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Abstract. The non-trivial phase-space distribution of relic neutrinos is responsible for the
erasure of primordial density perturbations on small scales, which is one of the main cos-
mological signatures of neutrino mass. In this paper, we present a new code, fastdf, for
generating 1%-accurate particle realisations of the neutrino phase-space distribution using
relativistic perturbation theory. We use the geodesic equation to derive equations of motion
for massive particles moving in a weakly perturbed spacetime and integrate particles accord-
ingly. We demonstrate how to combine geodesic-based initial conditions with the δf method
to minimise shot noise and clarify the definition of the neutrino momentum, finding that large
errors result if the wrong parametrisation is used. Compared to standard Lagrangian meth-
ods with ad-hoc thermal motions, fastdf achieves substantial improvements in accuracy.
We outline the approximation schemes used to speed up the code and to ensure symplectic
integration that preserves phase-space density. Finally, we discuss implications for neutrino
particles in cosmological N -body simulations. In particular, we argue that particle methods
can accurately describe the neutrino distribution from z = 109, when neutrinos are linear
and ultra-relativistic, down to z = 0, when they are nonlinear and non-relativistic. fastdf
can be used to set up accurate initial conditions (ICs) for N -body simulations and has been
integrated into the higher-order IC code monofonic.
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1 Introduction

It is expected that relic neutrinos of the early Universe outnumber the baryons by a factor of
nν/nb ≈ 109. The discovery of neutrino oscillations [1, 2] implies that at least two-thirds of
these particles carry a mass, which though small, through sheer abundance should leave an
imprint on the large-scale distribution of matter. Detecting this signature would provide a
means of measuring the sum of neutrino masses

∑
mν from cosmology [3–5], complementing

an extensive programme of neutrino experiments on Earth. The imprint of massive neutrinos
arises primarily from the fact that, during the era of structure formation, neutrinos are non-
relativistic particles with a relativistic phase-space distribution. Neutrinos decouple from
the primordial plasma at a temperature of 1 MeV and subsequently stream along geodesics,
essentially without scattering, but maintaining a thermal phase-space distribution. After
becoming non-relativistic, massive neutrinos have a thermal velocity vth ∝ 1/mν and cannot
be contained effectively in regions smaller than vth/H, where H is the Hubble rate. As a
result, although neutrinos contribute like dust to the geometric expansion of the Universe,
they cluster less effectively on small scales, slowing down the growth of matter perturbations.
This effect has been used to put tight constraints on the sum of neutrino masses, with current
limits of

∑
mν < 0.15 eV or better [6–9]. These constraints are an order of magnitude below

the strongest laboratory constraint, mν < 0.8 eV, from KATRIN [10], but come with the
important assumption of ΛCDM cosmology, which highlights their complementarity.

Cosmological N -body simulations are widely used to make predictions for nonlinear
structure formation in the presence of massive neutrinos and to study their effects on cos-
mological observables, which is needed to unlock the full potential of surveys like DESI and
Euclid for neutrino science. Many approximate methods exist to incorporate neutrino effects
in simulations, of which [11–15] are some recent examples. Methods that solve for the neutrino
and dark matter perturbations self-consistently fall roughly into three categories: grid-based
methods actively solve evolution equations on the grid [16–23], linear methods use transfer
functions computed with an Einstein-Boltzmann code [24–26], and particle-based methods
sample the phase-space distribution with tracers [17, 20, 27–35]. While particle methods are
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uniquely suited to follow nonlinear neutrino clustering at late times, they typically disagree
with linear theory in the neutrino component at early times, in part due to the way that
initial conditions are handled and in part due to shot noise. The purpose of this paper is to
address these shortcomings and to demonstrate how particle methods can be used to obtain
accurate results at all times.

