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Abstract: This study aims to develop and evaluate an automated system for extracting information
related to patient substance use (smoking, alcohol, and drugs) from unstructured clinical text (medical
discharge records). The authors propose a four-stage system for the extraction of the substance-use
status and related attributes (type, frequency, amount, quit-time, and period). The first stage uses
a keyword search technique to detect sentences related to substance use and to exclude unrelated
records. In the second stage, an extension of the NegEx negation detection algorithm is developed and
employed for detecting the negated records. The third stage involves identifying the temporal status
of the substance use by applying windowing and chunking methodologies. Finally, in the fourth stage,
regular expressions, syntactic patterns, and keyword search techniques are used in order to extract
the substance-use attributes. The proposed system achieves an F1-score of up to 0.99 for identifying
substance-use-related records, 0.98 for detecting the negation status, and 0.94 for identifying temporal
status. Moreover, F1-scores of up to 0.98, 0.98, 1.00, 0.92, and 0.98 are achieved for the extraction of the
amount, frequency, type, quit-time, and period attributes, respectively. Natural Language Processing
(NLP) and rule-based techniques are employed efficiently for extracting substance-use status and
attributes, with the proposed system being able to detect substance-use status and attributes over
both sentence-level and document-level data. Results show that the proposed system outperforms the
compared state-of-the-art substance-use identification system on an unseen dataset, demonstrating
its generalisability.

Keywords: electronic health records; substance use; information extraction; natural language processing;
machine learning; rule-based systems

1. Introduction

Substance use (smoking, alcohol, and drug use) is a significant part of a patient’s
history and can be used for clinical care and clinical research purposes. In order to improve
patients’ health care, it is essential for clinicians to have a precise picture of each patient’s
substance consumption. For instance, the value of the result of a common lab test (leukocyte
differential count), which is used in the diagnosis of a variety of medical conditions, can
cause confusion for clinicians if the patient’s status was not previously identified as a
chronic alcoholic [1]. Moreover, substance use causes a wide range of medical conditions
and can exacerbate existing ones. Various published clinical research works identify
substance use as a risk factor that could lead to morbidity and mortality [2,3]. Smoking
is associated with various diseases such as cardiovascular and gastrointestinal diseases,
infections, and some types of cancer [4]. Consuming a large amount of alcohol has been
shown to increase the risk of chronic pancreatitis, malnutrition, and cancer [5,6], whilst the
long-term use of alcohol can seriously damage most organs and systems in the body [7].
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Drug use effects include addiction, heart and/or lung disease, cancer, mental illness,
hepatitis, and other serious health issues [8].

Substance use can be considered a disorder on its own if the frequent use of drugs
and/or alcohol causes considerable clinical and/or functional impairment, such as health
problems and disability [9]. According to the UK’s National Health Service (NHS), in Eng-
land, there were 506,100 hospital admissions and 74,600 deaths attributable to smoking
for 2019/20 [10]. Furthermore, according to the UK’s Office for National Statistics, in 2019,
approximately 14.1% of the UK population aged 18 and above have smoked cigarettes [11].
For alcohol use, in 2017 in the UK, 7327 people died as a direct result of their drinking,
but when every death in which alcohol was a factor is included, the figure is closer to
24,000 [12]. The misuse of alcohol is the biggest risk factor for death, ill-health, and disabil-
ity among 15–49 year-olds in the UK and the fifth biggest risk factor across all ages [13].
In addition, alcohol-related illness is estimated to cost the NHS around GBP 3.5 billion
annually in England alone [12]. For drug use, an estimated 1 in 11 adults aged 16 to 59 years
had taken a drug in 2019 in the UK, equating to around 3.2 million people [14]. In the same
year, there were 4393 registered deaths related to drug misuse in England and Wales [15].
Substance use can have a vast range of short- and long-term and direct and indirect effects.
These effects vary based on the specific kind of substance used, how much is consumed,
how it is consumed, and the overall health status of the user.

Electronic Health Records (EHRs) contain rich information about patients’ substance-
use factors. This information can be either in a structured format or hidden within free
text. EHRs are a source of valuable information about a vast range of diseases, health
risk factors, and health outcomes [16]. This information enables researchers to conduct
high-resolution interventional and observational clinical research [17–19]. However, most
of the information is buried in unstructured narrative text [20]. Extracting information
from clinical narrative text is a challenging and arduous task due to misspellings, uncon-
ventional abbreviations, and ungrammatical text [21]. In the last decade, Natural Language
Processing (NLP) methods have received considerable attention as a way of analysing EHR
narrative text and extracting the hidden information [16,18,22,23].

Recent developments in NLP techniques have demonstrated increasingly promising
performance in the recognition and extraction of meaningful pieces of information from
clinical narrative text [24,25]. NLP automates the processes required to access the vast
embedded information in EHRs and to consolidate it into a coherent structure [26]. NLP
techniques have been widely adopted in different fields, including medical applications
such as cohort identification [27], genome-wide association studies [28], sentiment anal-
ysis [29], medical status extraction [30], text summarisation [31], and diagnosis code
assignment [32]. A large number of tools and frameworks are currently available for
clinical information extraction purposes, such as the Clinical Text Analysis Knowledge
Extraction System (cTAKES) [33], MetaMap [34], and Medical Language Extraction and Encod-
ing (MedLEE) [35]. Most frameworks employ dictionaries and rule-based techniques to
identify clinical entities. The cTAKES system, which was developed by the Mayo Clinic,
is one of the most popular open-source NLP systems in the literature. This system has
been developed based on the Unstructured Information Management Architecture (UIMA)
framework and the OpenNLP NLP toolkit; cTAKES is able to parse the clinical free text in
order to identify the types of relevant clinical concepts in addition to qualifying elements
such as “negated” or “non-negated” and “current” or “history”. The concept code is
provided by mapping each class to a specific terminology domain, which is responsible
for handling language variations.

A range of clinical NLP challenges have been organised in order to identify clinical
entities from clinical text. The Centre of Informatics for Integrating Biology and the Bedside
(i2b2) has organised many challenges. For example, in 2006, they presented a challenge for
discovering patient smoking status [36]. In 2008, a challenge was conducted for recognising
obesity from clinical text [37]. In 2009, the challenge focused on medication recognition [38].
In 2010, the challenge focused on recognising medical concept identification, classification,
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and relation extraction [39]. Other challenges have been shared by i2b2, such as the co-
reference challenge [40], temporal relations challenge [29], and de-identification and heart
disease risk factors challenge [41].

