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Cosmic Inflation and Genetic Algorithms

Steve A. Abel, Andrei Constantin,* Thomas R. Harvey, and Andre Lukas

Large classes of standard single-field slow-roll inflationary models consistent
with the required number of e-folds, the current bounds on the spectral index
of scalar perturbations, the tensor-to-scalar ratio, and the scale of inflation can
be efficiently constructed using genetic algorithms. The setup is modular and
can be easily adapted to include further phenomenological constraints. A
semi-comprehensive search for sextic polynomial potentials results in
∼ (300, 000) viable models for inflation. The analysis of this dataset reveals
a preference for models with a tensor-to-scalar ratio in the range
0.0001 ≤ r ≤ 0.0004. We also consider potentials that involve cosine and
exponential terms. In the last part we explore more complex methods of
search relying on reinforcement learning and genetic programming. While
reinforcement learning proves more difficult to use in this context, the genetic
programming approach has the potential to uncover a multitude of viable
inflationary models with new functional forms.

1. Introduction

The idea of cosmic inflation, a period of exponential growth for
the scale factor of the Universe believed to have taken place be-
tween 10−36 and 10−32 seconds after the Big Bang singularity,
was originally introduced to explain the initial conditions for the
hot Big Bang model, which would otherwise lead to a number
of conundrums such as the horizon problem, the flatness prob-
lem and the monopole (and other relics) problem.[1–5]. Moreover,
the theory provides a plausible account for the origin of struc-
ture in theUniverse and explains the observed cosmicmicrowave
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background anisotropies by providing a
mechanism for the generation of density
perturbations.[6–10]

The inflationary epoch is typically
modelled as a quasi-exponential expan-
sion of the very early universe caused by
the slow-roll of a scalar field 𝜙, called the
inflaton, in its evolution towards themin-
imum of a nearly flat potential V(𝜙). In
this slow-roll regime, all the derivatives
of the scalar field are negligible in com-
parison with the potential V(𝜙), inter-
preted as an approximately constant vac-
uum energy. The effective energy density
and pressure of a homogeneous scalar
field 𝜙(t) are

𝜌𝜙 = 1
2
�̇�2 + V(𝜙),

p𝜙 = 1
2
�̇�2 − V(𝜙), (1.1)

hence in the slow-roll regime p𝜙 ≈ −𝜌𝜙, approximating the equa-
tion of state associated with a cosmological constant term. The
expression for V(𝜙) should in principle be derived from a fun-
damental theory such as string theory, however this task entails
myriad subtleties and difficulties. This paper will take a phe-
nomenological approach therefore, and consider certain, suitably
parametrised classes of functions V(𝜙).
The concrete properties of the inflaton potential that yield a

viable phenomenology are that it must vanish at its global min-
imum and should have a nearly flat region near the minimum
to induce the standard slow-roll dynamics. Within this region,
the starting point for inflation must be sufficiently far from the
global minimum to generate a large enough expansion in order
to solve the cosmological problems of the Big Bang model. The
minimum required amount of inflation is about 70 e-folds, which
corresponds to an expansion by a factor of 1030. All estimates of
the minimal number of e-folds suffer from uncertainties of up to
10 e-folds, depending on the details of reheating.
More stringent constraints on the inflationary potential come

from measurements of the CMB anisotropies which give infor-
mation about the primordial density perturbations and gravita-
tional waves. The results included in the 2018 Planck cosmolog-
ical release[11] are compatible with a simple power law spectrum
for the scalar perturbations with an exponent ns − 1 and a mea-
sured value of the spectral index ns = 0.9649 ± 0.0042 at the pivot
scale k∗ = 0.05Mpc−1. The collaboration has also set tight con-
straints on the amount of inflationary gravitational waves with an
upper limit on the tensor-to-scalar ratio r < 0.061. The bound on
r can be rephrased as an upper bound on the energy scale of in-
flation V∗ when the pivot scale exited the Hubble radius given by
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V∗ < (1.6 ⋅ 1016GeV)4.[11] However, the energy scale of inflation is
fixed by the normalisation of the present-day power spectrum of
density perturbations (V∗∕𝜖∗)1∕4 = 6.7 ⋅ 1016GeV with a theoreti-
cal uncertainty of about 10%,[12] where 𝜖 is one of the slow-roll
parameters. In general, inflationary models predict a wide range
of values for the number of e-folds, ns, r and the energy scale of
inflation, and many of them can be ruled out on this basis.
Finding inflationary potentials, possibly falling within some

