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Many of the most significant archaeological sites in Europe
were excavated by antiquarians over one hundred years ago.
Modern museum collections therefore frequently contain
human remains that were recovered during the nineteenth
and early twentieth centuries. Here we apply multi-isotope
analysis (87Sr/86Sr, δ18O, δ13C, δ15N) and 14C dating to
evaluate the provenance of human remains within a
collection that is thought to have been recovered from one of
the most important archaeological sites in Britain. Excavated
in 1910, the site of Coldrum in Kent is a megalithic burial
monument that may be one of the earliest sites associated
with the transition to farming in Britain. The interpretation of
this site is therefore key to understanding how agriculture
began. Using isotope analysis we show that although the
human skeletal collections attributed to Coldrum do contain
some of the earliest dated Neolithic human remains in
Britain, they also contain the remains of individuals of fifth
to seventh centuries AD date. We evaluate subsistence and
mobility patterns of early Neolithic populations and provide
new information about the origins of those individuals in the
collection that date to the fifth to seventh centuries AD. We
demonstrate the utility of employing isotope analysis to
provide direct and independent information about the
provenance of human remains in museum collections.
1. Introduction
Some of the most important archaeological sites were excavated
more than a century ago. Remains recovered during antiquarian
investigations, therefore, form a significant component of museum
collections and provide the basis for study and understanding of
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the past today. An example of this is the site of Coldrum, Kent. It is a megalithic burial monument, with a
substantial stone chamber that was found to contain human remains. The practice of building
monuments of this type was introduced to Britain from the European mainland during the transition to
farming, the development of the Neolithic, in the early fourth millennium BC. As well as being associated
with the introduction of new traditions of burial and monument construction, this period also saw a
radical change in subsistence patterns. New technology, such as pottery production and new species of
non-native plants and animals, such as domesticated cereals, cattle and sheep, were also introduced from
the European mainland at this time [1,2]. Many authors suggest that Coldrum long barrow could be one
of the earliest monuments to have been constructed during the start of the Neolithic, and the Coldrum
collection has therefore become central to the debate over how farming began in Britain [3–7].

Excavations began at the monument in 1910, following reports of the discovery of pottery and skeletal
remains at the site [8–10]. The human remains that were found during this excavation were given to the
Royal College of Surgeons (RCS) in London [11]. Established in the eighteenth century, the RCS housed
one of the largest and most geographically diverse antiquarian collections in Europe [12].

Investigations at Coldrum resumed in the 1920s and further human remains were recovered: these are
also recorded as having been given to the RCS [13]. After the war, the cranial remains, fragments of
cranial vault and mandibles in the collection were moved from the RCS to the University of
Cambridge, where accession records document their arrival in 1950–51. All the post-cranial remains
attributed to the site were transferred to the Natural History Museum in London. In addition to the
collections that are currently held by these two institutions, a small number of human remains, also
attributed to Coldrum, are curated by Maidstone Museum.

The Coldrum collection, therefore, has a complex history: the human remains are fragmentary and
disarticulated and they have been moved between and curated by multiple institutions. All the remains
in these collections are attributed to the Coldrum excavations by the institutions that curate them.
However, only a few specimens were directly labelled at the time of the excavations: only four fragments
of cranial vault have original labelling that means they can be securely associated with their context of
excavation at the site. F.J. Bennett’s account of the excavations describes how human remains were
recovered from two different levels or ‘platforms’ inside the megalithic burial chamber: from an upper
level (platform 1) and lower level (platform 2) [10]. The four cranial vault fragments with original
labelling can be attributed to two individuals from the upper level and two individuals from the lower
level of Bennett’s excavations. The two cranial fragments found on the lower level have produced some
of the earliest dates yet obtained on human remains associated with a Neolithic monument in Britain,
dating to the first two centuries of the fourth millennium BC [14]. The two fragments found on the
upper level have dates that fall later in the fourth millennium BC. It is therefore hypothesized that there
were at least two different phases of burial activity at the site: Bayesian modelling suggests that the first
phase of activity began in 3980–3800 cal BC (95% probable) or 3960–3880 cal BC (68% probable) and ended
in 3930–3750 cal BC (95% probable) or 3910–3770 cal BC (68% probable). The subsequent phase of activity
is postulated to have begun in 3730–3540 cal BC (95% probable) or 3660–3570 cal BC (68% probable) and
ended in 3320–3010 cal BC (95% probable) or 3330–3170 cal BC (68% probable; Model 2 by Wysocki et al.,
re-calibrated using IntCal20 and OxCal 4.4) [14–16].

As the Coldrum collection has been shown to contain some of the earliest human remains attributable
to a Neolithic monument in Britain [6,7,14], it is critical to interpretation of the transition to farming
which occurred at the start of the fourth millennium BC [3–7]. Here we conduct 14C dating of human
remains in the collection that have not previously been radiocarbon dated in conjunction with
87Sr/86Sr, δ18O, δ13C analysis of tooth enamel to provide direct information about where individuals
obtained their childhood diet. We combine this with δ15N and δ13C analysis of dental collagen to
provide direct information about childhood dietary composition.
2. Methods
2.1. 87Sr/86Sr analysis
Application of strontium isotope analysis for geographical provenancing is based on the principle that
87Sr/86Sr varies according to the age, initial Sr/Rb ratio and geological history of bedrock [17,18].
Strontium weathers out from rocks, into soils and ground waters where it becomes bioavailable, being
incorporated into plants and, in turn, into animals [19]. Conventionally measured 87Sr/86Sr values do
not vary significantly between trophic levels and because enamel does not remodel once formed and is
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highly resistant to diagenesis, 87Sr/86Sr values directly reflect the sources of dietary strontium to which
individuals were exposed during tooth formation [20–22]. Comparison of the isotope ratios preserved in
tooth enamel to mapped bioavailable ranges in plants and water can therefore be used to evaluate where
an individual obtained their diet [23–25]. Here, we analyse 87Sr/86Sr values in adjacent consecutively
mineralizing molar teeth (first, second and third permanent molars), where present, to compare isotope
ratios in teeth that form at different stages of early life. Formation of the first permanent adult molar
crown commences in utero, just prior to birth [26], and completes by approximately 4.5 ± 0.5 years of age;
formation of the second molar crown occurs between approximately 2.5 ± 0.5 years and 8.5 ± 0.5 years of
age; the timing of third molar formation is most variable with initial cusp formation from approximately
8.5 ± 0.5 years of age and crown completion by approximately 14.5 ± 0.5 years [27,28].