Particle initial conditions for N -body simulations are commonly set up with Lagrangian
perturbation theory (LPT). This works very well for baryons and cold dark matter, even in
the presence of neutrinos [36–38]. However, standard methods fail for the neutrino fluid
itself. The free-streaming behaviour is usually implemented in an ad-hoc manner by drawing
a random thermal velocity from the homogeneous Fermi-Dirac distribution and assigning
it to the neutrino particles [27, 28]. This is typically combined with first-order Lagrangian
perturbation theory (1LPT), more commonly known as the Zel’dovich approximation [39],
in which particle displacements and velocities are proportional to one another: v = aHfψ,
where f is the linear growth rate and a the scale factor. It is easy to see that these steps are
inconsistent. The result is illustrated in the top row of figure 1. Even though the displacement
field, ψ, can be chosen to reproduce the density field at the initial time, the imprinted density
perturbations are wiped out by random motions after only a few steps. A better approach,
already proposed by [29] and used recently by [40], is to integrate neutrinos along geodesics
from high redshift, z = 109, down to the starting redshift of the simulation using metric
perturbations obtained from an Einstein-Boltzmann code.1 This, however, does nothing to
address the issue of shot noise, which is particularly problematic at early times. We recently
proposed the δf method as a way of minimising shot noise in neutrino simulations [35],
inspired by similar efforts in plasma physics [43–45] and stellar dynamics [46, 47]. Here, we
will show how these methods can be combined to produce accurate density fields from the
very beginning of the simulation, as shown in the bottom panels of figure 1. To facilitate
this approach for large simulations, we have made our fastdf2 code publicly available, and
integrated it into the higher-order initial conditions generator monofonic, along with other
neutrino extensions [48–50].

The remainder of the paper is structured as follows. We will first describe our methods in
section 2. We then derive the required equations of motion directly from the geodesic equation
in section 3 and briefly remark on the Lagrangian derivation that was used previously. In
section 4, we present numerical results, comparing the proposed method with linear fluid
calculations and standard methods, and evaluating the impact of the equations of motions.
Finally, we discuss the implications for simulations in section 5.

2 Methods

Throughout this paper, we work in Newtonian gauge with a metric given by

ds2 = a2(τ)
[
−(1 + 2ψ(x, τ))dτ2 + (1− 2φ(x, τ))δijdxidxj

]
, (2.1)

where τ is conformal time and we consider only scalar metric perturbations: φ and ψ. Let
Uµ = dxµ/

√
−ds2 be the 4-velocity and Pµ = mUµ the 4-momentum of a massive neutrino

particle. The physical momentum measured by a cosmological observer is

p =
√
gijP iP j . (2.2)

1Another solution could be to extend LPT to fluids with non-negligible velocity dispersion [41, 42].
2Fast Distribution Function; all codes available via https://willemelbers.com/neutrino_ic_codes/.
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Figure 1. Neutrino density slices from a 3.2 Gpc cube for z ∈ {31, 15, 3}. In the top row, neutrino
particles were set up at z = 31 using first-order Lagrangian perturbation theory (1LPT) and then
integrated forward. The initial perturbations are immediately washed out and structure is only
recovered over time. In the bottom row, the neutrino density field is faithfully reproduced at all times
using geodesic integration together with the δf method [35].

We define the comoving momentum as q = ap and let qi = qi = qn̂i, where the unit vector
n̂i = Pi/P with P 2 = δijPiPj . Finally, we define the energy as ε =

√
q2 +m2a2. Our aim is

to sample particles from the neutrino phase-space distribution,

f(x,q, τ) = f̄(q) [1 + Ψ(x,q, τ)] , (2.3)

where f̄(q) = (1 + exp(q/T ))−1 is the homogeneous Fermi-Dirac distribution and T = 1.95 K
the present-day neutrino temperature. In terms of f , the energy density is

ρ(x, τ) = a−4
∫

d3q ε f(x,q, τ) (2.4)

= ρ̄(τ) [1 + δ(x, τ)] . (2.5)

The evolution of f is governed by the collisionless Boltzmann equation

∂f

∂τ
+ dxi

dτ
∂f

∂xi
+ dqi

dτ
∂f

∂qi
= 0. (2.6)

At linear order in the metric perturbations, solutions can be found by decomposing Ψ into a
Legendre series in Fourier space [51]:

Ψ(k, n̂, q, τ) =
∞∑
`=0

(−i)`(2`+ 1)Ψ`(k, q, τ)P`(k̂ · n̂). (2.7)

