
 

 

Protomelission is an early dasyclad alga and not a Cambrian bryozoan 1 

Jie Yang1*, Tian Lan2*, Xi-guang Zhang1✉, Martin R. Smith3✉ 2 

1. Institute of Palaeontology, Yunnan University. Chenggong, Kunming 650500, China 3 

2. College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, China 4 

3. Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK 5 

* Joint first authors 6 

✉ Authors for correspondence: XGZ, xgzhang@ynu.edu.cn; MRS, 7 

martin.smith@durham.ac.uk 8 

The animal phyla and their concomitant body plans trace their origins to a singular 9 

burst of evolution in the Cambrian period, over 500 million years ago1. Phylum 10 

Bryozoa, the colonial “moss animals”, have been the exception: convincing skeletons of 11 

this biomineralizing clade have been curiously absent from Cambrian strata, in part 12 

because potential bryozoan fossils are difficult to distinguish from the modular 13 

skeletons of other animal and algal groups2,3. At present, the strongest candidate4 is the 14 

phosphatic microfossil Protomelission5. Here, we describe exceptionally preserved non-15 

mineralized anatomy in Protomelission-like macrofossils from the Xiaoshiba 16 

Lagerstätte6. Taken alongside the detailed skeletal construction and the potential 17 

taphonomic origin of ‘zooid apertures’, we consider that Protomelission is better 18 

interpreted as the earliest dasycladalean green alga – emphasizing the ecological role of 19 

benthic photosynthesizers in early Cambrian communities. Under this interpretation, 20 

Protomelission cannot inform the origins of the bryozoan body plan; despite a growing 21 

number of promising candidates7–9, there remain no unequivocal bryozoans of 22 

Cambrian age. 23 
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Introduction 24 

The phyla – the principal subdivisions of the animal kingdom – had diverged by the start of 25 

the Cambrian “explosion”10. The origins of their distinctive body plans can be resolved only 26 

by reference to the fossil record, as surviving lineages are characterized by rapid early 27 

innovation11 overprinted by half a billion years of subsequent evolution and extinction. The 28 

recognition of “extinct phyla” as offshoots of surviving animal lineages12,13 has uncovered 29 

unexpected connections between disparate animal phyla14,15, and revealed the otherwise 30 

unpredictable morphologies that characterize ancestors of modern animal groups16,17 – 31 

cementing the role of the fossil record as a reliable eyewitness to the origins of animal 32 

diversity18. 33 

However, despite the near-simultaneous appearance of other “shelly” bilaterian phyla 34 

(Euarthropoda, Mollusca, Brachiopoda and Echinodermata) close to the start of Cambrian 35 

Stage 312,19,20, Phylum Bryozoa lacks convincing representatives in the Cambrian fossil 36 

record. Proposed Cambrian bryozoans are putative8, disputed2,9 or discredited7,21. Presently, 37 

the most compelling candidate is the Stage 3– 4 microfossil Protomelission4,5, whose 38 

reinterpretation as a bryozoan4 would complete the Cambrian roster of mineralizing body 39 

plans. 40 

Protomelission gatehousei is a millimetre-scale organism comprising secondarily 41 

phosphatized cataphract modules, organized around a central cavity to form a holdfast and an 42 

erect axis. The axis is preserved as a bifacial structure, possibly reflecting the early 43 

compaction of an originally hollow club-shaped organism. Modules are arranged at 25° to the 44 

central cavity, and comprise thin-walled chambers with a small basal aperture on their 45 

internal surface; and a large, external distal aperture, whose margin is typically irregular due 46 

to breakage, leaving its original shape and size speculative4,5 – if indeed an aperture was even 47 

present before abrasion. The shape, size, and distal opening of modules have been taken to 48 
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indicate a position in the bryozoan total group4, but these features are not necessarily 49 

sufficient to render this the only, or even the most likely, possible affinity. In fact, the thinness 50 

of the walls and the irregular folding of peripheral modules are difficult to square with a 51 

bryozoan interpretation5,22. 52 

Here we compare phosphatized Protomelission microfossils previously described 53 

from Wirrealpa (five specimens) and Xiaoyangba (one specimen)4,5 with twelve probable 54 