2.2. δ18Ocarbonate and δ
13Ccarbonate analysis

There are two ionic forms of oxygen in tooth enamel that are suitable for oxygen isotope analysis,
structural carbonate (CO2–

3 , δ18Ocarbonate) and phosphate (PO3–
4 , δ18Ophosphate) [29,30]. Here we use

oxygen and carbon isotope analysis of the CO2–
3 fraction of enamel. 18O/16O varies geographically

with climate, according to factors such as temperature, continentality, latitude and altitude [31,32].
Use of oxygen isotope analysis for geographical provenancing is based on the principle that δ18O values

in tooth enamel of mammals who are obligate drinkers reflect the oxygen isotope composition of drinking
water [33–36]. However, in human populations, the oxygen isotope composition of ingested fluids can also
be influenced by culturally mediated behaviour, for example, consumption of fluids that have undergone
fractionation through biological processes, such as cow’s milk [37–40] or breast milk [41]. Enamel that
forms while an infant is being breastfed (e.g. deciduous molars or first molars) may therefore record
higher δ18O values than that which forms later in childhood [42,43]. Culinary practice, such as boiling
water, brewing or stewing food, has also been shown to influence the oxygen isotope composition of
ingested fluids [44]. In addition to the variation in δ18O composition of ingested fluids that may be
generated by culinary practices, recent study of enamel from modern human populations suggests that
δ18O values can also vary by up to approximately 2‰ between samples taken at the same location in
antimeres of teeth from the same individual [45]. Such variability in δ18O values contrasts with that of
87Sr/86Sr values, which have been to shown to vary only in the fourth decimal place between samples
taken from the same location from antimeres of teeth, by up to 0.000192 [45]. It has also been shown that
human populations buried in adjacent regions of temperate Europe can have similar δ18O values, as
values in local precipitation overlap [46]. As a consequence of the above factors, oxygen isotope analysis
of enamel from human populations is useful for making broader scale distinctions, for differentiating
individuals who originate from regions of much colder climate and have very low δ18Ocarbonate values,
(<24.5‰, or δ18Ophosphate VSMOW values < 15.5‰) from those who sourced their childhood dietary
resources from temperate locations e.g. [47–53].

2.3. Laboratory procedures: strontium and oxygen isotope analysis
This study sampled previously undated dentition in mandibular remains from a total of ten individuals.
The skeletal remains in the collections that are attributed to Coldrum are disarticulated and fragmentary.
To avoid sampling fragments of dentition that could belong to the same individual, samples were only
taken from right-sided mandibular dentition. Teeth were only sampled from the left side when the
mandible was complete. Loose teeth and maxillary dentition were not sampled.

In addition to sampling mandibles attributed to Coldrum in the University of Cambridge Duckworth
Laboratory collection that have been allocated accession numbers (EU.1.5.127 and EU.1.5.129 to
EU.1.5.133), three further unlabelled specimens in the Duckworth collection that are attributed
to Coldrum but have not been allocated accession codes were also sampled and given codes for the
purpose of this study: COL/UN8, COL/UN and COL/UNBOYD, where UN stands for ‘unidentified’.
Specimen COL/UNBOYD has the letters ‘Boyd’ handwritten directly on the side of the mandible. The
number ‘8’ is handwritten on specimen COL/UN8. In addition to analysis of teeth from these
mandibular remains held at the University of Cambridge, dentition from one mandible fragment
curated by Maidstone Museum (accessioned as specimen 6) was also sampled.

An enamel sample of approximately 10 mg in weight was taken from the crown of each tooth for
oxygen isotope analysis and another of 20–30 mg in weight was taken for strontium isotope analysis.
As analysis was conducted on bulk enamel, isotope ratios represent the weighted average of all
sources of dietary strontium to which the individual was exposed at the time of tooth formation [21].
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It has been shown that once enamel is fully mineralized it is highly resistant to diagenesis and retains in
vivo 87Sr/86Sr values e.g. [54–56]. However, caries may alter the in vivo isotope ratios: [45] none of the
teeth sampled in this study exhibited any evidence of caries and all were completely mineralized.

