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Abstract
We investigate thoroughly a model for thermal convection of a class of viscoelas-
tic fluids in a porous medium of Brinkman–Darcy type. The saturating fluids are
of Kelvin–Voigt nature. The equations governing the temperature field arise from
Maxwell–Cattaneo theory, although we include Guyer–Krumhansl terms, and we
investigate the possibility of employing an objective derivative for the heat flux. The
critical Rayleigh number for linear instability is calculated for both stationary and
oscillatory convection. In addition a nonlinear stability analysis is carried out exactly.
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1 Introduction

The Brinkman–Darcy equations have been used extensively to analyse flow of a vis-
cous incompressible fluid in a porous medium which is not too dense in the sense that
the porosity is not too small. Thermal convection in saturated porous media, which is
the subject of this paper, has been intensively studiedwith the saturating fluid described
by Brinkman–Darcy theory, see e.g. Rees [1], Postelnicu and Rees [2], Capone and
Gianfrani [3], Capone et al. [4], and the references therein. The range of permeability
values where the Darcy–Brinkman equations are valid is critically reviewed in Gentile
and Straughan [5].

Recent research has also focussed on flow of viscoelastic fluids in porous media,
where the fluid stress displays history dependent behaviour, see e.g. Amendola and
Fabrizio [6], Antontsev and Rodrigues [7]. Since flow of viscoelastic fluids in porous
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media has immense importance practically in, for example, the oil industry, in vascular
dynamics Cavallini et al. [8], we here analyse thermal convection in a model for
viscoelastic flow in a porous medium by employing the Kelvin–Voigt equations in a
Brinkman–Darcy porous medium.

Kelvin–Voigt fluids have been analysed in great depth from the analytical viewpoint
of existence, attractors, structural stability, see e.g. Oskolkov [9], Kalantarov and
Titi [10], Damazio et al. [11], and the references therein. Thermal convection in a
layer of a Kelvin–Voigt fluid has been investigated recently by Straughan [12]. In
addition [13, 14] has demonstrated continuous dependence of the solution for the
equations of Brinkman–Darcy–Kelvin–Voigt theory for the isothermal, improperly
posed, backward in timeproblem, and inStraughan [15] for theKelvin–Voigt equations
forward in time.

It is important to emphasize that Maxwell–Cattaneo theory for heat flow is a very
rich area in modern research. In addition to heat flow, the idea behind Maxwell–
Cattaneo theory where a relaxation effect is included for an appropriate flux is being
employed inmany diverse research areas. Suchmodels do not generally suffer from the
effect of the Fourier law of infinite speed of heat propagation, and allow heat to travel
with a finite wavespeed. The technique behind Maxwell–Cattaneo theory whereby
the flux equation is transformed from a constitutive equation to an evolution equation
has been applied for example, in nanoscale mechanics, Sellitto et al. [16], Jou et al.
[17], in sound waves in porous media, Jordan et al. [18], in temperature wave motion,
Jordan and Lambers [19], Carillo and Jordan [20], Christov [21, 22], in convection
in stellar atmospheres, Herrera and Falcon [23], Herrera[24], in collapse in stellar
structures, Govender [25], in destruction of tumours, Andres and Pinnau [26], in drug
delivery models, Ferreira and Oliveira [27], in describing how vegetation forms into
patterns on landscapes, Consolo et al. [28, 29], in chemotaxis, Barbera and Valenti
[30], in pollution, Barbera et al. [31], and other examples may be found in the book
by Straughan [32].

Notable works on thermal convection using a Maxwell–Cattaneo model, some of
which include magnetohydrodynamic effects are by Bissell [33], Eltayeb et al. [34],
Hughes et al. [35], and Papanicolaou et al. [36]. Other treatments of the Cattaneo
technique to include shock evolution, bifurcation theory, are by Jordan and Lambers
[19].

The present work derives a novel model for thermal convection using Brinkman–
Darcy–Kelvin–Voigt theory but we allow the heat flux to be of Maxwell–Cattaneo
type. The novelties involve employing Guyer–Krumhansl theory in conjunction with
Maxwell–Cattaneo theory, cf. Jou et al. [17], Van et al. [37]; splitting the heat flux into
an instantaneous Fourier part and a memory part depending on the temperature gradi-
ent, using an extra flux idea of Mariano [38]; and allowing the heat flux equation to be
objective, which necessarily introduces other terms, cf. Morro [39, 40]. Incorporation
of Guyer–Krumhansl theory is pertinent since Van [37], Fulop et al. [41], suggest that
this theory may be more relevant than Fourier theory, even at room temperatures, see
also Berezovski [42, 43], Capriz et al. [44], Carlomagno et al. [45], Cimmelli [46],
Fama et al. [47], Rogolino and Cimmelli [48].