In this work, we propose a system to automatically detect smoking, alcohol, and
drug-use status and the related information, such as amount, frequency, type, quit-time,
and period, in medical records. Our system relies on several NLP techniques, such
as chunking and keyword search, combined with rule-based methods to cope with
complex clinical contexts. The developed system accurately extracts the information
using four stages. In the first stage, the system excludes all records that do not contain
any substance-use information using a keyword search method. In the second stage,
an extension of the negation detection NegEx [42] algorithm is proposed. Temporal status
(current or past) identification is conducted in the third stage, whereas in the last stage,
the system extracts related substance-use attributes. Furthermore, the proposed system
can work successfully at both the document-level and sentence-level. Our experimental
evaluation on a dataset created and annotated for designing and testing our system,
demonstrates the efficiency of the proposed system, achieving an F1-score of up to 0.99
for the detection of substance-use status and up to 0.98 for the detection of substance-
use-related attributes. In addition, experimental evaluation on an “unseen” dataset
demonstrates the generalisation ability of the proposed approach, achieving an F1-score
of up to 0.97 for the detection of substance-use status and up to 0.99 or the detection
of substance-use-related attributes. The contribution of our work can be summarised
as follows: (a) We propose an automated substance-use detection system for clinical
text and evaluate it for smoking, alcohol, and drug use. (b) We propose an extension
of the NegEx negation detection algorithm that improves negation detection compared
to the original algorithm. (c) We evaluate our proposed system on a dataset created
and annotated for designing and testing our system as well as on an “unseen” publicly
available dataset. (d) We evaluate our proposed system against deep learning approaches
that use trainable or pre-trained word embeddings.

The rest of this paper is organised into four sections. The background information and
related works are presented in Section 2. The proposed system is described in Section 3.
Section 4 presents and discusses the obtained experimental results, whilst conclusions are
drawn in Section 5.

2. Related Work

The use of EHRs has become critical in medicine, healthcare delivery, operations,
and medical research [43]. However, the unstructured nature of the majority (80%) of
information in EHRs makes it very difficult to process for secondary use [44]. The impor-
tance of being able to automatically process and extract information from unstructured
clinical text has led to significant amounts of research work on the topic of text classifica-
tion in the context of medical text and clinical notes. Available works rely both on tradi-
tional classification approaches and on more-recent neural-network-based classification
and other advances in NLP [25]. Older works relied on classification approaches such as
Support Vector Machines (SVMs) [45] and k-Nearest Neighbours (kNN) [46], while in re-
cent years, deep-learning models such as Convolutional Neural Networks (CNNs) have
attracted significant attention and have provided competitive results [47]. The use of
pre-trained word embeddings such as word2vec [48] and GloVe [49], or attention-based
models such as BERT [50,51], ClinicalBERT [52], EhrBERT [53], and BioBERT [54] have
also recently been shown as viable alternatives [55].

Substance-use status identification has been widely investigated in the literature due
to the associated health risks. Some systems detect substance use as a disease risk factor
for heart disease [56–59], type 2 diabetes mellitus [60,61], and epilepsy [62], among others.
Feller et al. [63] attempted to infer the presence and status of social and behavioural
determinants of health (SBDH) information in patient records, including alcohol and
substance use. In their work, clinical documents were represented as a bag-of-words using
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the term frequency–inverse document frequency (TF-IDF) representation. The L2-penalised
logistic regression, SVMs, Random Forests, CaRT, and AdaBoost classifiers were then
tested, achieving an F1-score of 91.3% for alcohol use detection and 92.5% for substance-
use detection.

Aiming to identify smoking status, in 2006, i2b2 shared a dataset containing patient
discharge summaries. The challenge set up was to classify patients’ records into five
categories (“current smoker”, “past smoker”, “smoker”, “non-smoker” and “unknown”).
Many systems were proposed to address this challenge, with Uzuner et al. [64] providing a
summary of the reported results of these systems. Other later attempts were conducted on
the same dataset to participate in the same challenge. Multiple classifications using Error
Correcting Output Codes (ECOC) were used by Cohen [65] in an attempt to detect smoking
status, achieving a micro-F1 score of 90%. His proposed system used a range of different
techniques, including hot-spot identification, zero-vector filtering, inverse class frequency
weighting, error-correcting output codes, and post-processing rules, with results showing
that hot-spot identification had the largest positive effect. Wicentowski et al. [66] proposed
a system to detect smoking status when smoking terms were present and when those
terms were removed. Their system under-performed when the smoking terms were not
available but performed similarly to expert human annotators. Heinze et al. [67] applied
a medical coding expert system (LifeCode®) to the i2b2 smoking challenge. The authors
concluded that smoking category temporal differentiation is a significant challenge. Mc-
Cormick et al. [68] compared a supervised classifier using lexical features to one relying on
semantic features generated by an unmodified version of MedLEE, a clinical NLP engine.
Results showed that their supervised classifier trained with semantic MedLEE features was
competitive with the top-performing smoking classifier in the i2b2 challenge, achieving an
F1-score of 89%.

Sohn et al. [69] developed the Mayo smoking status-detection module by remod-
elling negation detection for non-smoker patients. Their system employed a rule-based
model to classify document-level and patient-level smoking status. Their system works
by employing a rule-based layer to detect the existence of smoking-related keywords.
For any sentence with smoking information, a second layer is then used to detect any
negation terms related to smoking terms using the NegEx algorithm. The SVM clas-
sifier is used to determine the sentence temporal status as past or current smoking.
The portability of the Mayo module has been examined by Liu et al. [70] using Vander-
bilt University Hospital’s EHR data; they concluded that modifications are necessary to
improve the detection performance. Khor et al. [71] enhanced the Mayo smoking status-
detection module to distinguish between current and past smokers. They retrained
the SVM classifier by grouping keywords into lexically similar categories to improve
efficiency and concluded that a keyword-grouping approach can increase the learning
ability and enhance overall accuracy. Other approaches have compared the performance
of systems that retrieve smoking status through different structured and unstructured
sources [72,73]. SVMs were also used by Lix et al. [74] in combination with unigrams and
mixed-grams to classify patient alcohol use from unstructured text in primary care EHRs.
Results showed that a higher F1-score was achieved for classification of current drinkers
using unigrams (89%) than mixed-grams (83%), but the difference for the unknown
category was minimal (98% vs. 97%).