Following procedures described in Montgomery 2002 [54], surface enamel was thoroughly abraded
using a tungsten carbide dental burr. Enamel chips were cut using a flexible diamond-edged rotary
saw and were then again mechanically cleaned using a tungsten carbide dental burr to remove any
adhering dentine. Dental saws and burrs were cleaned ultrasonically for 5 min and rinsed three times
in high purity de-ionized water between preparation of samples. Enamel samples were taken in clean
sealed containers to the Class 100, HEPA-filtered laboratory facilities at the National Environmental
Isotope Facility (NEIF, Keyworth, Nottingham, England). Here, they were cleaned ultrasonically and
rinsed in high purity water (Millipore Alpha Q). They were then dried and weighed into pre-cleaned
Teflon beakers. To obtain strontium concentrations they were spiked with a known amount of 84Sr
tracer solution. Each sample was dissolved in Teflon distilled 8 M HNO3. Samples were converted to
chloride using 6 M HCl, taken up in titrated 2.5 M HCl and pipetted onto ion-exchange
chromatography columns. Strontium was separated with Eichrom AG50-X8 resin (200–400 mesh).
Procedural blanks were below 80 pg.

Samples were then loaded on to Re filaments using a method adapted from Birck 1986 [57]. Strontium
isotope composition and concentrations were determined by Thermal Ionization Mass Spectrometry
using a ThermoTriton automated multi-collector mass spectrometer. To correct for fractionation
during the process of mass spectrometry, 87Sr/86Sr values were normalized to the accepted value for
88Sr/86Sr = 0.1194. During the period of this study, the machine gave a value for the international
standard for 87Sr/86Sr (NBS 987) of 0.710253 ± 0.000012 (2σ, n = 350). An estimate of the
reproducibility of strontium concentration (Sr ppm) was provided by replicate analysis of an aliquot
of bone standard solution (NIST1486), which gave 7.22 ± 0.27 ppm (±3.75%, 1σ, n = 16).

Initial preparation of enamel samples for δ18O and δ13C analysis was conducted using the same
methods used above for strontium isotope analysis. Cleaned enamel chips were powdered using a pestle
and mortar at the National Environmental Isotope Facility. Oxygen (δ18Ocarbonate) and carbon
(δ13Ccarbonate) isotope ratios in the carbonate fraction of enamel were then determined with a GV
IsoPrime dual inlet mass spectrometer, using approximately 3 mg of the clean powdered enamel,
following the method described in Chenery et al. 2012 [29]. Isotope ratios are reported as delta (δ) values
in per mil (‰) relative to the δ18OVPDB scale calculated using an in-house carbonate reference material,
Keyworth Carrera Marble (KCM), that has known δ13CVPDB (2.00‰) and δ18OVPDB (−1.73‰) having
been measured against IAEA-603 (δ18OVPDB =−2.37‰) and NBS 19 (δ18OVPDB =−2.20‰). Calibration of
the dual inlet isotope ratio mass spectrometer using NBS19 and NBS18 (δ18OVPDB =−23.01‰) shows a
consistent but small scaling factor for δ18O equivalent to approximately 0.2‰ over the approximately
20‰ range between NBS19 and NBS18, which is negligible given the proximity of enamel δ18Ocarbonate

data to NBS19, external precision on sample data, uncertainty associated with the assigned value of
NBS18, and overall sample reproducibility.

Analytical reproducibility during measurement of this run of samples was ± 0.4‰ (1σ, n = 15) for
δ13C and ± 0.11‰ for δ18O (1σ, n = 15). Enamel samples were also run in duplicate to assess the
replicability of δ18Ocarbonate, δ

13Ccarbonate values: δ
18O values varied by a mean of 0.2 ± 0.3‰ (1σ, n = 6)

and 0.2 ± 0.2‰ (1σ, n = 6) for δ13Ccarbonate between duplicates. δ18Ocarbonate values have been
normalized to the VSMOW scale using the equation of Kim et al. [58] (δ18OVSMOW−SLAP = 1.03092 ×
δ18OVPDB + 30.92‰).

To enable comparison of these results to data from studies that have sampled the phosphate (PO3–
4 )

fraction e.g. [59,60], conversion from δ18Ocarbonate to δ18Ophosphate is undertaken using the regression
equation of Chenery et al. [29] (δ18Ophosphate = 1.0322 × δ18Ocarbonate – 9.6849). δ18O values of the
δ18Ophosphate and δ18Ocarbonate fractions are well correlated and the error involved in calculating
δ18Ophosphate using this equation is low (0.28‰, 1σ) [29].

2.4. 14C dating and δ15N and δ13Ccollagen analysis
With the exception of specimen 6 from the Maidstone Museum collection (see below) all radiocarbon
dates and δ15N and δ13Ccollagen results were obtained from collagen extracted from the roots of the
same permanent first molar teeth as those that were sampled for 87Sr/86Sr, δ18O, δ13Ccarbonate analysis.
δ15N and δ13Ccollagen values were measured in samples of bulk collagen taken from the roots of first
permanent molars. The roots of first permanent molar teeth begin to form at approximately 3.5 ± 0.5
years; their formation is complete by approximately 7.5 ± 0.5 years of age [27].
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Radiocarbon dating was conducted at the Oxford Radiocarbon Accelerator Unit (ORAU). Collagen
was extracted using gelatinization and ultrafiltration techniques as described in Bronk Ramsey et al.
[61] and Brock et al. [62,63]. Once samples were graphitized, isotope ratios were measured by
accelerator mass spectrometry (AMS) using methods described in Dee and Bronk Ramsey [64] and
Bronk Ramsey et al. [61]. Radiocarbon dates are calibrated using IntCal2020 and OxCal4.4 [15,16].