Protomelission macrofossils from the Xiaoshiba biota (Cambrian Stage 3). 55 

Results 56 

Our new specimens comprise an originally clavate thallus (Fig. 1a, d, e) and a basal holdfast, 57 

which is in some cases attached to an animal shell (Fig. 1d, e, h). Compaction of the thallus is 58 

reflected by ridges and wrinkling of its surface (Fig. 1a). Its preservation across two separate 59 

surfaces within the matrix (Figs 1b, d, 2a, f, g) reveals the internal and external surfaces of 60 

the thallus in juxtaposition. One specimen displays budding or branching (Fig. 1b). 61 

The thallus comprises quincuncially arranged, slightly rounded modules, each around 62 

250 µm long, 200 µm wide (Figs 1–2) and 1 000 µm deep (Fig. 2e). Reflecting their close 63 

packing, modules are broadly hexagonal or rhombic in outline, and are slightly elongated 64 

parallel to the axis of the thallus. Each module is enclosed by a thin but robust layer 65 

associated with elevated concentrations of iron and phosphorous (Fig. 2d; Extended Data Fig. 66 

1), which opens internally with a small (5–8 µm) proximal aperture (Figs 1c, 2i) and 67 

externally at a large distal aperture whose irregular outline and size reflects partial survival of 68 

the original surface layer (Figs 2a–d, 3b, d–e, h; Extended Data Fig. 1a). 69 

As with the phosphatized Wirrealpa specimens (Fig. 3c, g, j), the nature of the 70 

external aperture varies between modules and between specimens, in a manner consistent 71 

with abrasion of a delicate external membrane: in many Xiaoshiba (Fig. 3b, i) and Wirrealpa 72 
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(Fig. 3c, j) specimens, the majority of the external membrane is absent. Even where the 73 

external membrane is at its most complete, the irregular shape, size and position of the sub-74 

elliptical apertures (Fig. 3e, f) do not correspond with the consistent regularity expected of a 75 

bryozoan colony, and a taphonomic origin is difficult to dismiss. 76 

On the basis of the close correspondence in construction, size, and arrangement of the 77 

modules with those of the Wirrealpa microfossils (Fig. 3a–c, e–j; Extended Data Table 1), we 78 

tentatively assign our material to Protomelission? sp. – though we stress that any comparison 79 

must account for the complementary preservational pathways of the two deposits. The 80 

Wirrealpa material was entombed in lime-rich sediment (since removed by acid maceration) 81 

and secondarily replaced, soon after death, by phosphate – protecting the material from 82 

further compaction4,23. Phosphatized deposits tend to contain early developmental stages or 83 

fragments of larger organisms23, reflecting a taphonomic bias towards small (< 5 mm) 84 

specimens. In contrast, Xiaoshiba-style preservation entails rapid burial of relatively 85 

complete organisms, followed by substantial post-burial compaction. Fossils are exposed by 86 

splitting mudstones along planes of weakness, which typically correspond to internal or 87 

external fossil surfaces24. 88 

These preservational differences account for certain differences between the material. 89 

Firstly, the Wirrealpa material presents an external view of (sometimes abraded) specimens, 90 

whereas the planes of fracture within Xiaoshiba material variously coincide with internal and 91 

external surfaces of modules, or divide modules internally. Secondly, the size difference 92 

between the deposits (108–160 × 32–43 mm in Xiaoshiba, 1.8–2.2 × 1.0–1.5 mm in 93 

Wirrealpa) likely reflects the preservation of larger or more complete specimens in Xiaoshiba 94 

– just as palaeoscolecid worms are represented by sub-millimetric fragments of cuticle in 95 