Wang et al. [75] developed an NLP system for detecting and extracting related in-
formation from substance-use sentences. The authors used the constituent parser and
dependency parser along with rule-based methods to build a two-stage system. In the first
stage, they detected three main subcategories of substance-use sentences (alcohol, drugs,
and nicotine). In the second stage, they extracted attributes from the detected sentences,
such as amount, frequency, status, method, and temporal information. They evaluated their
system on two different datasets, MTSamples and notes from the University of Pittsburgh
Medical Center (UPMC) de-identified clinical notes repository, achieving F1-scores of 89.8%,
84.6%, and 89.4% for alcohol-, drug-, and nicotine-use detection, respectively, as well as a
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maximum average F1-score of 96.6% for related attribute extraction. Yetisgen et al. [76] used
a combination of machine learning and NLP approaches to identify sentences related to
tobacco, alcohol, and drug use, as well as to their related attributes. Their system involved
three steps: The first step detected the sentences that contained substance-use events. In the
second step, they extracted seven entities to describe the events, and finally, in the third
stage, they presented the extracted entities in a structured format. They evaluated their
system on the MTSamples dataset, achieving F1-scores between 35.29% and 97.61%. One
limitation of the aforementioned works is that they were designed for detecting sentence
status rather than document status.

3. Methodology
3.1. Datasets and Annotation

To develop our system, we used a total of 1739 patient discharge summaries, ac-
quired by merging two different previous i2b2 challenge datasets: (a) the smoking-status
challenge dataset [36], which consists of 502 records covering outpatient, emergency
room, and inpatient domains, and (b) the obesity-challenge dataset [37], which consists
of 1237 records covering patients who were overweight or diabetic and had been hospi-
talised with obesity or diabetes. It must be noted that all patient records had been fully
anonymised for the purpose of the challenges. The source data for both challenges origi-
nated from hospitals within the Partners Health-Care Research Patient Data Repository.
The final merged dataset was divided into a training set of 1128 records (65%) and a test
set of 611 records (35%).

The smoking challenge dataset was originally hand annotated by a team of pulmo-
nologists. Every record was classified as one of five categories (unknown, non-smoker,
smoker, current smoker, or past smoker) based on detailed criteria, and inter-annotator
agreement was measured using Cohen’s kappa, resulting in a kappa value of 0.84. How-
ever, our proposed system deals with four categories (unknown, none, current, or past),
where the smoker and current smoker categories have been merged; thus the dataset’s
annotations were transformed accordingly. The annotation of our corpus was achieved in
three phases: In the first phase, we followed the smoking challenge criteria to annotate
the obesity challenge dataset for smoking status. In the second phase, all records from
both datasets were annotated for alcohol- and drug-use statuses. In the third phase, we
extracted five attributes (type, amount, frequency, quit-time, and period) for the records
that positively held substance-use events.

To effectively annotate the dataset, we built annotation guidelines to annotate
alcohol- and drug-use statuses and all attributes of substance use. The annotation guide-
lines were adapted from the annotation guidelines of the smoking challenge dataset [64].
Two clinicians performed a manual review of discharge summaries for 100 patients.
The inter-rater agreement between clinicians was assessed by Cohen’s kappa, and the
clinicians then met and resolved all conflicts. After that, a single annotator annotated
the remaining patient records based on the revised annotation guidelines (Table 1) us-
ing the Brat Rapid Annotation Tool (BRAT) [77]. Figure 1 shows the annotation of
a set of substance-use sentences using the BRAT, while Table 2 presents examples of
substance-use attribute annotations.

A summary of the results of the aforementioned annotation procedure regarding
the status of the discharge records is provided in Table 3. Out of the 1739 records, 800
(46%) were found to contain information regarding smoking, while the smoking status
was unknown for 939 (54%) of the records. In addition, 628 (36.1%) records contained
information regarding alcohol use, whereas 217 (12.5%) records contained information
about drug use. Records related to any of the three substance-use types were those
for which substance use could be established as “none”, “past”, or “current”, whereas
unrelated records were those for which that the substance-use status was “unknown”.
Out of the related records, 61.4%, 45%, and 20.7% were labelled as positive (current or
past) records for smoking, alcohol, and drug use, respectively. Table 4 presents attribute
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annotation statistics for use of each substance in terms of the number of sentences that
contained related information.

In addition to the two datasets that were merged in order to design and evaluate
our system, we also employed the MTSamples [78] dataset in order to further evaluate
our system, test its generalisability, and compare it to a state-of-the-art substance-use
status-detection method on an “unseen” dataset. To this end, we used the annotated data
provided by Yetisgen et al. [76].

Table 1. Substance-use status annotation guidelines.

Category Annotation Guideline

Current

A “Current” substance user is a patient whose discharge summary asserts explicitly that the patient had used
the substance within the past year. The assertion “Current [substance] user” in the text without any temporal
qualifications means that the patient is categorised as a “Current” substance user unless the text states that the
patient stopped using the substance more than a year ago.

Past

A “Past” substance user is a patient whose discharge summary asserts explicitly that the patient was a
substance user one year or longer ago but who has not used the substance for at least one year. The assertion
“Past [substance] user” without any temporal qualifications means that the patient is categorised as a “Past”
substance user unless the text states that the patient stopped using the substance less than one year ago.

None A “None” substance user’s discharge summary indicates that they have never used the substance.

Unknown
A patient’s substance-use status is categorised as “Unknown” if the patient discharge summary does not
mention anything about the use of the substance. Indecision between “Current” substance user and “Past”
substance user is not included in this category.

Note: Guidelines were adapted from the smoking-challenge annotation guidelines [64].

Table 2. Examples of attributes for smoking, alcohol, and drug use.

Substance Attribute Example

Smoking

Amount 100 pk, 2 and 1/2 to 3 packs, heavy tob.
Type smoking cigarettes, pipe and cigar smoker.
Frequency per day, /years.
Quit-time stopped smoking in 1994, none since 1967.
Period ×35 years, for 30 years.

Alcohol

Amount 1–2 drinks, up to one pint.
Type two gallons of gin and vodka, glasses of scotch.
Frequency one to two times a month, drinks alcohol occasionally
Quit-time quit alcohol 25 years ago, last drink 3/2/05.
Period for 8 to 9 years, times 33 years.