class that is motivated by an underlying theory, that satisfy all
these conditions is a nontrivial task. For example, it involves
performing an integral to determine the number of e-folds. Such
a task is not amenable to direct optimisation techniques such
as gradient descent, simulated annealing, or more direct forms
of machine learning. It is not a simple regression problem and
it is not, for example, easy to express the problem directly in a
single loss-function. Moreover finding good solutions is made
more difficult by the fact that functions may have “local optima”,
namely regions that satisfy some but not all the conditions for
inflationary potentials, which may be widely separated from
good solutions by large “barren” regions. The solving of such
convoluted systems is much more naturally expressed as the
optimisation of a “fitness” within some “environment”, which
is comprised of the set of operations that must be performed on
the proposed function in order to tell if it is a good solution or
not. This suggests using either reinforcement learning (RL) (for
a review see [13]) or genetic algorithms (GAs)[14–23] as a means of
finding solutions.
The purpose of this paper is to show that large classes of viable

inflationary potentials can indeed be constructed using GAs. Al-
though GAs have been used, somewhat sporadically, in the con-
text of particle physics and string theory,[24–36] to our knowledge,
they have not yet been used for the purpose of building cosmolog-
ical models. In this paper we will be focusing on this specific goal
of determining viable inflationary potentials.Wewill consider po-
tentials whose functional dependence includes polynomials, ex-
ponentials and trigonometric functions as building blocks.
Within each class of functions, parametrised by a set of coef-

ficients, we will search for those coefficient values that lead to
viable inflationary models. The numerical ranges for the coeffi-
cients are discretised, turning the search into a discrete optimisa-
tion problem that is amenable to heuristic methods such as GAs
or RL. GAs prove to be extremely efficient in identifying many
viable potentials, while we find that RL turns out to be less suc-
cessful. Thus GAs appear to provide a useful tool for inflationary
model building.
Although GAs are the main focus of this paper, it is natural

to ask whether more sophisticated forms of symbolic regression
could be employed for the same purpose. In the final section we
comment on the possible implementation of more elaborate al-
gorithms that incorporate the evolutionary version of symbolic
regression, namely genetic programming (GP). This could in
principle simultaneously optimise for the functional dependence
of the potential and its numerical coefficients. We present ar-
guments suggesting that GP should be effective for the task of
constructing simple inflationary potentials using a set of allowed
operands if it is implemented in conjunction with the GA using
speciation, that is the GPworks at the level of a population of func-
tions, while the GA is used to determine the coefficients in each
function by optimising its fitness.

2. Genetic Search Algorithm

2.1. Binary Encoding of Inflationary Potentials

In this study we will concentrate on three different classes of po-
tentials: (1) polynomial, (2) polynomial + cos(c𝜙), and (3) polyno-
mial + ec𝜙× polynomial, where all the polynomials are chosen to
have a fixed degree. Potentials of this type have been previously
studied in the literature in various theoretical contexts.
The polynomial coefficients, as well as the numerical factor c

in the argument of the exponential or the cosine represent the pa-
rameters of the model. In the study that we present in Section 3,
we will specify certain ranges of possible values for each parame-
ter and then discretise them. The set of all the discrete parameter
values forms our space of states {s}. The polynomial coefficients
must be allowed to vary over several orders of magnitude and,
accordingly, their discretisation will be spaced on a logarithmic
scale. In view of the genetic algorithm implementation to be dis-
cussed below, the number of partitions is always chosen to be a
power of 2 such that, for any given parameter, each discrete value
can be assigned a binary label. Finally, all the labels are concate-
nated together into one long binary string that encodes the infla-
tionary model. All the models belonging to the same functional
class are encoded on strings of equal lengths.