Wirrealpa5 and complete centimetre-scale specimens in Xiaoshiba25. The small size of 96 

Wirrealpa fragments precludes the recognition of macroscopic features, such as budding. 97 
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Most significantly, the best-preserved of our compression fossils additionally preserve 98 

non-skeletal tissue, which is never evident in Wirrealpa. Unornamented sub-conical flanges, 99 

around 500 µm in length, emerge orthogonally from each module (Figs 1b, f; 2a–e). These 100 

structures were originally labile, denoted by depletion in iron and phosphorous (Fig. 2d, 101 

Extended Data Fig. 1). They are best displayed at the lateral margins of specimens, where 102 

they are preserved parallel to the plane of bedding; because they are oriented perpendicular to 103 

the plane of splitting in the medial thallus, their full outline is not visible, though the chemical 104 

signature of their bases is evident across the thallus (Extended Data Fig. 1b, c). (Analogous 105 

preservation is seen in the centripetal sclerites of certain priapulan worms, which can be 106 

difficult to distinguish from somatic tissue except at the edges of fossils – e.g. fig. 8 in 107 

ref. 14.) 108 

Discussion 109 

Protomelission? flanges lack tentacles or other complex structures, which would be expected 110 

if they corresponded to the soft bodies of a colonial metazoan. Regular polygonal modules 111 

also characterize the inner surface of certain archaeocyath-like sponges26, but the largely 112 

enclosed nature of Protomelission modules and the presence of external flanges are difficult 113 

to reconcile with an archaeocyath construction. Rather, Protomelission? sp. is more 114 

convincingly interpreted as the oldest21 dasyclad green alga (Extended Data Table 1); a stem-115 

group position is implied by molecular clock estimates (with c. 95% posterior probability) of 116 

a post-Cambrian crown-group radiation27. 117 

We interpret the phosphatized Wirrealpa specimens as representing replacements of 118 

skeletal material. Zhang et al.4 interpret a wrinkled microstructure as indicating an originally 119 

non-mineralized composition, but in view of the absence of other non-mineralized elements 120 

in the Wirrealpa assemblage5, we are reluctant to rule out the possibility that the phosphate 121 
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replaces original calcium carbonate, with the idiosyncratic microstructure reflecting the 122 

deposition of carbonate within the algal cell wall or an encompassing mucilage layer, as in 123 

extant dasycladaleans28. 124 

Palaeozoic dasycladaleans such as the cyclocrinitids preserve tessellating modules 125 

corresponding to a robust, often calcified layer that surrounds lateral branches that emerge 126 

from a central cavity. Each such module exhibits a small basal aperture opening into the 127 

central cavity, and a larger distal opening from which a non-mineralized flange emerges3,29, 128 

corresponding to the structures seen in our compression fossils (Figs 1–2). As with many 129 

fossil dasyclads30, gametophores are not preserved in Protomelission – potentially signifying 130 

that the fossil material represents vegetative stages, or an endospore taxon. 131 

A subset of phosphatic microfossils assigned to Cambroclavida31 – a problematic 132 

early–mid Cambrian group restricted to open marine environments within the photic zone32 – 133 

also comprise articulated arrays of hollow modules with taphonomically abraded distal 134 

openings (Fig. 3d, k, l; Extended Data Table 1). In certain taxa, these openings correspond to 135 

the base of a compositionally distinct conical flange33,34. The parallel morphology hints that 136 

at least some cambroclaves may represent more heavily skeletonized relatives of 137 

Protomelission-like dasycladaleans, potentially extending the record of these algae to span 138 

the stratigraphic gaps between Protomelission and other putative35 Cambrian dasyclads3,21. 139 

Taken together, this indicates that benthic algae had a greater role in Cambrian 140 

communities than previously appreciated. Whereas eukaryotic macroalgae have been a 141 

significant component of benthic ecosystems since at least the Ediacaran36, they account for a 142 

small proportion of the biomass and diversity in most Burgess Shale-type settings37–42 143 

