progress in various vision tasks, with transformer-based
models emerging as a breakthrough due to their expres-
sivity and long-range information handling. Recent deep
learning models are graduating towards a unification of
various tasks and domains [82]. For the transformer family,
this is both an opportunity and a challenge. The information
required by different tasks and domains may be highly
diverse, where designing a suitable universal model that
is able to generalize across these diverse tasks and domains
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remains an open problem. Our work proposed a parallel
hybrid model, paving a novel approach to combine different
levels of information into a single model, which could be a
reference in future deep network backbone design.

6 CONCLUSION

In conclusion, we have proposed a hybrid transformer
named DUCT. This is a parallel structure consisting of
Dynamic Local Enhancement (DLE), Unary Co-occurrence
Excitation (UCE), and a standard multi-head self-attention
module, which together aim to learn the local, mid-level
and global information. We found that DUCT outperforms
the most recent state-of-the-art approaches on four essen-
tial computer vision tasks, i.e., image-based classification,
segmentation, retrieval, and density estimation. This work
paves a novel way to combine different levels of informa-
tion, and the results reveal both the viability and validity of
the approach. In the future, it would be worth investigating
a more controllable selection of different levels of features
(e.g., local and global) encoded in a hybrid transformer
along with more in-depth theoretical analysis.
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