– 3 –
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The Boltzmann equation (2.6) then becomes an infinite tower of equations in Ψ`, which
is usually truncated at some high `max using an algebraic Ansatz. We solve this system
with class [52, 53]. To obtain very accurate results, we turn off the default neutrino fluid
approximation and use N = 100 momentum bins and an integration tolerance of 10−12. In
terms of Ψ`, the energy density and flux perturbations can then be written as3

ρ̄(τ)δ(k, τ) = a−4
∫

d3q ε f̄(q)Ψ0(k, q, τ), (2.8)(
ρ̄(τ) + P̄ (τ)

)
θ(k, τ) = a−4

∫
d3q qk f̄(q)Ψ1(k, q, τ), (2.9)

where ρ̄ and P̄ are the background density and pressure.

2.1 Initial conditions

To sample particles from the full perturbed phase-space distribution (2.3), taking into account
the non-trivial correlations between x and q, we integrate particles along geodesics from high
redshift. We begin shortly after decoupling at z = 109, when all modes of interest are outside
the horizon (kτ < 1) and the neutrino phase-space distribution can be described in closed
form, although in practice a slightly lower redshift would suffice. The growth of super-
horizon perturbations is relatively simple during radiation domination. In particular, the
fastest growing adiabatic solution for the gravitational potential ψ is constant and the first
two moments of the neutrino distribution function are given by δ = −2ψ and θ = 1

2k
2τψ [51].

Moments with ` ≥ 2 are suppressed by powers of (kτ)` and can be neglected when setting the
initial conditions at early times. We therefore only need to account for the initial monopole
and dipole perturbations. From (2.8)–(2.9), we find

Ψ0 = − δ
ν

d log f̄
d log q , Ψ1 = −ωεθ

qkν

d log f̄
d log q , (2.10)

where ν ≡ d log ρ̄/d log T = 4 and ω ≡ 1 + w = (ρ̄+ P̄ )/ρ̄ = 4/3. It follow that

f(x,q, τ) = f̄

(
q

[
1− δ

ν
− ωεq̂

νq
· ∇

(
∇−2θ

)])
. (2.11)

Particle positions are sampled uniformly in the periodic simulation volume. We then apply
the initial perturbations by sampling momenta from the unperturbed Fermi-Dirac distribu-
tion, f̄ , and rescaling the ith component of q:

qi → qi

[
1 + δ

ν
+ ωε

νqi
∇i
(
∇−2θ

)]
. (2.12)

After setting up these “pre-initial” conditions, neutrinos are integrated using relativistic
equations motion, derived in the next section. The integration is done with the C-code
fastdf, which we make publicly available. The equations of motion depend on the scalar
potentials, φ and ψ, whose transfer functions are computed with class. The real-space
potentials, φ(x, τ) and ψ(x, τ), are obtained by convolving the transfer functions with a grid
of random phases. Assuming adiabatic initial conditions, the same phases should be used
for the pre-initial conditions, the subsequent integration, and the initial conditions of other
particle species, such as dark matter and baryons. This is handled automatically by the code.

3Recall that
∫ π

0 P`(cos θ)Pm(cos θ) sin θ dθ = δ`m2/(2`+ 1).

– 4 –
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Since the metric is computed in linear theory beforehand, each neutrino is completely
independent, in principle allowing the code to be perfectly parallel. However, a large fraction
of the computational expense is due to the potential grids, which can be shared if the particles
are synchronised. To exploit this, fastdf supports parallelisation through both openmp
and mpi. The latter is also used to facilitate parallel data output through hdf5. Further
gains in speed are made by realising that the metric perturbations are constant during pure
radiation and pure matter domination. We therefore compute the potential fields only when
the fractional change in the transfer functions exceeds 1% and linearly interpolate between
these super-steps. This significantly reduces the required number of Fourier transforms and
has a negligible impact on the accuracy.