A complete stability analysis for the Bénard problem for the Brinkman–Darcy–
Kelvin–Voigt equations is presented here. In addition to a detailed linear instability
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analysis for both stationary and oscillatory convection we include a fully nonlinear
energy stability analysis. Such analyses for systems incorporating Maxwell–Cattaneo
effects have previously proved difficult, cf. Straughan [49, p. 192].

2 Basic equations

Let vi (x, t), p(x, t), T (x, t) and Qi (x, t) denote the velocity, pressure, temperature,
and heat flux at position x and time t . The Brinkman–Darcy–Kelvin–Voigt equations
consist of a balance of momentum equation,

vi,t − λ̂�vi,t + v jvi, j = − 1

ρ
p,i + ν�vi + αgki T − μ1vi , (1)

a balance of mass equation

vi,i = 0, (2)

a balance of energy equation

T,t + vi T,i = −Qi,i + ζ�T , (3)

and a Maxwell–Cattaneo like equation for the heat flux of form

τ
DQi

Dt
= −Qi − κT,i + ξ̂1�Qi + ξ̂2Qk,ik . (4)

In these equations λ̂ is the Kelvin–Voigt coefficient, ρ is the constant density of the
fluid, ν is the kinematic viscosity, α is the thermal expansion coefficient, g is gravity,
k = (0, 0, 1), μ1 is the Darcy coefficient which is essentially the kinematic viscosity
divided by the permeability of the porous medium, ζ is a positive constant, τ is the
relaxation time, κ is the thermal diffusivity, and ξ̂1, ξ̂2 are the Guyer–Krumhansl coef-
ficients. Throughout this article we employ standard indicial notation in conjunction
with the Einstein summation convention, so for example,

vi,i ≡
3∑

i=1

∂vi

∂xi
=∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3

≡∂u

∂x
+ ∂v

∂ y
+ ∂w

∂z

where v ≡ (u, v, w) and x ≡ (x, y, z). For a nonlinear example

vi T,i ≡
3∑

i=1

vi
∂T

∂xi
≡ u

∂T

∂x
+ v

∂T

∂ y
+ w

∂T

∂z
.

The term � denotes the Laplacian in R3.
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Equations (1)–(4) are defined on the horizontal layer {(x, y) ∈ R
2} × {z ∈ (0, d)}

for t > 0. The boundary conditions are that

vi = 0, z = 0, d; T = TL , z = 0; T = TU , z = d; Qi = 0, z = 0, d; (5)

0 < TU < TL , with TL , TU constants.
Equation (3) is suggested by Payne and Song ([50], pp. 181–189), and I believe it

may be justified from work of Mariano [38]. We interpret the ζ�T term to arise as an
extra flux induced by the microstructure of the porous skeleton. If we assume vi ≡ 0
in Eqs. (3) and (4) then one may eliminate Qi and one finds the temperature satisfies
the equation

τ
∂2T

∂t2
− (ξ̂ + τζ )�

∂T

∂t
+ ∂T

∂t
− (ζ + κ)�T + ξ̂ ζ�2T = 0, (6)

where ξ̂ = ξ̂1 + ξ̂2. Thus, the temperature field satisfies a second order in time
differential equation but this equation is not hyperbolic. As the constants ξ̂ , τ, ζ, κ are
positive the ∂T /∂t terms lead to strong damping. Alternatively, we may think of the
heat flux being in two parts as in Mariano [38], so the total heat flux is Qi + Fi where
Qi is given by a Cattaneo—like evolution equation such as (4), whereas Fi = −ζT,i

is a Fourier term. If we do not include the Guyer–Krumhansl terms then the system
becomes (when vi ≡ 0)

T,t = −Qi,i − Fi,i ,

Fi = −ζT,i ,

τQi,t + Qi = −κT,i .

(7)

Equation (7)3 may be integrated employing an integrating factor, and assuming fading
memory of T,i we may show

Qi = −κ

τ

∫ t

−∞
exp

(
− t − s

τ

)
T,i ds.