2.2. The Genetic Algorithm

The starting point of a GA is the creation of an initial random
population with a certain number, Npop, of individuals. This is
done by generating Npop binary strings of the appropriate length,
referred to as the genotype, each representing an inflationary po-
tential, referred to as the phenotype, in the class of functions un-
der consideration. This population is then evolved using the three
main ingredients specific to GAs: selection, breeding and muta-
tion. The optimal size of the population is correlated with the
length of the binary string and in our case Npop will be of order
of a few hundred individuals.
Selection proceeds by ranking the individuals according to

their fitness value. In our case the fitness value will be a measure
of how compatible a given model of inflation is with the current
cosmological observables. The detailed form of the fitness func-
tion is discussed below. Subsequently, individuals are selected for
breeding with a probability that depends linearly on their rank-
ing by fitness, such that the probability of the kth individual being
selected for breeding is

Pk =
2

(1 + 𝛼)Npop

(
1 +

Npop − k

Npop − 1
(𝛼 − 1)

)
. (2.1)

In particular, the probability P1 for the top individual is equal to a
multiple 𝛼 of the probability PNpop

of the least fit individual. Typ-
ically, 𝛼 is chosen in the range 2 ≤ 𝛼 ≤ 5. While the fittest indi-
viduals have a higher chance to produce offsprings in the next
generation, the scheme also allows less fit individuals to breed.
This ensures a variety of “genes” is available throughout the evo-
lution.
Breeding is implemented as an M-point cross-over by which

the two binary sequences are cut at the same M random points
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and the cut sections are swapped in an alternating fashion. In
our case a single point cross-over performs well enough and we
will consider this simple choice. Finally, once a new generation is
formed, a small fraction of the binary digits, selected randomly,
are flipped, to ensure that the population does not stagnate. A
typical value for the mutation rate is one percent.
The population is evolved for multiple generations, typically a

few hundred. If successful, the algorithm produces a final pop-
ulation where a large fraction of the individuals correspond to
viable solutions. The search is then restarted with a new random
population. As we will see, this form of genetic algorithms is ca-
pable of quickly identifying many high-quality solutions within
each evolutionary cycle, even though the fraction of viable solu-
tions is typically very small compared to the size of the state space.
This remarkable property of GAs leads to a significant reduction
of computing time, as compared to systematic scanning proce-
dures.
In the present context it is worth mentioning a possible but

inadvisable modification, because the reason for its failure is
instructive. It is tempting when dealing with a set of discre-
tised parameters to divide the genotype into sections (“chromo-
somes” perhaps) with one section corresponding to each parame-
ter. Then one could implement a cross-over by a one-point cross-
over between all the corresponding chromosomes of the two in-
dividuals. However, this is exactly the wrong thing to do in a GA:
when the parameters are arranged into one long string with only
a single cross over, during breeding individuals will be swapping
several parameters wholesale as well as mixing up the single
parameter that contains the cross-over. Such swapping of large
chunks of genotype is an important aspect of GAs. If one at-
tempts to split the genome into sections that represent param-
eters, one is in a sense allowing the phenotype to “constrict” the
genotype and this greatly diminishes the efficacy of the GA.

2.3. The Fitness Value for Inflationary Models

There are several ways in which a potential can fail to be a vi-
able model of inflation. By analysing these failures it is possible
to come up with a sensible definition for the fitness function re-
quired for the GA implementation. We will adopt the view that
the potential V(𝜙) is an effective field theory description for the
dynamics of 𝜙 and that its expression can only be trusted in a rel-
atively small range I𝜙 of inflaton values, which we choose to be
the interval I𝜙 = [−30, 30] in Planck units. (We will be working in
units where the reduced Planck mass 1∕

√
8𝜋GN has been set to

one.)
The potential must have a minimum within this range. More-

over, as the entire inflationary trajectory must fall within I𝜙, we
require that the position of the lowest minimum 𝜙m within I𝜙
(which from now on will be referred to as the “global” mini-
mum) falls inside a smaller interval I𝜙m

, which we choose as
I𝜙m

= [−5, 5]. When generating potentials, we do not require the
vacuum value at the global minimum to vanish but simply ad-
just the additive constant in V (which is not considered part of
the state space) such that V(𝜙m) = 0. If V has no minima inside
I𝜙m

, the fitness value of the model is set to a fixed negative value
(“no-vacuum penalty”).