Use of δ15N and δ13C analysis to study dietary composition exploits the large natural variation in
δ13C values of plants that use different (C3 or C4) photosynthetic pathways and the contrast in δ13C
values between terrestrial C3 and marine ecosystems [65,66]. δ13C and δ15N values also vary
geographically with environment and climate, according to temperature and water availability e.g.
[67,68], with terrestrial species in northern Europe having lower δ13C and higher δ15N values than
those in southern Europe, e.g. [69,70]. When dietary protein intake is sufficient, δ13Ccollagen values
predominately reflect the protein component of the diet, whereas δ13Ccarbonate values in bioapatite
reflect the isotope composition of the diet as a whole, including carbohydrates and lipids [71,72].
Carbon isotope analysis of bioapatite can therefore be particularly useful for elucidating the
contribution of C4 plants to the diet, which may be under-represented when analysing δ13Ccollagen e.g.
[73,74]. This would not, however, be relevant for individuals dated to the fourth millennium BC in
Europe, as the consumption of C4 plants such as millet is not known to have occurred here until the
sixteenth century BC [75].

δ15N and δ13Ccollagen analysis was conducted specifically for the purpose of dietary isotope analysis at
the University of Bradford. Isotope measurements were made using a Thermo Flash EA 1112, with
separated N2 and CO2 being introduced to a Delta plus XL via a Conflo III interface. Results are
reported as delta (δ) values, per mil (‰), expressed relative to the international standard used for
carbon isotope analysis Vienna Pee Dee Belemnite (VPDB) and for nitrogen, Ambient Inhalable
Reservoir (AIR) [76]. International laboratory standards IAEA-600, IAEA-CH3, IAEA-CH6, IAEA-CH7,
IAEA-N1 and IAEA-N2 were interspersed with samples in the analytical run. Internal standards were
also used in the run: fish gelatine with a δ15N value of 14.4‰ and a δ13C value of −15.5‰ and
bovine liver standard with a δ15N value of 7.6 ± 0.25‰ and a δ13C value of −21.6 ± 0.25‰. Analytical
error as determined from repeated measurement of both international and internal standards during
these runs of samples was 0.2‰ at one standard deviation for both δ15N and δ13Ccollagen. Every
collagen sample in this study was also measured in duplicate (table 1), with the exception of sample
COL/UN8, where analysis of the duplicated sample failed during the run. δ15N values varied
between duplicated samples by a mean of 0.1 ± 0.1‰ (1σ, n = 9) and by a mean of 0.1 ± 0.1‰ (1σ, n =
9) between duplicates for δ13Ccollagen (table 1). Where duplicates of samples were measured for δ15N,
δ13Ccollagen, δ

18Ocarbonate and δ13Ccarbonate, the values cited in the results and discussion below are the
mean of the two measurements. C:N ratios are also provided in table 1 and these are within the
accepted ranges for collagen [77].

The mandible from Maidstone Museum (specimen 6) is from a child, aged approximately 18 months
at death. A sample of mandibular bone was taken for radiocarbon dating and δ15N and δ13Ccollagen values
were also obtained from this. 87Sr/86Sr, δ18Ocarbonate and δ13Ccarbonate values were obtained by sampling
enamel from the left deciduous second molar tooth of this individual.
3. Results
Of the 10 sampled specimens, four in the collection attributed to Coldrum date to the fifth to seventh
centuries AD (EU.1.5.130, EU.1.5.131, EU.1.5.132 and EU.1.5.133; figure 1). 87Sr/86Sr values of enamel
from these individuals range between 0.7090 and 0.7098 (mean 0.7093 ± 0.0003, 1σ, n = 8); Sr
concentrations range between 36 and 113 ppm (mean 75 ± 25 ppm, 1σ, n = 8; figure 2). δ18Ocarbonate

values of samples of first permanent molar enamel from these individuals range between 26.7 and
28.1‰ (mean 27.5 ± 0.7‰, 1σ, n = 4). The mean enamel δ18Ocarbonate value of enamel from first
permanent molar teeth is 0.2‰ higher than that of enamel from second and third permanent molar
teeth, where values range between 27.0 and 27.6‰ (mean of 27.3 ± 0.25‰, 1σ, n = 4). Enamel
δ13Ccarbonate values of all teeth sampled in the group range that date to the fifth to seventh centuries
AD range between −16.1 and −13.7‰ (mean −14.6 ± 0.9‰, 1σ, n = 8). δ15N values of first molar root
dentine samples range between 9.8 and 10.9‰ (mean 10.6 ± 0.5‰, 1σ, n = 4) and δ13Ccollagen values
of these samples range between −20.8 and −19.8‰ (mean −20.2 ± 0.5‰, 1σ, n = 4).

Five individuals in the sampled collections date to the forty-first to thirty-eighth centuries BC
(EU.1.5.127, EU.1.5.129, COL/UN8, COL/UN and COL/UNBOYD; figure 3). 87Sr/86Sr values of enamel
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Figure 1. Photograph of individual EU.1.5.130 from the Coldrum collection. The individual is dated to 464–603 AD (OxA-28201;
95% confidence, IntCal20, OxCal4.4).
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Figure 2. δ18Ocarbonate (VSMOW) versus
87Sr/86Sr of enamel from individuals of fifth to seventh centuries date in the Coldrum

collection in comparison to post-infant dentition of Early Medieval populations buried in Europe (fifth to tenth centuries AD)
[78]. Triangles = permanent first molar teeth. Circles = post-infant dentition: permanent second molar, third molar and
premolar tooth crowns that form later in childhood; δ18O values are therefore unlikely to be influenced by breastfeeding.
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from these individuals range between 0.7079–0.7103 (mean 0.7093 ± 0.0007, 1σ, n = 11). Sr concentrations in
enamel from this group range between 34 and 72 ppm (mean 53 ± 12 ppm, 1σ, n = 11). δ18Ocarbonate values
of enamel samples from the first permanent molar teeth of these individuals range between 26.8 and 27.3‰
(mean 27.1 ± 0.2‰, 1σ, n = 5). Themean δ18Ocarbonate value of enamel from first permanent molars is again
0.2‰ higher than values in enamel from second and third permanent molar teeth, where values range
between 26.5 and 27.1‰ (mean 26.9 ± 0.2‰, 1σ, n = 6). Individuals in the group that date to the forty-
first to thirty-eighth centuries BC have enamel δ13Ccarbonate values that range between −16.7 and −13.9‰
(mean −15.3 ± 0.7‰, 1σ, n = 11). δ15N values of first molar root dentine samples from these individuals
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range between 8.4 and 9.1‰ (mean 8.7 ± 0.3‰, 1σ, n = 5) and δ13Ccollagen values of these samples range
between −21.8 and −20.4‰ (mean −21.2 ± 0.5‰, 1σ, n = 5).