Thus, the total heat flux is

Fi + Qi = −ζT,i − κ

τ

∫ t

−∞
exp

(
− t − s

τ

)
T,i ds,

which is a viscoelastic—like term for the temperature gradient plus a term empha-
sizing the instantaneous temperature gradient. Such a representation is common in
viscoelasticity, cf. Boltzmann [51], Miller [52], or for a modern appreciation of the
work of Boltzmann see Markowitz [53]. Eliminating Qi and Fi from (7) leads in this
case to the equation

τ
∂2T

∂t2
− τζ�

∂T

∂t
+ ∂T

∂t
− (ζ + κ)�T = 0. (8)
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We choose a Guyer–Krumhansl theory in (4), cf. Jou et al. [17], Straughan [32], Van
et al. [37], Fulop et al. [41]; recent interesting and inspiring articles dealingwithGuyer–
Krumhansl type theories, their generalizations to other areas in ContinuumMechanics,
and novel applications are Berezovski [42, 43], Capriz et al. [44], Carlomagno et al.
[45], Cimmelli [46], Fama [47], Rogolino and Cimmelli[48]. Indeed, Van et al. [37]
is an interesting article containing experimental and theoretical work which suggests
Guyer–Krumhansl theory may be more accurate than Fourier or traditional Maxwell–
Cattaneo theory, even for temperatures typical of laboratory experiments.

In Eq. (4) the termDQi/Dt can possibly have several forms. One such form is the
material derivative

DQi

Dt
= ∂Qi

∂t
+ v j

∂Qi

∂x j
, (9)

and this derivative is shown to lead to aGalilean invariant theory byChristov and Jordan
[54]. On the other handMorro [39, 40] notes that (9) is not objective and therefore one
should employ a suitable objective derivative. A general objective derivative is given
by Morro [39, 40] as

DQi

Dt
= ∂Qi

∂t
+ v j

∂Qi

∂x j
− Wi j Q j + γ Di j Q j , (10)

where for our purposes γ is a constant, and

Wi j = 1

2
(vi, j − v j,i ), Di j = 1

2
(vi, j + v j,i ).

It may be enlightening to employ (10) in a complete analysis of thermal convection,
but we here follow Christov [55] and employ a Lie derivative for which γ = −1.
This derivative was employed by Ciarletta and Straughan [56] and Tibullo and Zam-
poli [57], and by Bissell [33], Eltayeb et al. [34], Hughes et al. [35]. The resulting
theory employing (10) with γ = −1 is often referred to as Cattaneo–Christov theory.
It is of interest to note that Morro [39] describes various objective derivatives and he
observes that the form of derivative in (10) with γ = −1 was suggested by Truesdell
[58]. Furthermore, Straughan ([32], pp. 22–24) observes that employing a relaxation
effect like that in (4) was suggested by Graffi [59] in the context of electromagnetism.
Thus, when a relaxation theory is employed with an objective derivative (10) where
γ = −1, such a theory could be associated with the names of Graffi and Truesdell.

In this work we now employ (4) with DQi/Dt given by (10) with γ = −1. For
clarity we write Eq. (4) in this case as

τ (Qi,t + v j Qi, j − vi, j Q j ) = −Qi − κT,i + ξ̂1�Qi + ξ̂2Qk,ik . (11)

The steady conduction solution to Eqs. (1), (2), (3), (11) and (5) in whose stability we
are interested has form

v̄i ≡ 0, T̄ = TL − βz, Q̄ = (0, 0, κβ), (12)
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where β is the temperature gradient,

β = TL − TU
d

> 0.

The steady pressure is a quadratic function of z determined from (1).

3 Thermal convection

To analyse the instability/stability of the steady solution (12) we define perturbation
variables ui , θ, qi , π by

vi = v̄i + ui , T = T̄ + θ, Qi = Q̄i + qi , p = p̄ + π.

These expressions are substituted into Eqs. (1), (2), (3) and (4) and are non-
dimensionalized with the scalings

xi = x∗
i d, t = T t∗, T = d2

ν
,

ui = u∗
i U , θ = θ∗T �, qi = q∗

i Q
�, π = π∗P

U = ν

d
, Pr = ν

κ
, T � = U

√
βν

αgκ
Q� = T �κ

d

ξ1 = ξ̂1Q�

dκT �
, ξ2 = ξ̂2Q�

dκT �
, ξ = μ1d2

ν
,

P = ρνU

d
, Sg = τν

d2
,

where Sg is a parameter introduced in Papanicolaou et al. [36]. The Rayleigh number
Ra is introduced as

Ra ≡ R2 = βgαd4

νκ
.