Once the global minimum 𝜙m has been found, we identify the
closestmaxima to the right and to the left of𝜙m, since the inflaton
can in principle roll down from either side. The regions between
the global minimum and the nearest maxima are of interest for
inflation. If nomaximum is found within I𝜙 (to the right or to the
left), the region of interest is extended up to the corresponding
boundary of I𝜙. The fitness function is computed for both the left
and the right trajectories, and the trajectory with the larger fitness
is adopted as the relevant one for the given potential.
To discuss our algorithm further we need to introduce the no-

tion of the slow-roll approximation; which is characterised by the
smallness, 𝜖 ≪ 1 and 𝜂 ≪ 1, of the slow-roll parameters

𝜖 = 1
2

(
V ′

V

)2

, 𝜂 = V ′′

V
. (2.2)

In general, when the slow-roll conditions are satisfied inflation
occurs. We begin our algorithmic exploration of the potential
close to the global minimum 𝜙m where V is small and hence the
slow-roll conditions are violated. Moving away from the global
minimum in sufficiently small discrete steps Δ𝜙 we seek the
value of 𝜙 closest to 𝜙m where the slow-roll parameters drop be-
low a certain threshold, for concreteness taken to be

𝜖 ≤ 0.5 , 𝜂 ≤ 0.5 . (2.3)

The corresponding value 𝜙e provides the approximate field value
which marks the end of inflation.
To find the starting point of inflation, we continue to move

up the potential in steps Δ𝜙 and continue to check the slow-roll
conditions. At the same time, in order to avoid the production
of new inflationary domains which expand at faster rate (eternal
inflation), we require that the quantum fluctuations of 𝜙 during
a typical time interval H−1 are much smaller than the change in
the field due to its classical motion, that is

𝛿𝜙q ≈
√
V∕3
2𝜋

≪ 2𝜋 V ′

3V
= 𝛿𝜙c. (2.4)

In practice, we check that 𝛿𝜙q < 0.5 𝛿𝜙c. As long as the conditions
in Equations (2.3) and (2.4) are satisfied, the standard slow-roll
inflation approximations can be trusted. The field value 𝜙i where
inflation starts is then either the value closest to 𝜙e where any of
the conditions in Equations (2.3) and (2.4) fails to hold or, if the
conditions hold all the way to the boundary, the corresponding
end point of I𝜙.
Having obtained the values of the field corresponding to the

start and end of inflation, we proceed to the computation of the
cosmological observables. First, we compute the total number of
e-folds,

Ntotal = ∫
𝜙i

𝜙e

V
V ′ d𝜙. (2.5)

This number should be large enough to solve the standard cos-
mological problems of the Big Bang model. More importantly, it
should be larger than the number of e-folds separating the end of
inflation 𝜙e from the reference value 𝜙∗ when the cosmological
scales of interest (that is, the scales probed by the Planck satellite)
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leave the horizon. The useful formula to compute this number
of e-folds (assuming the reheating scale is not too far away from
∼ 1010GeV) is [37]

N∗ ≈ 58 + 1
6
lnV(𝜙e), (2.6)

which can be computed as soon as the field value 𝜙e at the end of
inflation is known. On the other hand,

N∗ = ∫
𝜙∗

𝜙e

V
V ′ d𝜙, (2.7)

from which the value of the field 𝜙∗ at the pivot scale can be ob-
tained.
For an acceptable model of inflation we require Ntotal ≥ N∗. In

order to penalise a model which violates this condition, the fit-
ness functions receives a contribution

fN(s) = − 1
10
(N∗ − Ntotal) 𝜃(N∗ − Ntotal) , (2.8)

where 𝜃(x) is the Heaviside function. Having obtained the value
of the field𝜙∗ at the pivot scale, we can compute the cosmological
observables

ns,∗ = 1 − 6𝜖∗ + 2𝜂∗, r∗ = 16𝜖∗. (2.9)

To enforce the correct spectral index, the fitness function in-
cludes the term

fns (s) = f̂ns (s)𝜃(fterm − f̂ns (s)), (2.10)

where

f̂ns (s) = − log10

(
1 +

|ns,∗ − ns|
Δns

)
, (2.11)

and themeasured value is ns ± Δns = 0.9649 ± 0.0042. Here, fterm
is a fixed value (see below) such that models with f̂ns (s) > fterm at-
tract a vanishing fitness contribution and are considered leading
to a viable spectral index.
If the tensor-to-scalar ratio r∗ is greater than the maximal val-

ued rmax = 0.061 consistent with the 2018 Planck release, the fit-
ness receives a further penalty of

fr(s) = − log10

(
r∗
rmax

)
𝜃(r∗ − rmax) . (2.12)

Finally, we compute m∗ = (V∗∕𝜖∗)1∕4 and to ensure that the
model matches the energy scale of inflationm ≃ 0.027 (in Planck
units) we add the term

fm(s) = f̂m(s)𝜃(fterm − f̂m(s)) (2.13)

where

f̂m(s) = − log10
(
1 +

|m∗ −m|
Δm

)
(2.14)

to the fitness function, where we have set Δm = 0.1m to account
for theoretical uncertainties.