Drugs

Amount cocaine abuse.
Type current cocaine user, smokes marijuana.
Frequency daily, rarely.
Quit-time last use seven years ago.
Period for three years.

Table 3. Annotation summary in terms of number of records for the substance-use statuses of the
dataset’s discharge records.

Substance
Record Status

Unknown None Past Current

Smoking 939 309 286 205
Alcohol 1111 345 65 218
Drugs 1522 172 17 28
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Table 4. Substance-use attribute annotation summary in terms of the number of sentences that contain
relevant information.

Substance Sentences Amount Type Frequency Quit-Time Period

Smoking 1067 273 72 261 170 69
Alcohol 795 124 43 188 37 7
Drugs 273 29 68 4 6 6

Figure 1. Example of using the BRAT annotation tool to annotate three sentences for smoking,
alcohol, and drug use, respectively. Screenshot of the BRAT tool’s interface after annotating the three
sentences. Using the tool, the parts of the sentence that refer to substance-use type, status, frequency,
amount, period, and quit-time have been annotated.

3.2. Proposed Method

In this work, we aimed to develop an automated substance-use detection system for
clinical text. The proposed system is able to detect the substance-use status and the related
information from discharge summaries using a combination of NLP and classification rules.
Our system consists of four stages, as depicted in Figure 2. In the first stage, the system
classifies the records into two classes (“Known” or “Unknown”) for each substance use;
all “Known” records are then processed further. The second stage detects the negation
status and classifies the records into negative or positive. The third stage differentiates
the temporal status of the positive records (past or current). In the final stage, the system
extracts substance-use attributes (type, frequency, amount, quit-time, and period). Our
system was developed using IBM’s Unstructured Information Management Applications
(UIMA) engineering framework with text analysis components from Mayo’s cTAKES
(e.g., tokeniser, sentence boundary detector, and shallow parser). Further details for each
stage are discussed below.
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Figure 2. Flowchart of the proposed system for substance-use status and related attribute detection.
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3.2.1. Stage 1—Exclusion of Unrelated Records

In this stage, the system classifies the records into known or unknown substance-use-
related records by looking for specific keywords. For each type of substance use, the record
is assigned an initial status. Records that are assigned a value of “Unknown” for the three
substance-use classes (smoking, alcohol, and drug use) are discarded. Two lexicons have
been built manually for alcohol and drug use from the training set, previously published
studies [79], and expert domain knowledge (e.g., alcohol, beer, ethanol, IVDU, cocaine, and
heroin). For the smoking lexicon, we used keywords from previously published work [69],
and we also inserted new smoking-related keywords (e.g., packs, ppd, snus, and weed).
A fourth lexicon was built that contains misleading concepts. These concepts include some
of the keywords but with an inverse meaning in relation to substance use (e.g., smoke
inhalation, vaginal pack, drug allergies, and drug rash).

An additional restriction was set in the case of alcohol and drugs. The proposed system
uses section headers in the process of status detection. The patient records contain sections
that may cause confusion in selecting the correct status. For example, the “ALLERGIES”
section contains data about medication and drugs that cause allergic reactions in patients,
but this information gives no clue for the existence of any substance use. Moreover,
the detection system could deal with the keywords that exist in the “Follow up and
Instructions” section that includes some instructions that the patient must follow after
leaving the hospital. For example, in an instruction such as “You should continue to take
adequate food and drink”, the keyword “drink” in this context does not mean the patient
should or does consume alcohol. It must also be noted that the section headers were
identified using a set of regular expressions.

Some keywords need to be treated carefully regardless of the section they appear in.
For example, a list of different non-alcoholic drinks (e.g., water, juice, and coffee) deactivate
the “drink” keyword. A shallow parser has been used to link the “drink” keyword with
any adjacent word that appears in the non-alcoholic list. Another keyword that needs to
be treated carefully is “ppd” because it could be the abbreviation of the “Purified Protein
Derivative (PPD)” skin test or of “packs per day”. Our system needs to be concerned about
the “ppd” keyword when it is connected to the patient’s amount of smoking. To solve this
issue, the system uses a regular expression technique and considers “ppd” as a smoking
keyword if it is preceded by a number, thus indicating the number of cigarette packs
per day. Finally, the “quit” keyword can be ambiguous when it appears in a sentence
without any substance-use keywords. Consequently, in this case, the system assigns the
sentence containing “quit” to the preceding substance-use-related sentence.

3.2.2. Stage 2—Negation Detection

In this stage, the system detects the negation status for all substance-use statements in
the patient’s record, and a positive or negative status is assigned to every patient’s record.
The records with positive status are transferred to the next stage, whereas the negative ones
are discarded.

Negation is crucial for any clinical text analysis since it is widespread in the clinical
narrative. For example, the medical importance of “no smoking” is quite different from that
of “smoking”. NegEx [42] is one of the most widely used negation detection algorithms
in the literature. In this work, we propose an extension of the NegEx algorithm, applied
via the cTAKES negation annotator component, since the original NegEx failed to detect
the negated substance records accurately in the proposed system. The negation annotator
inspects the context of substance-use-named entities (e.g., smoking, alcohol, or drugs)
to check if they have to be considered as negated. The best parameters for the NegEx
annotator found throughout the training of our dataset were 9 for the maximum left scope
and 2 for the maximum right scope of the substance keyword.

The extension proposed in this work aimed to address the limitations of NegEx by
adding extra rules. The rules were proposed to handle the following cases:
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• If semantic negation exists as words, the system fails to identify the status as negation,
such as in the case of “nondrinker” and “non-drinker”. For example, “She is a non-
smoker and non-drinker”. The “non-smoker” keyword was presented in Sohan [69]. We
expanded the negation module by adding the new words to the negation component.

• NegEx fails to deal with negation when it appears as a sign (- or +), e.g., -tob, +etho, or
-IVDU. Our negation module considers these signs as negation symbols while also
taking into consideration the hyphen character “-”, e.g., ex-smoker.

• Solving the “nor” problem by expanding the negation window: For example, a sen-
tence that contains “nor smoke” will be considered as negated, but the sentence “She
does not consume alcohol, nor does she smoke” will not capture the negation for smoking
since the smoking keyword is not directly connected with the context negation nor. We
expanded the search after “nor” to connect it with the first appearance of a keyword.

• Solving the problem when the keyword of substance use is in a section header: The pro-
posed system handles the case when the substance-use keyword is part of section
header, e.g., “Alcohol: None”, “Drug history: None”. In the previous example, the status
of alcohol use is none, even if the “alcohol” keyword exists in the section header.