2.2 The δf method

To handle particle shot noise, which is of particular concern at early times, we use the δf
method [35]. This is a variance reduction technique in which the phase-space distribution is
decomposed as

f(x,q, τ) = f̄(q) + δf(x,q, τ). (2.13)

In contrast to the usual approach, only the perturbation δf is estimated from the particles.
The density integral (2.4) is then decomposed into a smooth background, ρ̄(x, τ), and a sum
over simulation particles:

ρ(x, τ) ∼= ρ̄(x, τ) + M

N

N∑
k=1

wkεkW (x− xk), (2.14)

where M is a normalisation factor, W (x) a smoothing kernel, εk the energy and wk a statis-
tical weight for particle k given by

wk = δf(xk,qk, τ)
f(xk,qk, τ) . (2.15)

The weights are simple to compute in practice. Conservation of phase-space density along
geodesics implies that f(xk,qk, τ) = f̄(pk) with pk the initially sampled (unperturbed) value
for particle k at z = 109. At any later point, we obtain δf(xk,qk, τ) = f̄(pk) − f̄(qk). The
method similarly extends to other phase-space statistics, such as the momentum density.

3 Equations of motion

We will derive the relativistic equations of motion starting directly from the geodesic equation
and then comment on the differences with [29, 40].

3.1 Geodesic derivation

To derive equations of motion in terms of xi and qi, we begin with the geodesic equation
∇PP = 0. Its components read

P ν
dP i

dxν = −ΓiµνPµP ν . (3.1)

– 5 –
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To first order, the Christoffel symbols Γiµν are

Γi00 = ∂iψ,

Γij0 = δij(aH − φ̇),
Γijk = −2∂(jφδk)i + ∂iφδjk.

(3.2)

Furthermore, using q2 = a2gijP
iP j and m2 = −gµνPµP ν , we express the momentum com-

ponents in terms of the energy ε =
√
q2 +m2a2 and the comoving 3-momentum qi:

P 0 = a−2(1− ψ)ε,
P i = a−2(1 + φ)qi.

(3.3)

The left-hand side of (3.1) consists of two terms, the first being

P 0 dP i

dτ = a−4(1− ψ)ε
(
−2aHqi(1 + φ) + φ̇qi + (1 + φ)dqi

dτ

)
, (3.4)

whereas the second is simply

P j
dP i

dxj = a−4(1 + φ)qj∂jφqi. (3.5)

The right-hand side of (3.1) consists of three terms that can be written as

ΓiµνPµP ν = Γi00a
−4(1− 2ψ)ε2 + 2Γi0ja−4(1− ψ + φ)qjε+ Γijka−4(1 + 2φ)qjqk (3.6)

= ∂iψa
−4(1− 2ψ)ε2 + δij(2aH − 2φ̇)a−4(1− ψ + φ)qjε

+
(
−2∂(jφδk)i + ∂iφδjk

)
a−4(1 + 2φ)qjqk.

(3.7)

Using eqs. (3.4), (3.5) and (3.7) in the geodesic equation (3.1) and dividing by a−4ε(1+φ−ψ),
we finally obtain the acceleration

dqi
dτ = −ε∂iψ −

q2

ε
∂iφ+ 1

ε
qiq

j∂jφ+ qiφ̇. (3.8)

From (3.3), we also obtain

dxi

dτ = qi

ε
(1 + φ+ ψ). (3.9)

Eqs. (3.8) and (3.9) are the desired equations of motion. These have a different form from
those used previously by [29, 40]. This is due to the choice of independent variables, as will
be discussed in the next section.

3.2 Lagrangian derivation
The Lagrangian derivation4 of [29] uses the same metric (2.1), while [40] also include vector
and tensor perturbations. Rather than working directly with the geodesic equation (3.1),
they start with the action:

S =
∫

dτL = −m
∫ √
−ds2. (3.10)

4This use of ‘Lagrangian’ should not be confused with references to Lagrangian perturbation theory or
Lagrangian methods elsewhere.
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Expanding the Lagrangian L to first order in the metric perturbations yields

L = −ma
√

1− u2

[
1 + ψ + u2φ

1− u2

]
, (3.11)

where ui = dxi/dτ and u2 = δiju
iuj . Observe that the second term inside the square brackets

of (3.11) diverges in the relativistic limit u → 1, so attention must be paid to the radius of
convergence for fast particles. Proceeding from (3.11), the conjugate momentum variable to
xi is found by differentiating the Lagrangian with respect to ui:

Pi = ∂L

∂ui
= maui√

1− u2

(
1− 2φ− ψ + u2φ

1− u2

)
. (3.12)

We note that [29] here use the symbol qi for Pi, but stress that this conjugate momentum
variable is in fact related to the comoving 3-momentum qi by a factor of qi/Pi = (1 + φ).
The Euler-Lagrange equation gives

dPi
dτ = ∂L

∂xi
= −ε∂iψ −

P 2

ε
∂iφ, (3.13)

where P 2 = PiPjδ
ij and we used that ε = ma/

√
1− u2 to zeroth order. Meanwhile, inserting

ui ∝ (1 + fψ + gφ) into (3.12) and solving for f and g gives

dxi

dτ = ui = Pjδ
ij

ε

[
1 + ψ +

(
2− P 2

ε2

)
φ

]
. (3.14)

The velocity corrections are small, so let us restrict attention to the acceleration equa-
tions (3.8) in terms of q and (3.13) in terms of P . Both equations contain the usual New-
tonian acceleration −ε∂iψ and a post-Newtonian term −q2/ε∂iφ or −P 2/ε∂iφ. However,
the geodesic version (3.8) has two additional terms: another quadratic term qiq

j/ε∂jφ and
a time-derivative or Sachs-Wolfe term qiφ̇. These differences can be traced to the use of
different momentum variables: the comoving 3-momentum qi in section 3.1 and the spatial
part of the 4-momentum Pi in section 3.2. The two quantities differ by a factor of (1 + φ),
which after insertion into (3.13) yields the time-derivative term qiφ̇. The quadratic term,
meanwhile, arises in the geodesic derivation from the P iPµ,i term of ∇PP = 0. This quantity
vanishes in the Lagrangian derivation, where the position xi and its conjugate momentum
variable Pi are independent. However, the term is generally non-zero when qi and xi are
taken as independent instead. The question remains which choice of momentum variable is
more suitable for neutrinos in N -body simulations. The advantage of qi is that it is a physical
quantity, eliminating the dependence on metric perturbations when evaluating f̄(q). Since
this is a necessary step for neutrino simulations, particularly when using the δf method, we
opt for the parametrisation in terms of q.

It is worth asking whether the relativistic corrections are needed in practice. In figure 2,
we show the root mean square of the four terms of (3.8) between z = 109 and z = 0, for a
0.1 eV neutrino. As expected, the acceleration is dominated by the Newtonian term (black)
at late times. However, the relativistic corrections are non-negligible for z > 31. Notably, the
quadratic terms (red and blue) are always of the same order of magnitude and one should not
be neglected if the other is included. Finally, the time-derivative term (yellow) is negligible
during pure radiation or pure matter domination, but becomes relevant outside these régimes.
While the relativistic terms are clearly needed for generating initial conditions, they are less
relevant for N -body simulations that are started sufficiently late, as will be discussed in
section 5.

– 7 –
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Figure 2. Contributions to the particle acceleration over time. The Newtonian acceleration, −ε∂iψ,
dominates for z ≤ 31 (shaded), but the relativistic terms are relevant at early times.

3.3 Symplectic integration

Symplectic integrators explicitly conserve phase-space density5 and reduce the build-up of
errors, which makes them suitable for N -body problems [54, 55]. For fastdf, we follow
the simple strategy proposed in appendix D of [35] and use separable equations of motion
that closely approximate the relativistic form, yet admit a straightforward symplectic dis-
cretization, but see also appendix A of [40] for a scheme involving a predictor-corrector step.
Concretely, we approximate equations (3.8)–(3.9) with:

dq
dτ = −ε0∇ψ −

q2
0
ε0
∇φ+ 1

ε0
q0 [q0 · ∇φ] + q0φ̇, (3.15)

dxi

dτ = qi

ε
, (3.16)

where q0 = q(z = 109) and ε0 =
√
q2

0 +m2a2. Eq. (3.15) is a good approximation because
q0 � ma whenever q deviates much from q0: for slow particles at late times, while (3.16)
neglects the first-order term |φ+ ψ| � 1. A leapfrog discretization of these equations is

qk+ 1
2

= qk + ∆τk+ 1
2

k

[
− ε0∇ψk −

q2
0
ε0
∇φk + 1

ε0
q0 [q0 · ∇φk] + q0φ̇k

]
, (3.17)

xk+1 = xk + ∆τk+1
k

qk+ 1
2√

q2
k+ 1

2
+m2a2

, (3.18)

qk+1 = qk+ 1
2

+ ∆τk+1
k+ 1

2

[
− ε0∇ψk+1 −

q2
0
ε0
∇φk+1 + 1

ε0
q0 [q0 · ∇φk+1] + q0φ̇k+1

]
, (3.19)