In this way we arrive at the non-dimensional perturbation equations, where the *s are
dropped,

ui,t − λ�ui,t + u jui, j = −π,i + �ui + Rθki − ξui ,

ui,i = 0,

Pr(θ,t + uiθ,i ) = Rw − qi,i + ζ�θ,

Sg(qi,t + u jqi, j − ui, j q j ) = RPr Sg ui,3 − qi − θ,i + ξ1�qi + ξ2qk,ki ,

(13)

where (13) hold on R2 × (0, 1) × {t > 0}, with w ≡ u3.
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Care must be taken with the boundary conditions when Guyer–Krumhansl terms
are present. The non-dimensional perturbation boundary conditions we employ are

ui = 0, z = 0, 1; θ = 0, z = 0, 1; qi = 0, z = 0, 1; (14)

or

ui = 0, z = 0, 1; θ = 0, z = 0, 1;
q1 = q2 = 0, z = 0, 1; q3,3 = 0, z = 0, 1; (15)

together with horizontal periodicity of the solution, cf. Straughan ([49], p. 51). The
period cell of the solution is denoted by V . Whenwe use (15) one additionally requires∫
V q3dx = 0, to exclude constant vertical heat flux perturbations.

4 Linear instability

To develop a linear instability analysis for (13) and (14) we drop the quadratic terms
and introduce a time dependence like

ui = eσ t ui (x), θ = eσ tθ(x), qi = eσ t qi (x), π = eσ tπ(x),

andwe then have an eigenvalue problem for the growth rate σ . To solve this eigenvalue
problem for fixed boundary conditions results in a heavy numerical computation. One
must take curlcurl of (13)1 and then one is left with solving three fourth order equations
for u, v, w (≡ (u1, u2, u3)), three second order equations for q1, q2, q3, and one
second order equation for θ . We thus need twenty boundary conditions. Sixteen of
these follow from (5) and (2) and are

w = 0,
∂w

∂z
= 0, θ = 0, q1 = 0,

q2 = 0, q3 = 0, u = 0, v = 0, z = 0, 1.

To determine the remaining four boundary conditions we take curlcurl of (13)1 and
evaluate the result for components 1 and 2 on the boundaries z = 0, 1. In this way one
derives the further four conditions as

−σ(v,z + λw,yzz − λv,zxx − λv,zyy − λv,zzz) + w,yzz − v,zxx − v,zyy − v,zzz = 0,

z = 0, 1,

and

−σ(u,z + λw,xzz − λu,zxx − λu,zyy − λu,zzz) + w,xzz − u,zxx − u,zyy − u,zzz = 0,

z = 0, 1.
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Since this is the first analysis of the convection model presented here we solve Eq.
(13) subject to stress free surface boundary conditions, as is done in e.g. Eltayeb et
al. [34], Hughes et al. [35].

The condition n jσi j = 0 on z = 0, 1, reduces to

u,z = v,z = 0, on z = 0, 1,

and then with the continuity equation one sees that

w,zz = 0, on z = 0, 1.

We also require

w = 0, θ = 0, q1 = 0, q2 = 0, q3,3 = 0, on z = 0, 1.

For linear instability we then reduce Eq. (13) to

σ(−�w + λ�2w) + �2w + R�∗θ − ξ�w = 0,

Prσθ − ζ�θ − Rw + � = 0,

(Sgσ + 1)� + �θ − ε�� = 0,

(16)

where �∗ = ∂2/∂x2 + ∂2/∂ y2, � = qi,i , and ε = ξ1 + ξ2. For stress free boundary
conditions we may show from (16) that w, θ and � may be represented by sin series
of form w = ∑∞

n=1 wn sin nπ z, with a similar form for θ, �.
The stationary convection boundary is found by evaluating a determinant derived

from (16) to be

R2 = 1

a2

[
ζ�2(� + ξ) + �3 + ξ�2

(1 + ε�)

]
, (17)

where � = π2 + a2, with a being the wavenumber. (Actually, � = n2π2 + a2, but it
may be shown n = 1 yields the minimum.) The critical values of the Rayleigh number
for stationary convection, Rastat = R2

stat , are then found by minimizing numerically
R2 in (17) in a2.

To find the oscillatory convection boundary we put σ = iω, ω ∈ R, in (16), and
then solve a determinant equation which yields a cubic in σ . The real and imaginary
parts of this equation are resolved and the oscillatory convection Rayleigh number,
R2
osc, may be shown to follow from

R2
osc = A

a2Sg2B
, (18)

where

A =Pr2��2�3(�1�2 + Sg�3) + �2�2
1Pr�2 + Sgζ�
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+ �2ζ(�1�2 + Sg�3)(Pr�1�2 + SgPr�3 + Sgζ��1),

and

B = Pr�3 + ζ��1,

with

� = π2 + a2, �1 = 1 + λ�, �2 = 1 + ε�, �3 = � + ξ.

The critical values of the Rayleigh number for oscillatory convection may be found
by minimizing R2

osc from (18) in a2.