(particularly after excluding ‘algal’ taxa now assigned to cyanobacteria or 144 

hemichordates43,44). Whereas photosynthetic microorganisms exploited changing ocean 145 

chemistry to secrete carbonates from the base of the Cambrian45, Protomelission potentially 146 
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indicates an onset of mineralization in macroalgae broadly coincident with the proliferation 147 

of animal body plans, and the concomitant ecosystem shifts, at the opening of Cambrian 148 

Age 3. 149 

Whether or not our compression fossil material ultimately proves synonymous with 150 

secondarily phosphatized P. gatehousei4,5, it demonstrates that the suite of features used to 151 

assign Protomelission to Bryozoa do not exclusively characterize that group (Extended Data 152 

Table 1): a bryozoan affinity can be considered tentative at best. A growing number of 153 

Cambrian fossils, including Protomelission, the Harkless bryomorph8, Pywackia9, the 154 

overlooked cambroclave Deltaclavus31, and the disfavoured2,21 Cambroporella and 155 

Archaeotrypa7, display characteristics that might be reconciled with a bryozoan affinity – but 156 

on the basis of presently available material, no taxon can be interpreted with sufficient 157 

certainty to document a pre-Ordovician origin of Bryozoa. Taken alongside the early origin of 158 

poriferan-like46 and cnidarian-like fossils47,48 and the continued absence of multiple extant 159 

phyla across ever more modes of exceptional fossil preservation49–51, the origin of bilaterian 160 

body plans need not necessarily be compressed into a unique period in the heat of the 161 

Cambrian ‘explosion’. 162 
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Figure legends 290 

Figure 1 | Protomelission-like dasyclad algae from Xiaoshiba. a–c, YKLP 12446, large 291 
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c, enlargement of area C in a; inner surface of thallus, showing regular arrangement of 294 

individual modules with regularly situated fine holes (arrows); d, YKLP 12447, showing 295 

clavate form and attachment to brachiopod shell; e, YKLP 12448, complete specimen 296 

attached to indeterminate shell fragment (orange arrow), showing lateral flanges (white 297 

arrows); f, YKLP 12449, showing inner surface of thallus, with lateral profile of marginal 298 

modules (white arrows), and flanges extending centripetally into matrix (orange arrows); g, 299 

YKLP 12447; enlargement of area G in d, showing inner surface of thallus with regularly 300 

situated fine holes (arrows); h, YKLP 12450, two specimens anchored by holdfasts (arrow) to 301 

a brachiopod shell. 302 

 303 

Figure 2 | Preservation of Protomelission? sp. a–e, YKLP 12451: a, entire specimen, 304 

showing outer surface (on right), poorly preserved inner surface (on left), and lateral section 305 

(box E); b, enlargement of area B in a, showing lateral aspect of modules and flanges 306 

(arrowed); c, fluorescence photograph of area B in a, showing flanges; d, energy dispersive 307 

X-ray spectrograph showing iron abundance in area B in a: abundance elevated in module 308 

walls, and depressed relative to the matrix in flanges; e, enlargement of area E in a, showing 309 

lateral aspect of modules, and flanges (arrows); f–g, YKLP 12452, external surface (majority 310 

of f) juxtaposed with internal surface (g); in which fine holes occur at bases of each module 311 

(arrows); h–i, YKLP 12453, displaying internal surface of thallus. 312 

 313 

Figure 3 │ Comparison of the Xiaoshiba Protomelission? sp. with Wirrealpa P. 314 

gatehousei and the Cambroclavid Deltaclavus graneus. a–b, Xiaoshiba Protomelission? 315 

YKLP 12446, 12451, showing cataphract module arrangement; a, outer membrane largely 316 

intact; b, taphonomically expanded apertures perforate the partially preserved membrane 317 