5A linear map J : R2d → R2d is symplectic if JTΩJ = Ω for Ω =
(

0 I
−I 0

)
, with I = Id the d × d identity

matrix. A differential map f : U → R2d, with U ⊂ R2d open, is symplectic if the Jacobian matrix J of f is
everywhere symplectic. Conservation of phase-space density follows from det(J) = det(Ω) = 1.

– 8 –
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where ψk = ψ(xk, ak) and similarly for φ. As is common in cosmological simulations, we use
a constant step size ∆ log a and find the corresponding conformal time steps to be

∆τ `k =
∫ log a`

log ak

d log a
aH(a) . (3.20)

We observe that (∂xk+1/∂xk)(∂qk+1/∂qk) = Id + (∂xk+1/∂qk)(∂qk+1/∂xk), which ensures
sympecticity. To verify the validity of (3.15)–(3.16), we also implemented a non-symplectic
leapfrog scheme based directly on (3.8)–(3.9) and found relative differences in the resulting
power spectra of order 10−5, well below other sources of error.

4 Results

We set up 8003 particles in a periodic volume with side length L = 3.2 Gpc, using (2.12) to
generate pre-initial conditions at z = 109. For comparison, particles are also set up with first-
order Lagrangian ICs at z = 31.6 We consider two degenerate models with

∑
mν = 0.15 eV

(fν = 0.11) and
∑
mν = 0.3 eV (fν = 0.023). Fixed initial conditions are used to facilitate

comparison with linear theory on large scales [56] and the δf method is used in each case to
suppress shot noise. First, we show the neutrino density power spectrum evaluated at various
redshifts in figure 3. Power spectra are computed by dividing the neutrino ensemble in half
and taking the cross-spectrum, which eliminates the constant shot noise plateau on small
scales [57]. Note that we compute the power spectrum of the energy density, as expressed
in (2.14), as opposed to the mass density. The results are compared with the linear fluid
calculations from class. We remind the reader that particles were integrated using linear
metric perturbations, which should result in perfect agreement with class. We see that this
is indeed the case with the geodesic approach, while the power is significantly underestimated
for the runs with Lagrangian ICs, recovering only over time. We also show the effect of using
the alternative equations (3.13)–(3.14), essentially substituting the canonical momentum P
for the comoving momentum q without accounting for the relative factor (1+φ). In this case,
the power spectrum is overestimated. In both cases, the errors are largest at early times, but
persist on large scales down to z = 0. This can be seen more clearly in figure 4, where we
show the ratios relative to class for

∑
mν = 0.3 eV. Using the geodesic method, we obtain

1%-agreement independent of redshift, while the other methods result in significant errors
on all scales. At z = 0, a (−8%, +5%) error remains at k = 2× 10−3 Mpc−1 when using
Lagrangian ICs or when substituting the canonical momentum P for q, respectively. In a full
N -body simulation, this lack or excess of neutrino clustering would cause a back-reaction,
resulting in still larger errors and contaminating the dark matter and baryon components.

Although the equations of motion in terms of q and P = q/(1 + φ) are both valid,
the latter must be converted back to q whenever the background Fermi-Dirac function,
f̄(q) = 1/(1 + exp(q/T )), is evaluated for the δf method (section 2.2). This means that
φ is needed during each step of the simulation when P is used, whereas computing and stor-
ing the potential can otherwise be avoided, as in most efficient N -body codes. The differences
between the geodesic and canonical results, shown in figure 4, are the result of neglecting φ
in the Fermi-Dirac function. Agreement between the two approaches is restored when the
relative factor (1 + φ) is consistently included. We stress that the δf method is essential for
recovering any signal at high redshift, which would otherwise be dominated by shot noise.