Remark 1
It is worth pointing out that for linear instability via stationary or oscillatory convection
the results obtained here for the Lie derivative where γ = −1 in (10) are exactly the
same as would be obtained if we had employed a material derivative for Qi in (4).
Of course, the nonlinear theory is different in both cases. The point here is that if
we had not employed a Truesdell derivative in (10), i.e. had we selected a value of
γ �= −1, then even in the linearized theory the results are different from when one
simply employs the material derivative.

5 Nonlinear stability

Let ‖ · ‖ and (, ·, ) denote the norm and inner product on L2(V ). Further, let ‖ · ‖q be
the norm on Lq(V ) where we omit the index when q = 2.

To investigate nonlinear stability of (12), we multiply (13)1 by ui , (13)3 by θ , (13)4
by qi , and integrate each over a period cell V . After some integrations by parts and
use of the boundary conditions we may obtain the identities,

d

dt

(1
2
‖u‖2 + λ

2
‖∇u‖2

)
= R(θ, w) − ξ‖u‖2 − ‖∇u‖2, (19)

and

d

dt

Pr

2
‖θ‖2 = R(θ, w) − (qi,i , θ) − ζ‖∇θ‖2, (20)

and

d

dt

Sg

2
‖q‖2 = Sg(ui, j , qiq j ) − ‖q‖2 − (θ,i , qi )

− ξ1‖∇q‖2 − ξ2‖�‖2 + RSgPr(ui,3, qi ).
(21)

By addition of these equations and integration by parts on the (θ,i , qi ) term we may
arrive at the energy equation
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dE

dt
= RI − DE + N , (22)

where the energy function is given by

E = 1

2
‖u‖2 + λ

2
‖∇u‖2 + Pr

2
‖θ‖2 + Sg

2
‖q‖2, (23)

the dissipation, DE , is

DE = ‖∇u‖2 + ξ‖u‖2 + ζ‖∇θ‖2 + ‖q‖2 + ξ1‖∇q‖2 + ξ2‖�‖2, (24)

the production term has form

I = 2(θ, w) + Pr Sg(ui,3, qi ), (25)

and where the cubic nonlinearity has form

N = Sg(ui, j , qiq j ). (26)

We henceforth discard the ξ2 term and work with the following energy inequality
[which follows from (22)],

dE

dt
≤ RI − D + N , (27)

where the dissipation function, D, is given by

D = ‖∇u‖2 + ξ‖u‖2 + ζ‖∇θ‖2 + ‖q‖2 + ξ1‖∇q‖2. (28)

Define RE by

1

RE
= max

H

I

D
, (29)

where H = {ui , θ, qi ∈ H1
0 (V ) : ui,i = 0} is the space of admissible solutions.

To obtain nonlinear stability from (27) we obtain

dE

dt
= −D

(
1 − R

RE

)
+ N , (30)

and we suppose now R < RE . To handle the cubic nonlinear termwe use the Cauchy–
Schwarz inequality to find

N ≤ Sg‖∇u‖ ‖q‖24,

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

and then we employ the Sobolev inequality ‖q‖4 ≤ c1/21 ‖∇q‖ to derive

N ≤ c1Sg‖∇u‖ ‖∇q‖2, (31)

where c1 is a constant depending on V . Then from (30) one deduces

dE

dt
≤ −D

(
1 − R

RE

)
+ cE1/2D, (32)

where c = c1Sg21/2/(ξλ1/2). Since R < RE we put b = 1 − R/RE > 0 and then it
follows that

dE

dt
≤ −D(b − cE1/2). (33)

Provided E1/2(0) < b/c onemay employ a continuity argument to show, cf. Straughan
[49, pp. 15–16],

E(t) ≤ exp(−ht)E(0), (34)

where h = π2(b − cE1/2(0).
Hence, we have demonstrated nonlinear stability in the E measure provided

R < RE and E1/2(0) <
b

c
. (35)

To find RE we obtain the Euler–Lagrange equations from (29)as

�ui − ξui + REθki − RE

2
Pr Sg qi,3 = �,i ,

ui,i = 0,

ζ�θ + RE w = 0,

ξ1�qi − qi + RE

2
Pr Sg ui,3 = 0,

(36)

where � is a Lagrange multiplier.
We solve Eq. (36) for stress free boundary conditions. In this case we reduce Eq.

(36) to

− �2w + ξ�w − RE�∗θ − RE

2
Pr Sg (�,33 − �q3,3) = 0,

ζ�θ + RE w = 0,

ξ1�q3 − q3 + RE

2
Pr Sgw,3 = 0,

ε�� − � = 0.