• Solving complicated negation cases such as “denies smoke, alcohol socially”: This sen-
tence indicates the patient is a non-smoker and current drinker. The original NegEx
algorithm assigns negative status for smoking and alcohol use for the given patient.
However, to address this obstacle, the system was extended to include words that
override negation, i.e., socially, rare, or occasional.

• Terms used to override negation: For example, “he has not drunk alcohol since 1984”.
In the previous sentence, the patient is a past drinker, while NegEx considers the
patient as a non-drinker. To address this issue, the system was extended to include
words that override negation, i.e., since, for, last, or quit.

• The case when the sentence includes more than one keyword for the same substance
use, causing a conflict when assigning a negation status. For example, “he is a former
smoker, he denies any use of tobacco”. This sentence indicates that the patient is a past
smoker. NegEx will give the first keyword “smoker” positive status and the second
keyword “tobacco” negative status. To handle this issue, the proposed system uses the
’OR’ logical operator so that positive status will be considered for the whole sentence
whenever it exists. Moreover, since our system detects the status of the documents,
the probability of having more than one keyword for the same substance-use-related
sentence is higher, which makes the use of the ’OR’ operator in the proposed system
essential.

After applying negation detection, the documents are given a certain status (positive
or negative). The documents with positive status are then transferred to the next stage.

3.2.3. Stage 3—Temporal-Status Classification

This stage contains documents that have a positive appearance of substance-use
keywords. These documents will be classified into “Current” or “Past” for each substance
use. At the beginning, positive sentences are considered to be current substance users
unless clear past evidence is presented. There are some substance-use treatment types
that indicate that the patient is a current substance user, such as “nicotine patch”, “smoking
cessation”, and “ethanol abstinence”. Other keywords can give a clue about the current status,
such as “to stop” and “to quit”. The document is assigned a past substance-use status if
one of the past terms such as “ex-smoker” and “ex-drinker” appears. Window and chunking
methodologies were used to link substance-use keywords with past terms. A list of the
past terms and search methodologies used is provided in Table 5.
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Table 5. Past temporal status terms and search methods

Past Terms Substance-Use Keyword Distance Method

Remote

In the same chunk ChunkingIn the past
In the last
Previous

Former

One word after WindowPrior
Recovered
Distant

Past Two words before and two words after Window

Until
All words before WindowInactive

None since

Discontinued

One word after if not all words before WindowQuit
Ago
Stopped

In cases where the sentence includes keywords of various types of substance use,
the past status is assigned to the closest one. Drug-use temporal status identification is
more complicated in cases where the patient could be a past user of one drug and a current
user of others. In this case, the past status will be linked to the particular type of drug(s).
The final judgment for drug-use status is “Current” if the patient currently uses any kind
of drug(s).

3.2.4. Stage 4—Attribute Extraction

In this stage, the proposed system extracts the related attributes for smoking, alcohol,
and drug use. The extracted attributes are: amount, type, frequency, period, and quit-time.
These attributes are extracted from records with current and/or past status for every type of
substance use. Different rules have been implemented to extract these attributes as follows:

• Amount is the quantity of smoking, alcohol, or drug consumed by the patient. To ex-
tract the amount attribute, three levels of scanning are conducted. Firstly, the system
searches for patterns using a regular expression to detect instances such as “1 to 2
packs”, “3–4 drinks”. A second scan is applied to deal with cases for which the amount
is not a numeric value, such as “five packs”, “two to three beers”. In this scan, a shallow
parser is used to find the longest chunk that contains an amount value. Then, the
system searches for syntactic patterns for amount values, e.g., “((CD to) CD packs)”,
“(CD drinks)”. If the system fails to detect amount values, a third scan searches for
lexical words such as ( “heavy”, “minimal”, “significant”) that are occasionally used to
describe the amount value in the place of numbers.

• Type is the kind of smoking, alcohol, or drug(s) consumed by the patient. For the type
attribute, we used a lexicon to identify the substance-use type. The lexicon terms were
collected from previously published work [79] and expanded by adding other terms
selected manually from the training set with the help of experts. The lexicon is divided
into three parts, one for each type of substance use. Example terms are cigarette, pipe
for smoking, wine, vodka for alcohol, and crack, cocaine for drugs.

• Frequency is how often smoking, alcohol, or drugs are used by the patient. The fre-
quency attribute commonly follows the amount value and comes in the same chunk.
To extract the frequency value, a regular expression and syntactic pattern such as
((amount value) | times) (per | a | / | every | -) (day | week | year | month) are
used. If these patterns are not found, a second scan is conducted to find lexicon words
such as “occ”, “nightly”, “infrequently”.
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• Quit-time and Period: Quit-time is the date that the patient stopped substance use, and
period is the duration of substance use. To extract quit-time and period attributes, the
system searches for a syntactic pattern such as ((quit | stop | discontinued | until )
(CD)), (for | times (CD)). Moreover, the system searches for some regular expression
patterns to solve cases such as “× 20 yrs” for period and “5 years ago” for quit-time.
When a sentence contains keywords for various types of substances use, the quit-time
and period values will be assigned to the adjacent substance use type or the nearest
prior type listed.

3.3. Novelty and Validation

The proposed system is generalisable, having been developed and trained over the
i2b2 dataset and tested using an unseen part of the i2b2 dataset (test set), as well as the
completely unseen and independent MTSamples dataset. As shown in the next section,
it is able to perform better than other state-of-the-art systems. The proposed system is
enhanced in the sense that it: (1) extends the NegEx algorithm; (2) expands the keyword
lexicon by investigating the training set, previous works, and domain knowledge experts;
(3) applies special rules for misleading keywords; (4) expands the search to all text sections
and links the keywords with their own section header; and (5) employs a shallow parser in
extracting substance-use status and attributes.

4. Results and Discussion

A thorough experimental evaluation was conducted in order to examine the perfor-
mance of the proposed system on the tasks of detecting unknown, none, past, or current
substance use (smoking, alcohol, and drugs) from discharge records as well as on the
task of detecting substance-use attributes (amount, type, frequency, quit-time, and period).
To ensure a fair experimental evaluation and to avoid overfitting, the dataset was divided
into training (65%) and test (35%) sets. To this end, 1128 records were used to design
and fine-tune our system, and 611 records were used to test the system’s performance.
For smoking, the number of related records was 503 records for training and 297 records
for testing. For alcohol, there were 389 records for training and 238 testing records. Finally,
for drugs, there were 128 records for training and 89 for testing. The performance of our
system was measured using the following information retrieval metrics: sensitivity (Sen),
precision (Pre), and F1-score (F1).