The specimen (number 6) fromMaidstoneMuseumdates to the thirty-fourth to thirty-second centuries
BC, with a calibrated radiocarbon date of 3369–3106 BC (OxA-28200; table 1; figure 3). Enamel from the
second deciduous molar tooth of this individual, a child aged approximately 18 months at death, gave
an 87Sr/86Sr value of 0.7096, with a strontium concentration of 108 ppm. Enamel from the same tooth
gave an δ18Ocarbonate value of 27.9‰ and an δ13Ccarbonate value of −16.9‰. Collagen sampled from the
mandible of this individual gave an δ15N value of 12.3‰ and a δ13Ccollagen value of −21.2‰.
4. Discussion
Although the Coldrum collection contains human remains dated to the fourth millennium BC, it also
contains individuals of fifth to seventh century AD date. Accessions documents at the University of
Cambridge state that all these remains are attributed to excavations at the site of Coldrum and that
they were moved to the Duckworth Laboratory from the Royal College of Surgeons (RCS) in 1950–51.

The Coldrumburialmonumentwith its stone chamber and longmound is of a style of construction that
is associatedwith the earlier fourthmillenniumBC and noAnglo-Saxonmaterial culture is known from the
site. The possibility that Coldrum was reused for burial in the Early Medieval period might perhaps be
considered. Some 27 other Neolithic long barrows and chambered tombs are documented as having
been reused for burial during the early Anglo-Saxon period in Britain, with examples including
Lyneham long barrow, Oxfordshire [83–85]. Alternatively, the possibility that the individuals of fifth to
seventh centuries AD date do not derive from Coldrum should be considered. The Coldrum collection
has a complex curatorial history, having been transferred between and curated by several different
institutions in the century following its excavation. During the nineteenth and early twentieth centuries
the Royal College of Surgeons housed one of the largest and most diverse antiquarian collections in
Europe [12]. However, both the RCS collections and the buildings in which they were held were
extensively damaged during the Second World War and the collections were subsequently dispersed to
other institutions following the war, including the Natural History Museum and the University of
Cambridge (ibid.) The possibility that human remains from Coldrum were mixed with those from other
sites before being transferred to the University of Cambridge following the war cannot be excluded.
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The isotope results assist in constraining the origin of the individuals in this collection, by providing
direct information about both where they obtained their childhood diet and their dietary composition.
87Sr/86Sr values of enamel from both the individuals dated to the fifth to seventh centuries AD and
those that date to the fourth millennium BC exclude them having obtained their childhood diet from
areas where bioavailable values exceed 0.711. Examples of areas that record bioavailable values higher
than 0.711 in Europe include the south-western peninsula of England; Wales; Scotland; the Armorican
Massif and Massif Central in France; Norway and Sweden (figure 4) e.g. [23,24,86–88]. Enamel
87Sr/86Sr values of the individuals in the Coldrum collection dated to the fourth millennium BC
contrast with the strontium isotope ratios exhibited by other Neolithic populations that have been
excavated in Wales (figure 3), at Ty Isaf and Penywyrlod [70]. They also contrast with values found in
an Early Neolithic burial population excavated at Whitwell, Derbyshire. Individuals from the latter
site have highly radiogenic values > 0.720, that are not consistent with the bioavailable 87Sr/86Sr range
for Britain, indicating they were migrants from outside the area in which they were buried [87].

The Coldrum burial monument is located on Cretaceous West Melbury Marly Chalk and Zig Zag
Chalk Formation, near to local superficial deposits of Quaternary clay, silt, sand and gravel [89]. The
Gault Formation is situated approximately 0.5 km to the south; Cretaceous sandstones of the Lower
Greensand (Folkestone Formation) are also located to the south, within 2 km of the site. Current
biosphere mapping suggests that all the individuals sampled by this study, both those dated to the
fifth to seventh century AD and those dated to the fourth millennium BC, have strontium isotope
ratios that could be consistent with the locally bioavailable 87Sr/86Sr range of 0.7079–0.7103, within
2 km around the site of Coldrum [20]. Individuals in both groups could have obtained their resources
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locally, on lithology of the type that surrounds this site. However, 87Sr/86Sr values within this range are
also bioavailable in other areas, such as south-central and eastern England and the immediately adjacent
European mainland to the east, in northeastern France, Belgium and the Netherlands. e.g. [23,81,90]

The human remains in the Coldrum collection that date to the forty-first to thirty-eighth centuries BC
are among the earliest to be associated with a Neolithic monument in Britain [6,7,14] and the site has
therefore played a critical role in debates about how farming began in Britain e.g. [3–7]. Agriculture
was already well established on the adjacent European mainland at this time and the inception of
farming in Britain involved the introduction of domestic animals and plants from Europe, as well as
the importation of new technologies, such as pottery manufacturing and the practice of burial
monument construction [1,2]. Recent DNA evidence indicates that farming techniques and Neolithic
practices were introduced by migration of populations from the immediately adjacent European
mainland [91]. There are parallels between the Neolithic material culture of eastern Britain and that of
northeastern France and Belgium during this period [92]. However, it is not possible to test the
hypothesis of movement from such areas to southeastern England using 87Sr/86Sr or δ18O analysis
(see below), as the biosphere strontium isotope values present in southeastern England are similar to
those recorded in these areas of the immediately adjacent European mainland e.g. [81,93].