(37)
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The term �q3,3 is eliminated from (37)1 and the remaining equations may be reduced
to the relation,

R2
E = ζ�2(� + ξ)(1 + ξ1�)

a2(1 + ξ1�) + 0.25Pr2Sg2ζ�2π2 . (38)

The critical Rayleigh number of nonlinear stability is determined by minimizing (38)
in a2.

Remark 2
Wehave discarded the ξ2 term in the analysis leading to (27). This termmay be retained
but the resulting analysis of the subsequent Euler–Lagrange system is substantially
more involved and leads to very little improvement in the stability threshold. Since
this is the first analuysis of this system we prefer to employ the simpler argument and
not obscure the physical highlights with technical details.

Remark 3
If we had employed a material derivative for Qi in (4) rather than the form (11) then
the energy stability results would be for global stability instead of the conditional
result here, see (35).

6 Unconditional nonlinear stability

It is of interest to observe that we may obtain a result of unconditional nonlinear
stability (i.e. for all initial data) from Eq. (13). To achieve this we replace (13)4 by
differentiating that equation by ∂/∂xi to obtain the evolution equation for � as

Sg(�,t + u j�, j ) = −� − �θ + ε��. (39)

One now works with the energy identities (19), (20), and the equation obtained by
multiplying (39) by � and integrating over V (where we are assuming q3,3 = 0 on
z = 0, 1, ), namely

d

dt

Sg

2
‖�‖2 = −‖�‖2 + (∇θ,∇�) − ε‖∇�‖2. (40)

We now add (19), (20) and (40) to see that

dF

dt
≤ IF − DF , (41)

where the energy function, F , is now

F(t) = 1

2
‖u‖2 + λ

2
‖∇u‖2 + Pr

2
‖θ‖2 + Sg

2
‖�‖2, (42)
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while

IF = 2R(θ, w) − (�, θ) + (∇θ,∇�), (43)

whereas,

DF = ‖�‖2 + ε‖∇�‖2 + ζ‖∇θ‖2 + ξ‖u‖2 + ‖∇u‖2. (44)

Define now

RU = max
H

IF
DF

, (45)

where H is the space of admissible solutions and then from (41) one may find

dF

dt
≤ −DF

(
1 − 1

RU

)
. (46)

Suppose now 1 < RU and put b3 = 1 − 1/RU > 0. Then, from (46) one may show
that

dF

dt
≤ −b3DF . (47)

Inequality (47) is integrated after use of Poincaré’s inequality on DF to see that

F(t) ≤ F(0) exp(−c3t), (48)

for a constant c3 depending on b3. Unconditional nonlinear stability ensues from
inequality (48).

The limit for RU is RU = 1 and this yields the energy stability threshold. Hence-
forth, we take RU = 1. The Euler–Lagrange equations arising from (45) with RU = 1
are

�ui − ξui + Rθki = �,i ,

ζ�θ + Rw − 1

2
� − 1

2
�� = 0,

ε�� + Rw − 1

2
θ − 1

2
�θ = 0,

and from these equations we deduce, for two stress free surfaces,

R2
unc = ζ(�3 + ξ�2)

a2
− (1 − �)2(�2 + ξ�)

4a2(1 + ε�)
. (49)

The unconditional energy stability limit may be found by minimizing R2
unc in a2.

It is straightforward to show that R2
stat ≥ R2

unc and some numerical results for the

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

unconditional critical Rayleigh number, Raunc, are given in Sect. 7. The results for the
unconditional critical Rayleigh number are less than the linear instability threshold,
although they do represent a bound for global nonlinear stability. As ζ increases Raunc
becomes much closer to Rastat , the linear stationary convection threshold.

Remark 4
One may develop another energy estimate by employing (19), (40), then multiplying
(13)3 by−�θ and integrating over V . This avoids the � and θ quadratic terms in (41),
and would lead to a sharper Rayleigh number threshold than (49). In this case one
derives an “energy" equation of form

dE

dt
= RI − D + N ,

where

E = 1

2
‖u‖2 + λ

2
‖∇u‖2 + Pr

2
‖∇θ‖2 + Sg

2
‖�‖2,

I = (θ, w) − (∇w,∇θ),

D = ξ‖u‖2 + ‖∇u‖2 + ‖�‖2 + ε‖∇�‖2 + ζ‖�θ‖2,

and the cubic nonlinearity has form

N = −Pr
∫

V
ui, jθ,iθ, j dx .

The drawback with this is that the nonlinear stability so obtained is conditional.