4.1. System Performance Evaluation

The performance of our proposed system on the test set is reported in Tables 6 and 7.
Our system was able to accurately detect related substance-use records (Stage 1) with an
F1-score between 0.9785 and 0.9974. For smoking and alcohol use, the proposed system
detected all related records correctly with a sensitivity of 1.0, while sensitivity reached
0.9785 for drug use detection. Precision exceeded 0.97 for all substance-use detection types,
resulting in very few unrelated records being retrieved.

In order to identify the negated records (Stage 2), we first tested using the cTAKES
NegEx method. However, NegEx failed to identify the negated records. For instance, when
identifying negated smoking records, 11 records were identified out of 113. Results were
similar for identifying negated alcohol records, where only 9 out of 135 were detected
correctly. In addition, none of the negated drug records were identified. We then tested our
proposed negation-detection method. As shown in Table 6, our negation-detection module
(Stage 2) was successful in detecting negation, achieving an F1-score between 0.9710 and
0.9821. Sensitivity reached 0.9735 for detecting negation for smoking, 0.9630 for alcohol use,
and 0.9571 for drug use. Furthermore, our proposed extended negation-detection module
reduced false positives significantly, achieving a precision value of more than 0.98.

Temporal status classification into current or past (Stage 3) was the most challenging
stage for our system. The proposed system was able to detect the smoking temporal status
with an F1-score of 0.9463 for “Past” and 0.9294 for “Current” statuses, thus achieving an
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average F1-score of 0.9379. For the detection of alcohol-use temporal status, the average
F1-score was 0.8731, with an F1-score of 0.80 for “Past” and 0.9461 for “Current” statuses.
Finally, for the detection of the drug-use temporal status, the average F1-score was 0.8286,
with an F1-score of 0.8571 for “Past” and 0.80 for “Current” statuses. From these results, it
is evident that the proposed system is more efficient in detecting the temporal status for
smoking compared to alcohol and drug use.

The performance of the proposed system for the extraction of substance-use attributes
(Stage 4) is presented in Table 7. Attributes related to smoking were accurately identified,
with an F1-score between 0.9244 and 1. For alcohol use, the proposed system successfully
identified the amount, type, and frequency attributes with an F1-score between 0.9333
and 0.9831, while performance suffered for the quit-time attribute, reaching an F1-score
of 0.80. This decrease in performance can be attributed to the various syntactic patterns
appearing in alcohol-related text. Finally, the proposed system was successful in identifying
the amount, type, and period attributes for drug use, achieving an F1-score between 0.8780
and 1, with performance dropping for the quit-time attribute, reaching an F1-score of 0.75.
It must also be noted that the achieved precision was very high in most cases, indicating
that our system returned a very small number of incorrect results.

Table 6. Substance-use status-detection performance using the proposed approach.

Task Status
Smoking Alcohol Drugs

Sen Pre F1 Sen Pre F1 Sen Pre F1

Stage 1 Unknown 1 0.9938 0.9969 1 0.9947 0.9974 0.9785 0.9785 0.9785

Stage 2 None 0.9735 0.9910 0.9821 0.9630 0.9848 0.9738 0.9571 0.9853 0.9710

Stage 3 Past 0.9238 0.9700 0.9463 0.7200 0.9000 0.8000 0.7500 1 0.8571
Current 0.9518 0.9080 0.9294 0.9634 0.9294 0.9461 0.9333 0.7000 0.8000

Table 7. Attribute extraction performance of the proposed method.

Attribute
Smoking Alcohol Drugs

Sen Pre F1 Sen Pre F1 Sen Pre F1

Amount 0.9798 1 0.9898 0.8824 1 0.9375 0.9167 1 0.9565
Type 1 1 1 0.8750 1 0.9333 0.8182 0.9474 0.8780
Frequency 0.9348 1 0.9663 0.9667 1 0.9831 - - -
Quit-time 0.9016 0.9483 0.9621 0.7500 0.8571 0.8000 0.7500 0.7500 0.7500
Period 0.9868 0.9782 0.9244 - - - 1 1 1

4.2. Performance Comparison to Deep Learning Approaches

To further evaluate the suitability of the proposed system, its performance was
compared to that of six deep learning approaches for the task of substance-use status
classification. To this end, the task was modelled as a four-class classification problem
with the classes being “Unknown”, “None”, “Past”, and “Current”. The following six
models were then trained for each one of the three substances in the dataset following the
approaches of [80–82]: (i) a Multilayer Perceptron (MLP) model using a trainable embed-
ding layer, (ii) a Bidirectional Long Short-Term Memory (Bi-LSTM) [83] model using a
trainable embedding layer, (iii) an MLP model using the GloVe-50 [49] pre-trained word
embeddings, (iv) a Bi-LSTM model using the GloVe-50 pre-trained word embeddings,
(v) the pre-trained Bidirectional Encoder Representations from Transformers (BERT) [50]
base uncased model, and (vi) a fine-tuned BERT base uncased model. The trainable em-
bedding layer used in the first two models had 128 dimensions. In addition, a sequence
length of 512 tokens was used for BERT, as it was the maximum supported by the BERT
base uncased model, whereas the sequence length for the MLP and Bi-LSTM models was
set to 2500 tokens. Cross-entropy loss and the Adam optimiser were used for training
the models using the Keras API, with the loss function being weighted according to the
class ratios in order to account for the class imbalance. It must be noted that in order to
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achieve a fair comparison to the proposed approach, no additional preprocessing was
applied to the text. Each text was first tokenised, and the list of tokens was used as an
input to the models. Results for each substance and for each class for all the examined
deep learning models are presented in Table 8.