While some of the individuals in the current study have dates that fall within the early Neolithic,
within the first two centuries of the fourth millennium BC, the mandible of one individual sampled
by this study is dated to the late fourth millennium BC (3369–3106 cal BC: Maidstone Museum
Specimen 6). Enamel from the second deciduous molar tooth of this individual, a child aged
approximately 18 months at death, gave an 87Sr/86Sr value of 0.7096. Enamel from this individual
was taken from the second deciduous molar tooth. Like the cusps of permanent first molar teeth, the
crown of the deciduous second molar tooth begins to form in utero [26,27]. Hence it is possible the
87Sr/86Sr value of enamel reflects a contribution of dietary strontium prior to birth from resources that
were exploited by the mother of the individual [54]. As with values exhibited by the other individuals
sampled during this study, the strontium isotope ratio of enamel from this individual also falls within
the locally bioavailable 87Sr/86Sr range around the site of Coldrum, although as noted above such a
value is also bioavailable in other regions of Britain and mainland Europe.

Variation in 87Sr/86Sr values between adjacent permanent molar teeth of those individuals dated to
the forty-first to thirty-eighth centuries is low, with values varying by a mean of 0.00060 ± 0.00002 (1σ,
n = 6) between adjacent teeth. Variation in 87Sr/86Sr between permanent molar teeth within the group
of individuals dated to the fifth to seventh century AD is also low, with values varying by a mean of
0.00013 ± 0.00049 (1σ, n = 4) between teeth. The presence of similar values in enamel from teeth that
mineralize at different times during childhood could suggest that individuals obtained all their
dietary resources locally throughout early life. Alternatively, individuals could have obtained their
resources from different regions that have a similar bioavailable 87Sr/86Sr range, examples of which
have been mentioned above.

Among the collections dated by this study to the forty-first to thirty-eighth centuries BC are several
specimens attributed to Coldrum that do not have any labelling or accessions numbers (e.g. COL/UN,
COL/UN8): their provenance and attribution to this particular site could therefore be questioned.
However, the age of these remains is consistent with those remains of known stratigraphic context
from Coldrum. As identified by Wysocki et al. [14], two skull fragments are securely documented as
originating from the lower level of the Coldrum burial deposit and like the remains sampled by the
current study these also date to the first two centuries of the fourth millennium BC. They pre-date
remains from other excavated long barrows and cairns in Britain: as discussed by Whittle et al. [7] the
dates for burials at Coldrum appear to precede more established use of long cairns and barrows
elsewhere across Britain, which began at approximately 3800 cal BC.

The presence of remains that date to both the earlier and later fourth millennium BC in the group
sampled during the present study is also consistent with the hypothesis of Wysocki et al. [14], based
on the dated remains from the site that are of documented stratigraphic context, that Coldrum was
used during at least two different periods during the fourth millennium BC (see above). If dates from
the present study are included within the Bayesian model of Wysocki et al. [14] (model 2), which
incorporates the 14C dates for fragments of cranial vault of known stratigraphic context with those for
unstratified skeletal elements attributed to the site, results suggest that early Neolithic activity began
in 3980–3810 cal BC (95% probable) or 3970–3860 cal BC (68% probable; start Coldrum 1) and ended in
3940–3760 cal BC (95% probable) or 3860–3780 cal BC (68% probable; end Coldrum 1). The subsequent
second phase of activity may then have occurred in the mid to late fourth millennium BC, beginning
in 3720–3540 cal BC (95% probable) or 3660–3570 cal BC (68% probable; start Coldrum 2) and ending
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royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:220798
11

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

30
 M

ay
 2

02
3 
in 3320–2980 cal BC (95% probable) or 3330–3140 cal BC (68% probable; end Coldrum 2; calibrated using
IntCal20 and modelled using OxCal 4.4; figure 5) [15,16].

If converted to δ18Ophosphate, values of the second and third permanent molars of individuals dated to
the fifth to seventh centuries AD range between 18.2 and 18.8‰ (mean 18.5 ± 0.2‰, 1σ, n = 4). Enamel
δ18Ophosphate values of the second and third permanent molars of individuals who date to the forty-first
to thirty-eighth centuries BC range between 17.7 and 18.3‰ (mean 18.1 ± 0.2‰, 1σ, n = 6). Deciduous
and first permanent molars have been excluded from the following comparisons, due to the potential
influence of breastfeeding on values in enamel from early forming teeth (see above). The δ18O values
measured in enamel from the second and third permanent molars of both groups are not consistent
with them having obtained their childhood diet from regions with a cold climate where individuals
can exhibit δ18Ophosphate values below approximately 15.5‰, or δ18Ocarbonate below approximately
24.5‰ (e.g. regions of Europe such as Scandinavia, or the Alps; figures 2 and 3) e.g. [47–53]. The
values exhibited by both populations also contrast with those recorded in enamel from individuals
who had migrated to temperate locations from regions with a cold climate, such as the migrant
individuals of Early Medieval date excavated in Dorset, England or Dublin, Ireland (figure 2) [48–51].