7 Numerical results

Numerical results are now reported based on minimization of expressions (17), (38),
(49) and (18), yielding the critical Rayleigh and wave numbers of stationary con-
vection, nonlinear energy stability, unconditional nonlinear stability, and oscillatory
convection, Rastat , Raen , Raunc, Raosc, a2stat , a

2
en , a

2
unc, a

2
osc, respectively.We include

some results for the unconditional nonlinear stability threshold in Table 1, where
Raunc and a2unc denote the relevant critical Rayleigh and wave numbers obtained from
(49). We have computed many results and a small selection are displayed because
we have to vary over the parameters Pr , λ, Sg, ξ, ξ1, ξ2 and ζ . Tables 1, 2 and 3
give values of Rastat , a2stat , Raen , a

2
en , Raunc, a

2
unc, Raosc, a

2
osc. In all tables we take

Pr = 6. Table 1 selects λ = 0.1, ξ = 0.1, ξ2 = 0.1, Sg = 10−2, and ζ varies
over 0.6–1.4, while ξ1 varies over 0.5, 1, 1.5, 2, 2.5 and 1000 as shown in the table.
Tables 2 and 3 use the same variation for ζ and ξ1 but not for ξ1 = 1000, and take
λ = 0.1, ξ = 1, ξ2 = 1, Sg = 10−3, and λ = 10−2, ξ = 10, ξ2 = 10−2, Sg = 10−4,
respectively. We have computed with ξ1 ranging from 0.5 to 1000 to check on the
behaviour for large ξ1.
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We observe that

a2(1 + ξ1�) + Pr2Sg2ζ�2π2

4
≥ a2(1 + ξ�),

and then from (38),

R2
en = ζ�2(� + ξ)(1 + ξ1�)

a2(1 + ξ1�) + (Pr2Sg2ζ�2π2/4)

≤ ζ�2(� + ξ)

a2

≤ 1

a2

[
ζ�2(� + ξ) + �3 + ξ�2

1 + ε�

]
,

= Ra2stat ,

where (17) is recognized. Thus, we know

R2
en ≤ R2

stat ,

as it should be.
Firstly, from Tables 1, 2 and 3 we observe that for Sg in the range 10−2–10−4

oscillatory convection will not be observed. It is possible to witness oscillatory con-
vection, but Sg has to be much larger, perhaps of order 100, and then a2osc is very
small. Consolo [28, 29] do suggest τ values large enough for Sg in the range O(102),

Table 1 Critical values of Rayleigh and wave numbers for stationary, oscillatory, and energy stability

Rastat a2stat Raen a2en Raunc a2unc Raosc a2osc ζ ξ1

435.17 5.163 391.30 4.880 273.71 5.775 1.344 × 108 4.031 0.6 1

397.22 4.952 397.16 4.951 397.03 4.952 9.549 × 1013 3.829 0.6 1000

567.62 5.113 519.15 4.857 406.17 5.107 1.343 × 108 4.031 0.8 1

529.61 4.952 529.55 4.951 529.42 4.951 9.549 × 1013 3.829 0.8 1000

728.44 5.163 631.93 4.737 445.81 5.260 4.481 × 107 4.189 1 0.5

700.05 5.082 645.74 4.833 538.59 5.068 1.342 × 108 4.031 1 1

688.65 5.045 650.85 4.870 575.61 5.021 2.713 × 108 3.970 1 1.5

682.51 5.025 653.51 4.889 595.54 5.000 4.561 × 108 3.937 1 2

678.66 5.012 655.14 4.901 607.99 4.989 6.887 × 108 3.916 1 2.5

661.99 4.952 661.93 4.951 661.81 4.951 9.549 × 1013 3.829 1 1000

832.46 5.061 771.08 4.810 671.00 5.045 1.341 × 108 4.031 1.2 1

794.38 4.952 794.31 4.951 794.20 4.951 9.549 × 1013 3.829 1.2 1000

964.87 5.045 895.17 4.786 803.40 5.029 1.340 × 108 4.031 1.4 1

926.77 4.952 926.70 4.951 926.59 4.951 9.549 × 1013 3.829 1.4 1000

Pr = 6, λ = 1, Sg = 0.01, ξ = 0.1, ξ2 = 0.1, with ζ and ξ1 values as shown in the Table
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Table 2 Critical values of Rayleigh and wave numbers for stationary, oscillatory, and energy stability