6This is the fiducial starting redshift for neutrino ICs in [38]. Usually, z = 31 is too late for accurate
first-order ICs, but this is not true for neutrinos. Moreover, all calculations are linear in this paper.
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Figure 3. The linear neutrino density power spectrum at various redshifts computed from 8003

particles in an L = 3.2 Gpc cube for
∑
mν = 0.15 eV and

∑
mν = 0.3 eV. Particles were set up

with eq. (2.12) at z = 109 or with Lagrangian ICs at z = 31 and subsequently evolved forward using
linear metric perturbations. We also show the effect of substituting the canonical momentum P for
the comoving momentum q in the Fermi-Dirac function. The spectra are compared with the linear
fluid prediction from class. There is no line for the Lagrangian ICs at z = 63.
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Figure 4. Ratios of the linear neutrino density power spectrum at various redshifts computed from
8003 particles in an L = 3.2 Gpc cube for

∑
mν = 0.3 eV, relative to the linear fluid prediction from

class. Particles were set up with eq. (2.12) at z = 109 (left) or with Lagrangian ICs at z = 31
(middle) and subsequently evolved forward using linear metric perturbations. We also show the effect
of substituting the canonical momentum P for the comoving momentum q in the Fermi-Dirac function
(right). The shaded area is 1%.

Figure 4 shows that in all cases, the power diminishes relative to class beyond k =
0.1 Mpc−1. This is due to the limited resolution of the runs. The precision and speed of
fastdf are mainly determined by two parameters: the step size ∆ log a and the size M of
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Figure 5. Impact of the step size (left) and the mesh size (right) on the neutrino density power
spectrum at z = 31, computed from 8003 particles in an L = 3.2 Gpc cube for

∑
mν = 0.3 eV. The

spectra are compared with the linear fluid prediction from class. The shaded areas are 1% (dark) and
10% (light). The vertical dotted lines on the right represent half the Nyquist frequency kN = πM/L.

the mesh on which the potentials are calculated. A third parameter, the interpolation order
used when computing forces, chosen from r = 1 or r = 2, has a small effect on the accuracy.
We show the impact of the first two parameters on the neutrino power spectrum at z = 31 for∑
mν = 0.3 eV in figure 5. For the main results in this paper, we used ∆ log a = 0.01 together

with M = 800, resulting in 1%-agreement with the fluid calculations up to k = 0.07 Mpc−1.
However, errors decrease quickly on small scales in an N -body simulation once neutrinos
become non-relativistic, so obtaining agreement on large scales is most important. For many
applications, the parameters could therefore be relaxed to enable more rapid realisations of
the neutrino distribution function.

To demonstrate that we can also reproduce higher-order moments of the distribution
function, we show the power spectrum of the momentum perturbation, (1 + δ)θ, in figure 6.
Despite the extreme precision settings, a small scatter can be seen at large k for the class
results at z ≥ 15, reflecting the difficulty of solving the Boltzmann hierarchy numerically
on small scales. We once again obtain excellent agreement between the geodesic results and
class, but find large errors at z = 63 when using the canonical momentum, especially for
the lighter neutrinos. Large errors are also apparent for the Lagrangian ICs at z = 15. In
contrast to the density power spectrum, however, these errors decrease quickly on large scales.

5 Discussion

The accurate treatment of massive neutrinos in cosmological N -body simulations, consistent
with the demand of surveys like DESI and Euclid for percent-level accurate modelling of
large-scale structure observables, also calls for accurate neutrino initial conditions (ICs).
In this paper, we have shown that by integrating neutrino particles from high redshift, it is
possible to obtain 1%-agreement with linear fluid calculations, even at early times. To achieve
this level of agreement, suitable pre-initial conditions must be generated at sufficiently early
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Figure 6. The linear neutrino momentum power spectrum at various redshifts computed from 8003

particles in an L = 3.2 Gpc cube for
∑
mν = 0.15 eV and

∑
mν = 0.3 eV. Particles were evolved

in the linearly perturbed spacetime. The spectra are compared with the linear fluid prediction from
class, which shows some scatter on small scales at early times. There is no line for the Lagrangian
ICs at z = 63.

times, the equations of motion must remain valid in the relativistic limit, and shot noise must
be significantly suppressed. We addressed these requirements by providing a closed form
expression for the super-horizon perturbations of the Fermi-Dirac distribution f(x,q, τ), by
expressing the geodesic equation in terms of q, and by using the δf method to limit shot noise.
We also used fixed ICs [56] to limit cosmic variance, which allowed a detailed comparison
between linear particle and fluid methods.