From Table 8, it is evident that the examined deep learning approaches performed
significantly worse that the proposed method. For detecting “Unknown” use status,
the fine-tuned BERT model performed the best for smoking and alcohol use, with F1-scores
of 0.7611 and 0.80, respectively, and the MLP with trainable embedding performed the
best for drug use, with an F1-score of 0.9442, compared to 0.9969, 0.9974, and 0.9785,
respectively, for the proposed method. For the detection of negated records (“None”),
the fine-tuned BERT model performed the best for smoking, with an F1-score of 0.4768,
and the MLP with trainable embedding performed the best for alcohol and drug use,
with F1-scores of 0.3866 and 0.2424, respectively, compared to 0.9821, 0.9738, and 0.9710,
respectively, for the proposed method. For the detection of “Past” use status, the MLP
with trainable embedding performed the best for smoking and drug use, with F1-scores
of 0.2264 and 0.50, respectively, and the MLP with GloVe-50 embeddings performed the
best for alcohol use, with an F1-score of 0.0769, compared to 0.9463, 0.8571, and 0.80,
respectively, for the proposed method. It must be noted that for the detection of “Past”
status for drug use, the Bi-LSTM with trainable embeddings and the MLP with GloVe-50
embeddings also achieved an F1-score of 0.50. Finally, for the detection of “Current” use
status, the BERT model performed the best for smoking, with an F1-score of 0.2072, the fine-
tuned BERT performed the best for alcohol use, with an F1-score of 0.2873, and the MLP
with GloVe-50 or trainable embeddings performed the best for drug use, with an F1-score
of 0.1818, compared to 0.9294, 0.9461, and 0.80, respectively, for the proposed method. It is
evident that, apart from the detection of records with “Unknown” substance-use status,
the examined deep learning approaches struggled to distinguish between the other classes,
something that can be partially attributed to the lack of sufficient training samples (as
shown in Table 8) combined with the high dimensional feature space due to the length of
the medical discharge records.

Table 8. Substance-use status-detection performance (F1-score) using the examined deep learning
approaches and the proposed approach.

Substance Status
F1-Score Per Method Train/Test

Proposed TE+MLP TE+BiLSTM GLV+MLP GLV+BiLSTM BERT BERT (FT) Samples

Smoking

Unknown 0.9969 0.7537 0.6886 0.7358 0.6275 0.0688 0.7611 617/332
None 0.9821 0.2930 0.3322 0.3492 0.3613 0 0.4768 196/105
Past 0.9463 0.2264 0.1176 0.1493 0.2233 0.0921 0.1062 179/ 97
Current 0.9294 0.1282 0.0682 0.1235 0.0215 0.2072 0.1322 134/ 73

Alcohol

Unknown 0.9974 0.7930 0.7585 0.7909 0.6819 0.5846 0.8000 725/391
None 0.9738 0.3866 0.2682 0.2791 0.3431 0.2793 0.1594 209/113
Past 0.8000 0 0 0.0769 0.0417 0.0263 0 44/24
Current 0.9461 0.1443 0.2455 0.2793 0.1990 0.2020 0.2873 148/ 79

Drugs

Unknown 0.9785 0.9442 0.8971 0.9417 0.3424 0.4271 0.9370 992/535
None 0.9710 0.2424 0.1579 0.1587 0.1970 0.1964 0 105/ 56
Past 0.8571 0.5000 0.5000 0.5000 0 0 0 11/ 6
Current 0.8000 0.1818 0.1538 0.1818 0.0444 0 0 18/10

Note: TE: Trainable Embedding, GLV: GloVe Embeddings, FT: Fine-Tuned. In cases where the F1-score for a task
is 0, the model did not predict any sample as belonging to that class. Bold denotes the best performance per
substance and status.

4.3. Evaluation on an Unseen Dataset

In order to demonstrate our system’s generalisability and superiority, we tested our
system using the MTSamples dataset [78] that has also been used by Yetisgen et al. [76].
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Yetisgen et al. employed machine learning for the detection of the substance-use status,
as previously mentioned in the related works (Section 2). Table 9 provides a comparison
between the results of our proposed system on the MTSamples dataset and the results
published by Yetisgen et al. for the same dataset. Since the compared work detects the
status at the sentence level, we also configured our proposed system to detect the status
from sentences instead of records in order to conduct a fair comparison. It is evident from
Table 9 that the proposed system outperforms Yetisgen et al.’s approach, achieving a higher
F1-score in all cases except for alcohol use with a status of “Current” and drug use with a
status of “None”. It must also be noted that our system led to significant improvements in
F1-scores in most cases compared to Yetisgen et al.’s and to more stable performance across
the three different statuses for each substance.

Table 9. Performance comparison in terms of F1-score on the MTSamples dataset.

Substance Status Yetisgen et al. [76] Proposed

Smoking
None 0.9494 0.9594
Past 0.8052 0.8989
Current 0.8043 0.9043

Alcohol
None 0.9572 0.9735
Past 0.3529 0.9043
Current 0.8320 0.7368

Drugs
None 0.9761 0.8333
Past - 0.7500
Current 0.7000 0.8333

Note: Bold denotes the best performance per substance and status.

In addition to detecting the substance-use status from the MTSamples dataset, we
also extracted the related substance-use attributes. Results are provided in Table 10 and
are consistent with the results achieved for the dataset used to create and evaluate our
system (Table 7). The generalisability of systems and models across different datasets
is one of the greatest challenges in this field. The results of our proposed system on an
unseen independent dataset demonstrate its generalisation ability, indicating its potential
for real-world use.

Table 10. Attribute extraction performance on the MTSamples dataset.

Attribute
Smoking Alcohol Drugs

Sen Pre F1 Sen Pre F1 Sen Pre F1

Amount 0.9508 1 0.9748 0.8214 1 0.9020 1 1 1
Type 0.9722 1 0.9859 1 1 1 0.7857 1 0.9871
Frequency 0.8727 1 0.9320 0.8438 1 0.9153 - - -
Quit-time 0.9000 0.9643 0.931 0.6250 1 0.7692 0.7500 1 0.8571
Period 0.7083 1 0.8293 0.8000 1 0.8889 1 0.9908 0.9954

4.4. Error Analysis

By analysing the performance of each stage of our system, we identified the sources of
errors as follows:

In the first stage, the proposed system fails to exclude the records when the substance-
use keywords that appear in the text belong to one of the patient’s family members, such
as father, mother, or wife. The cTAKES assertion module detects the main subject of
the statement. However, we avoid using this module to identify the family member
in our system because it dramatically increases the false-positive rate. Another source
of error is misspelled keywords. For example, when identifying drug-related records,
the system fails to include records that contain misspelled keywords such as “barbituate
abuse”. Moreover, while the system sets extra restrictions over the patient record sections
in detecting drug-related keywords, these keywords could appear in one of the restricted
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sections. For example, the existence of “remote drug abuse” could appear in the section
“HISTORY OF PRESENT ILLNESS”.