Rastat a2stat Raen a2en Raunc a2unc Raosc a2osc ζ ξ1

443.61 5.225 420.95 5.094 347.06 5.193 4.146 × 1010 3.939 0.6 1

583.97 5.193 561.24 5.093 487.41 5.164 4.143 × 1010 3.939 0.8 1

731.52 5.198 701.37 5.092 604.15 5.173 2.391 × 1010 3.975 1 0.5

724.32 5.174 701.52 5.093 627.76 5.149 4.141 × 1010 3.939 1 1

719.92 5.159 701.57 5.094 642.16 5.135 6.368 × 1010 3.918 1 1.5

716.95 5.149 701.60 5.094 651.87 5.127 9.073 × 1010 3.903 1 2

714.82 5.142 701.62 5.094 658.85 5.122 1.225 × 1011 3.892 1 2.5

864.67 5.161 841.78 5.093 768.10 5.139 4.139 × 1010 3.939 1.2 1

1005.01 5.152 982.03 5.093 908.44 5.132 4.137 × 1010 3.939 1.4 1

Pr = 6, λ = 0.01, Sg = 0.001, ξ = 1, ξ2 = 1, with ζ and ξ1 values as shown in the table

Table 3 Critical values of Rayleigh and wave numbers for stationary, oscillatory, and energy stability.
Pr = 6, λ = 0.01, Sg = 0.0001, ξ = 10, ξ2 = 0.01, with ζ and ξ1 values as shown in the table

Rastat a2stat Raen a2en Raunc a2unc Raosc a2osc ζ ξ1

714.22 6.420 651.44 6.111 428.57 6.481 1.53 × 1011 5.206 0.6 1

931.50 6.346 868.59 6.111 645.88 6.354 5.29 × 1011 4.933 0.8 1

1203.34 6.437 1085.73 6.111 667.40 6.689 1.53 × 1011 5.206 1 0.5

1148.73 6.300 1085.73 6.111 863.11 6.291 5.29 × 1011 4.933 1 1

1128.77 6.244 1085.73 6.111 933.97 6.213 1.13 × 1012 4.838 1 1.5

1118.41 6.214 1085.73 6.111 970.61 6.181 1.96 × 1012 4.790 1 2

1112.08 6.195 1085.73 6.111 992.99 6.164 3.06 × 1012 4.760 1 2.5

1365.93 6.270 1302.88 6.111 1080.31 6.254 5.29 × 1011 4.933 1.2 1

1583.12 6.248 1520.02 6.111 1297.48 6.230 5.29 × 1011 4.933 1.4 1

and hence oscillatory convection may not be negligible in all cases. We should point
out that the Kelvin–Voigt parameter is only instrumental in the oscillatory convection
case, although it is essential in the nonlinear theory.

From Tables 1, 2 and 3 we note that the variation in Rastat , Raen , and Raunc
is significant as ζ increases. Indeed, Rastat , Raen and Raunc increase substantially
with increasing ζ and this means the system is more stable and convective motion
commences less easily. On the other hand, as ξ1 increases Rastat decreases, but Raen
and Raunc increase, but the variation is less than that observed with ζ varying. As ξ1
increases the nonlinear values, Raen , Raunc, become much closer to Rastat , as may
be seen in Tables 1, 2 and 3, and as shown in Fig. 1.
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Fig. 1 Critical values of Rayleigh numbers for stationary convection, Rastat , energy stability, Raenergy ,
and unconditional energy stability, Rauncond , against ξ1. The other parameters have values Pr = 6, ζ = 1,
λ = 0.1, Sg = 0.01, ξ = 0.1, ξ2 = 0.1

8 Conclusions

Wehave introduced a newmodel for thermal convection of aKelvin–Voigt viscoelastic
fluid in a Darcy–Brinkman porous material with the temperature field being governed
by a procedure suggested by [50], and incorporating Maxwell–Cattaneo–Guyer–
Krumhansl theory of heat flow. Attention is given to which derivative is employed
for the heat flux since this may affect the instability values for convective motion
substantially.

Linear instability values and nonlinear stability thresholds are calculated for the
case of two stress free surfaces, and in addition to a thorough analysis of stationary
and oscillatory convection, an exact nonlinear analysis is included. We have not seen
such a nonlinear analysis for amodel employingMaxwell–Cattaneo theory previously.

Remark 5
We have dealt here with the Brinkman–Darcy–Kelvin– Voigt system of equations. The
mathematical structure of the Navier–Stokes–Voigt equations with a linear friction
term is exactly the same as Eqs. (1), (2), (3) and (4), cf. DiPlinio et al. [60], provided
we employ the thermal structure as introduced in Payne and Song [50] and as used
here. DiPlinio et al. [60] analyse an analogous isothermal system, although they also
include an extra viscoelastic memory term. In the pure fluid case, the −λ�ui,t term
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represents the Kelvin–Voigt part in the Navier–Stokes–Voigt equations and the −ξui
piece is the Rayleigh friction contribution.
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