When these conditions are not satisfied, significant errors in the neutrino component
occur on large scales. For neutrino particles used in N -body simulations, this error causes a
back-reaction in the dark matter and baryon components. Simulations that use Lagrangian or
unperturbed ICs together with an ad-hoc momentum sampled from the homogeneous Fermi-
Dirac distribution underestimate the clustering of neutrinos, leading to errors of a few percent
on large scales at z = 0. These errors get progressively worse at higher redshifts. Neutrino
clustering recovers over time, beginning on small scales where errors are less apparent. Some
simulations use hybrid methods (e.g. [16, 40, 58]), transitioning from a linear or grid-based
method at early times to a particle method at late times. This would mitigate the back-
reaction arising from these errors. Nevertheless, we have demonstrated that a transition of
this sort is not necessary if suitable ICs are used and shot noise is addressed.

These results have further implications for neutrino particles in N -body simulations.
Aside from the ICs, some codes also use relativistic equations of motion for the neutrino
particles in the simulation itself. For ordinary Newtonian simulations, [40] proposed using
special relativistic equations of motion with Newtonian gravity. These can be obtained
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from (3.13)–(3.14) by assuming that |φ| � 1 and φ ≈ ψ:

dxi

dτ = P i√
P 2 +m2a2

, (5.1)

dPi
dτ = − 2P 2 +m2a2

√
P 2 +m2a2

∂iψ. (5.2)

Based on (3.8)–(3.9) and figure 2, we instead propose the simpler form

dxi

dτ = qi√
q2 +m2a2 , (5.3)

dqi
dτ = −

√
q2 +m2a2 ∂iψ. (5.4)

The velocities have the same form: including the Lorentz factor is crucial for sub-light neu-
trino speeds and physical free-streaming lengths. However, the accelerations are different due
to the choice of momentum variable. By expressing the equations in terms of the physical
quantity q, the potential φ need not be evaluated when computing the δf weights. Even so,
the corrections to the acceleration matter less in the time frame where Newtonian simulations
are used to best effect (z � 102). Simply using the Newtonian acceleration, q̇i = −m∂iψ,
together with the special relativistic velocity equation therefore seems to be a reasonable
alternative with the benefit of having a straightforward symplectic discretization. Let us
remark finally on the choice of gauge. While Newtonian gauge is convenient for the geodesic
integration, recent years have seen the introduction of gauges more naturally suited for cos-
mological N -body simulations. A popular choice is N -body gauge [59, 60], in which the
spatial metric perturbation is constant and traceless, such that the relativistic dark matter
density coincides with that of the Newtonian simulation. Using class, it is possible to com-
pute the shifts in density, ∆δ(k), and energy flux, ∆θ(k), from Newtonian to N -body gauge.
Provided that the perturbations are small, the gauge transformation can then be applied
to the neutrino ensemble in the same way as the pre-initial conditions, via (2.12), since the
higher-order moments Ψ` are gauge-invariant. This feature is available in fastdf.

The main application of the described method is to set up accurate and consistent neu-
trino particle initial conditions for simulations. Another interesting application would be to
integrate particles back along the line of sight from Earth to analyse the angular dependence
of the local neutrino flux. Sampling the full phase-space distribution with particles may
be advantageous if, for instance, non-trivial selections are of interest (e.g. neutrinos with
momenta in a given interval that passed through halos in a particular mass range). If the
metric perturbations are treated in linear theory, as in this paper, the method could provide
a cross-check of linear calculations [61, 62], while transitioning from an N -body simulation
at late times would enable a fully nonlinear calculation. Another interesting extension would
be to consider other massive thermal relics [53, 63].
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