The δ18O values exhibited by both the individuals who date to the fourth millennium BC and those
dated to the fifth to seventh century AD are comparable to those recorded in other archaeological
populations buried in north-western Europe during the Holocene. Their δ18Ophosphate values are
consistent with the previously reported mean value of 17.7 ± 1.4‰ (2σ, n = 615) for Holocene human
archaeological populations buried in Britain [59].

The δ18O values in enamel of the individuals of fourth millennium BC date are also comparable to
those previously recorded among populations excavated in southern England who date to this period
and who also have 87Sr/86Sr values within the local bioavailable range for this region (figure 3). For
example, δ18Ophosphate values of second and third molar teeth from the fourth millennium BC
population buried at Hazleton North, Gloucestershire, England range between 17.6 and 18.9‰ (mean
18.2 ± 0.4‰, 1σ, n = 20) [84], while in the population buried at Hambledon Hill, Dorset, England,
δ18Ophosphate values range between 18.0 and 19.5‰ (mean 18.5 ± 0.4‰, 1σ, n = 23) [87].

Tooth enamel from populations dated to the fifth to seventh century AD in Kent have also previously
recorded δ18Ophosphate values close to 18.0‰. Enamel from post-infant dentition (permanent premolars or
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second and thirdmolars) from burials excavated fromRinglemere, Kent, has given values between 17.6 and
18.8‰ with a mean of 18.3‰ (n = 7) [60]. Similar δ18Ophosphate values have also been recorded in burial
populations of fifth to seventh century AD date with comparable 87Sr/86Sr values in other areas of
southern Britain. Examples include Eastbourne, Sussex [94], and Berinsfield, Oxfordshire [95]. However,
comparable values close to 18.0‰ are also recorded in populations buried on the immediately adjacent
European mainland. Values from Sannerville and Giberville, near Caen in northern France, for example,
range between 17.4 and 18.2‰, with a mean of 17.9‰ (n = 11) [60]. The strontium isotope ratios in
enamel from these populations in northern France are also comparable to those recorded in the present
study (ibid.).

Evans et al. [59] suggest that populations local to the eastern side of Britain, where rainfall levels are
lower, may have lower δ18Ophosphate (17.2 ± 1.3‰, 2σ, n = 83) than those in western Britain (18.2 ± 1.0‰,
2σ, n = 40) where there is higher rainfall. However, as discussed above, it has been shown that practices
such as boiling water, brewing and stewing food alter the isotope composition of ingested fluids [44].
While δ18O analysis has been shown to be of broader utility for distinguishing between regions of
cold and temperate climate, the effect of culturally mediated behaviour may as such preclude its use
for distinguishing between adjacent geographical areas within a temperate region [60]. Hence,
although the δ18Ophosphate values of the individuals who date to the fifth to seventh century AD (18.2–
18.8‰, mean 18.5 ± 0.2‰, 1σ, n = 4) slightly exceed the range predicted by Evans et al. [59] for
eastern Britain, this could be a consequence of culturally mediated behaviour that altered the isotope
composition of ingested fluids, rather than an indication that the group was not local in origin to
eastern Britain.

Both the individuals who date to the forty-first to thirty-eighth centuries BC and those who date to
the fifth to seventh centuries AD have δ13Ccollagen and δ15N values that are consistent with a C3 terrestrial
diet. In northwestern Europe values that are representative of a C3 terrestrial diet range between 7 to 12‰
for δ15N and −23 to −19‰ for δ13Ccollagen e.g. [96,97]. The individuals who date to the fifth to seventh
centuries AD fall within this range (figure 6), with δ15N values between 9.8 and 10.9‰ (mean 10.6 ±
0.5‰, 1σ, n = 4). Their δ13Ccollagen values range between −20.8 and −19.8‰ (mean −20.2 ± 0.5‰, 1σ,
n = 4). The individuals who date to the forty-first to thirty-eighth centuries BC also have δ15N and
δ13Ccollagen values that fall within this range (figure 7), with δ15N between 8.4 and 9.1‰, (mean 8.7 ±
0.3‰, 1σ, n = 5) and δ13Ccollagen values between 21.8 and −20.4‰ (mean −21.2 ± 0.5‰, 1σ, n = 5).
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The dietary isotope results, therefore, exclude a significant contribution to diet from marine or C4

resources for both these groups. Both groups also have δ13Ccarbonate values that have been shown to
be typical of a C3 terrestrial diet, ranging between approximately −17.0 to −14.0‰ [73,74].

With the exception of Maidstone Museum specimen 6 (see above), dietary isotope analysis was
conducted on bulk dentine from first molar tooth roots. The δ13Ccollagen and δ15N results, therefore,
represent the average of values that were incorporated during formation of the tooth roots. Formation of
the roots of these teeth begins at approximately 3.5 ± 0.5 years and completes by approximately 7.5 ± 0.5
years of age [27]. As analysis was conducted on tooth root, rather than M1 crown dentine which begins
to form earlier than this, the measured values are unlikely to have been affected by breastfeeding. Bone
collagen from femora and fragments of cranial vault from adult individuals dated to the early fourth
millennium BC attributed to Coldrum have previously been shown to have δ13Ccollagen and δ15N values
consistent with a terrestrial C3 diet (mean δ13Ccollagen −20.7 ± 0.3‰ n = 10; δ15N 10.1 ± 0.7‰, 1σ, n = 10)
[14]. The δ13Ccollagen and δ15N values recorded in the forty-first to thirty-eighth centuries BC population
sampled by the present study are typical of the range of dietary isotope values found in fourth
millennium BC populations buried in Britain (figure 7). This is consistent with the zooarchaeological
evidence from this period which indicates a diet dominated by consumption of domesticated terrestrial
resources and a shift away from the routine exploitation of marine resources [104,105,121–123].