In the remaining stages, the main error source that increases false positives and
false negatives is the case when sentences include keywords of different substance use
types. For example, in negation detection, the system fails to detect the following negation
correctly: “Smoking, no alcohol”. While the previous sentence means that the patient is a
smoker and does not drink alcohol, the system assigns negative status for both smoking
and alcohol keywords. In some cases where the negation word is too far from the substance-
use-related keywords, the system did not detect the negation. For example in the sentence

“Abuse of drugs or alcohol were denied”, the word “drugs” is too far from “denied” to be negated,
as our system uses a two-word window after and nine-word window before the substance-
use keyword to detect negation. However, expanding the window after the keyword is
likely to increase the false-positive rate.

Finally, some error sources come from patterns that did not appear in the training
set. Since drug abuse is not as widespread as smoking and alcohol use, it is normal to
have fewer samples in the dataset. In our case of 1739 records, only 45 were identified as
patient drug-use records. Moreover, out of these 45 records, the frequency of drug use was
mentioned only in 4 records. Consequently, our system was not able to detect the drug-use
frequency value due to the absence of any cases in the testing set. The same situation was
also faced when identifying alcohol-use period values.

4.5. Further Discussion

From Table 8, it is evident that the examined deep learning models underperfomed
significantly compared to the proposed rule-based system. We hypothesise that this is a
result of the combination of an insufficient number of samples, especially for some pairs of
substance and class, and the large size of the patient discharge summaries. The maximum
length of the discharge summaries in the dataset was 3821 words and the median length was
948 words. For the MLP and Bi-LSTM models, the number of words led to a significantly
large feature space, especially after their conversion to their respective word embeddings.
The large feature space combined with the small number of samples for some pairs of
substance and class plus the overall class imbalance hindered the performance of the
MLP and Bi-LSTM models and led to overfitting. In addition, despite BERT not being
affected by the size of the word representation, the limitation of BERT’s base uncased
pre-trained model to inputs of a maximum of 512 tokens resulted in the model ignoring a
significant amount of text in the case of larger discharge summaries, resulting in decreased
performance. Furthermore, the use of pre-trained word embeddings, such as GloVe, may
lead to discarding some valuable words, such as abbreviations, names of substances,
and medical terms, as these words may not exist in the corpus used for training the
embeddings. Indeed, results in this work showed that the two models with trainable
embeddings performed better that the same models using the GloVe-50 embeddings.

5. Conclusions

In this work, we built a system to automatically detect substance use (smoking, alcohol,
and drug use) and to extract related attributes from clinical text, more specifically, from
patient discharge records. A suitable dataset was created and annotated and was finally
divided into a training set that was used for designing and fine-tuning the proposed system
and a test set that was only used for the final performance evaluation. The proposed
system was built using NLP and rule-based techniques and consists of four stages: In
the first stage, the system excludes unrelated records using a keyword search technique,
achieving an F1-score of up to 0.99. In the second stage, an extension of the NegEx negation
detection algorithm detects the negation status of patient records, achieving an F1-score
of up to 0.98. In the third stage, the system extracts the temporal status of the substance
use and classifies the records into current or past status, achieving a maximum F1-score
of 0.94. Finally, the substance-use-related attributes (amount, frequency, type, quit-time,



Sensors 2022, 22, 9609 17 of 21

and period) were extracted from each patient record using rule-based techniques, achieving
satisfactory performance.

The experimental evaluation showed that the proposed system is able to successfully
detect the substance-use status and related attributes from clinical notes at both document-
and sentence-level. Furthermore, in order to demonstrate its generalisability, the proposed
system was also evaluated on the independent, unseen MTSamples dataset, and its perfor-
mance was compared with a state-of-the-art approach. Results showed that the proposed
system outperformed the compared approach on an unseen dataset, thus demonstrating
its generalisation ability. To conclude, the results suggest that using NLP and rule-based
techniques is an efficient way of extracting embedded information from clinical text.

For future work, we hypothesise that working with a larger dataset could poten-
tially improve the ability to generate more rules and thus increase the system’s overall
performance. Furthermore, apart from the rule-based approach, we plan to work on deep
learning approaches for the task at hand. The mediocre performance achieved by the
examined deep learning approaches in this work demonstrated various shortcomings that
must be addressed. The large size of the clinical discharge records, in combination with
the limited number of samples for some pairs of substance and use status, hindered the
ability of state-of-the-art deep learning models to perform efficiently. To this end, we plan
to increase the size of the available training datasets by gathering and curating additional
clinical discharge records; we also plan to develop deep learning approaches tailored to
the examined task. Finally, we plan to examine whether a hybrid approach that combines
rules-based and deep learning approaches for different stages of the processing pipeline
may be more suited for the examined task by training separate deep learning models for
each stage of the pipeline and combining them with rule-based methods. In addition,
the issue of the large text length could be potentially addressed by training the models at
sentence-level, thus significantly reducing the number of input tokens, and then using a
rule-based strategy to combine the statuses of all sentences in a text.

Author Contributions: Conceptualization, H.A., S.K., R.A., D.W. and N.R.; methodology, H.A., S.K.,
R.A., D.W. and N.R.; software, H.A. and S.K.; validation, H.A., S.K., R.A. and N.R.; formal analysis,
H.A., S.K., R.A., D.W. and N.R.; investigation, H.A., S.K., R.A., D.W. and N.R.; resources, N.R.; data
curation, H.A. and S.K.; writing—original draft preparation, H.A., S.K., R.A., D.W. and N.R.; writing—
review and editing, S.K. and N.R.; visualization, H.A. and S.K.; supervision, S.K. and N.R.; project
administration, N.R. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported through the Annual Funding track by the Deanship of Scientific
Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi
Arabia (Project No. GRANT 2114).

Institutional Review Board Statement: Ethical review and approval were waived for this study due
to all the data used being publicly available.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source datasets are publicly available from their respective sources.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BERT Bidirectional Encoder Representations from Transformers
Bi-LSTM Bidirectional Long Short-Term Memory
BRAT Brat Rapid Annotation Tool
CNN Convolutional Neural Network
cTAKES Clinical Text Analysis Knowledge Extraction System



Sensors 2022, 22, 9609 18 of 21

ECOC Error Correcting Output Codes
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