(arrows). c, Wirrealpa P. gatehousei SADME 10470, showing equivalent preservational 318 
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pattern. d, Deltaclavus IAGS-BC-88-30181, showing cataphract module arrangement; 319 

taphonomically expanded apertures perforate the partially preserved membrane. e–f 320 

Xiaoshiba Protomelission? YKLP 12454: e, specimen with most complete preservation of 321 

external membrane; f, enlargement of area F in e shows irregularly located apertures (white 322 

arrows) in thin outer membrane of modules, with inconsistent size and shape, and similar 323 

damage lying across the boundaries of modules (orange arrows), presumably of taphonomic 324 

origin. g, Wirrealpa P. gatehousei SADME 10470-3; and h, Xiaoshiba Protomelission? YKLP 325 

12452: both showing flat inner surface of modules with small basal aperture (arrows). In g, 326 

modules of the facing surface (white arrows) do not leave an impression on the inner surface 327 

of opposing modules, consistent with their separation, as in h (white arrows), by a central 328 

cavity in life, prior to compaction. i, Xiaoshiba Protomelission? YKLP 12451; enlargement of 329 

box 3I in Fig. 2a; and j, Wirrealpa P. gatehousei SADME 10470-2, both showing three-330 

dimensional relief of outer surface, with apertures (asterisks) enclosed by partially preserved 331 

membrane (arrows). k, Deltaclavus IAGS-BC-88-30181, lateral view showing lateral profile 332 

of modules. l, Deltaclavus IAGS-BC-88-30178, showing three-dimensional relief of outer 333 

surface, with apertures (asterisks) enclosed by bounding ridge (arrows). Images of 334 

Deltaclavus courtesy S. Conway Morris; images of Wirrealpa Protomelission reproduced 335 

from ref. 4 under license (https://creativecommons.org/licenses/by/4.0/). 336 

Methods 337 

Twelve specimens from the Xiaoshiba biota were collected from outcrop of the Hongjingshao 338 

Formation, near Kunming, dated to the Yunnanocephalus–Chengjiangaspis–Hongshiyanaspis 339 

biozone, lower Canglangpuan Stage, Cambrian Series 2, Stage 3)6,52. Specimens were imaged 340 

under visible light under a LEICA M205-C stereomicroscope; and with fluorescence 341 

photography using a LEICA DFC 7000T monochrome digital camera attached to a LEICA 342 
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M205 FA fluorescence stereomicroscope under visible light. Backscatter electron microscopy 343 

and energy-dispersive X-ray spectroscopy were conducted using a FEI Quanta 650 scanning 344 

electron microscope under low vacuum and a 30 kV accelerating voltage. 345 

Statistics and Reproducibility. Photographs and micrographs have been selected 346 

after examination of all available material in order to best represent the features under 347 

description. 348 

Data availability. Specimens are accessioned at the Institute of Palaeontology, 349 

Yunnan University (YKLP12436–42). 350 

Code availability. No custom software or code was used in this study. 351 
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 370 

Extended Data Figure 1 │ Elemental abundances in Protomelission? sp. Reflected light, 371 

backscatter electron, and energy-dispersive X-ray spectroscopy images of a, central thallus of 372 

YKLP 12451, corresponding to region 3I in Fig. 2a; b–c, flanges at thallus margin in b, 373 

YKLP 12451, corresponding to region B of Fig. 2a; c, YKLP 12446, corresponding to region 374 

of Fig. 1b. 375 

 376 

Extended Data Table 1 | Anatomical comparison between Protomelission and possible 377 

relatives. Comparison of pertinent morphological features in Protomelission gatehousei from 378 

Wirrealpa and Xiaoyangba4,5, Protomelission? sp. from Xiaoshiba (this study), the 379 

cambroclave Deltaclavus31, and representatives of the dasycladalean algae and Bryozoa. Bold 380 

type emphasizes differences from the bryozoan body plan. 381 