As noted above, the only individual in this study where bone, rather than M1 tooth dentine was used
for dietary isotope analysis was Maidstone Museum specimen 6. This is also the only individual sampled
by this study who dates to the late fourth millennium BC, to 3369–3106 cal BC (table 1). Although the
individual has a δ13Ccollagen value of −21.2‰ and δ13Ccarbonate value of −17.0‰, typical of values
within the C3 terrestrial range for northwestern Europe, the individual has an elevated δ15N value of
12.3‰. This individual was aged approximately 18 months of age at death, and the effect of
breastfeeding may therefore explain this high δ15N value, due to the shift in trophic level that this
induces [124,125]. However, as noted by Wysocki et al. [14], δ15N values of adult individuals in the
Coldrum collection who are attributed to the same secondary phase of use during the mid to late
fourth millennium BC are also high, ranging between 9.6 and 11.3‰ with a mean 10.6 ± 0.7‰, (1σ,
n = 15), when compared to the mean of 9.60 ± 0.84 (1σ, n = 306) for fourth millennium BC populations
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buried across England and Wales (based on current data sources as cited in figure 7). δ13Ccollagen values
of individuals in the Coldrum collection (mean −20.9 ± 0.3‰, 1σ, n = 15) exclude the exploitation of
marine resources as a reason for this. Wysocki et al. [14] suggest several possible explanations for the
elevated δ15N values within the mid to late fourth millennium BC adult population from Coldrum,
including consumption of manured cereal crops e.g. [126–129]; exploitation of freshwater fish e.g.
[122,130], higher animal protein intake, or a greater emphasis on consumption of omnivorous species
such as pigs rather than herbivores. As the site of Coldrum is located close to the Medway estuary,
the exploitation of coastal marshes for animal pasture could also be a potential source for elevated
δ15N values, e.g. [131,132]. In the absence of any contemporary faunal samples from the site or its
environs, however, it is not possible to distinguish between alternative explanations for the elevated
adult δ15N values for this period.
l/rsos
R.Soc.Open

Sci.10:220798
5. Conclusion
The Coldrum collection contains some of the earliest dated human remains associated with a Neolithic
monument in Britain. It has therefore played a highly significant role in ongoing debate about the nature
and timing of the transition to farming in Britain, e.g. [3–8]. However, this study has demonstrated that,
while the collection contains human remains that date to the forty-first to thirty-eighth centuries BC, it
also contains remains that date to the fifth to seventh centuries AD. The burial monument at Coldrum is
of a type that is associated with of the earlier fourth millennium BC. Anglo-Saxon material culture is
known from the site. There are documented examples of reuse of prehistoric monuments for burial
during the Anglo-Saxon period, but the collection also has a complex curatorial history having been
moved between multiple institutions in the century following its excavation. The possibility that the
osteological collection from the Coldrum excavations was admixed with those from other sites prior to
being transferred to the University of Cambridge following the Second World War should be considered.

The results of isotope analyses of enamel and dentine collagen assist in constraining the geographical
origin of the individuals, by providing direct information as to where they obtained their childhood diet
and their dietary composition. 87Sr/86Sr analysis rules out areas of radiogenic terrain (>0.711) as a source
for the values that both the individuals of fifth to seventh centuries AD and those dated to the fourth
millennium BC exhibit. In Europe, examples of areas that routinely record bioavailable values higher
than 0.711 include the southwestern peninsula of England; Wales; Scotland; the Armorican Massif and
Massif Central in France; Norway and Sweden (figure 4.) e.g. [23,24,80–82]. The 87Sr/86Sr values
exhibited by both the individuals of the fifth to seventh centuries AD date and those of the fourth
millennium BC are comparable to the local biosphere range (i.e. within 2 km) around Coldrum [24].
However, other areas within central southern Britain and northeastern France, the Netherlands and
Belgium also have bioavailable values within the same range, e.g. [23,81,93]. δ18O values recorded in
enamel from both the individuals of fifth to seventh centuries AD date and those of fourth
millennium BC date are routinely found in human populations buried in temperate northwestern
Europe during the Holocene (figures 2 and 3). Both groups also have δ13Ccollagen and δ15N values that
are consistent with consumption of a C3 terrestrial diet in northwestern Europe (figures 6 and 7).
Values also exclude any significant consumption of either marine or C4 plant resources.

It is not possible to visually distinguish between remains in the Coldrum collection that are of fifth to
seventh centuries AD date and those of fourth millennium BC date. The results of this study demonstrate
how multi-isotope analysis can provide direct and independent information about the provenance of
remains in museum collections, while also providing new information about diet and mobility in the
past. A substantial number of archaeological sites in Britain were excavated prior to the early
twentieth century. These form the basis of major archaeological collections, such as those held in the
Duckworth Collection at the University of Cambridge and that of the Natural History Museum in
London. This study demonstrates how the application of biomolecular techniques can assist the study
of antiquarian collections such as these. Expansion in the use of these techniques will further the
study of collections that were excavated over a century ago, yielding significant new information
about remains whose excavation context is poorly documented, e.g. [98,133,134]. Further advances in
the field of biomolecular analysis, for example expansion in use of sulfur isotopes for geographical
provenancing and evaluation of dietary composition, are also likely to assist future study of such
collections, e.g. [135]

Ethics. Permission was provided by the University of Cambridge, Duckworth Laboratory and Maidstone Museum to
conduct the analysis.
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