The fitness of a state s is then given by the sum of the above
contributions, that is, f (s) = fN(s) + fns (s) + fr(s) + fm(s). We de-
clare a state s viable, or ‘terminal’, if f (s) = 0, where we choose
fterm = −0.3. This fitness function is linked to the GA Mathemat-
ica package Genetic which was developed by the authors and
which is available for download.[38] The results discussed in the
following section have been obtained within this set-up.

3. Results

3.1. Polynomial Potentials

One of the simplest classes of functions that can be considered
are polynomials. These can arise in inflationary models in their
own right or as truncated Taylor expansions around the global
minimum of more general perturbative potentials. For concrete-
ness, we restrict to polynomials of degree six,

V(𝜙) = c0 + c1𝜙 + c2𝜙
2 + c3𝜙

3 + c4𝜙
4 + c5𝜙

5 + c6𝜙
6. (3.1)

The constant term c0 is fixed by requiring that V(𝜙) vanishes at
the global minimum, as discussed in Section 2.3. The GA search
is then set up to identify optimal values for the remaining six
constants c1, c2,… , c6, which run over the following ranges:

coefficient range no. of partitions

c1 (−10−8, 10−8) 64

c2 (−10−9, 10−9) 64

c3 (−10−10, 10−10) 64

c4, c5, c6 (−10−11, 10−11) 64

(3.2)

Each of these intervals is discretised into 64 values, equally
spaced on a logarithmic scale, leading to a length 6 binary string
for each coefficient and a binary string of length 36 for each state.
Hence, the state space consists of a total of 236 ≃ 7 ⋅ 1010 models.
The GA is run for a population of Npop = 100 individuals, a mu-
tation rate of 1% and a coefficient 𝛼 = 3. A typical evolution over
50 generations leads to (10) different viable models. This is ex-
tremely efficient, given that only about 5000 models are visited
in the course of such an evolution and, by comparison, a typical
random selection of 5000 models would contain no viable poten-
tials at all. Figure 1 shows the evolution of the fraction of terminal
models in the course of a typical run, which takes about 200 s to
complete on a standard laptop.
To obtain a more comprehensive dataset of viable polynomial

potentials of degree six, we have performed 70,000 runs, each
starting from a random initial population. The total number of
visited states is ∼ 108, which amounts to ∼ 1% of the search
space. The search produced 309,097 different viable models. Fig-
ure 2 shows a plot of the number of distinct viablemodels (that is,
the number of viable models after eliminating repetitions from
previous runs) as a function of the number of visited states. The
curve indicates a progression towards saturation, suggesting that
a sizeable fraction of the viablemodels have been found, although
even for this simple model it was not possible to reach com-
plete saturation.
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Figure 1. Evolution of the fraction of viable models.

Figure 2. Number of distinct viable models found vs. the number of itera-
tions of GA. Each iteration consisting of 50 generations with a population
of 100.

We illustrate the discussion with two examples. The first ex-
ample corresponds to the potential

V(𝜙) = 3.57328 ⋅ 10−10 − 1.77313 ⋅ 10−10𝜙

+ 1.77313 ⋅ 10−11 𝜙2 − 1.13662 ⋅ 10−12 𝜙3

+ 1.45 ⋅ 10−16 𝜙4 + 1.95409 ⋅ 10−15 𝜙5

− 1.0 ⋅ 10−16 𝜙6,

(3.3)

which is shown in Figure 3. For the chosen example, the in-
flation region is shown in red in Figure 3, starting at a value
𝜙i ≃ 14.8 and ending at𝜙e ≃ 0. Themodel generates a total num-
ber N = 2900 of e-folds. The minimum of the potential is at
𝜙m ≃ −3.7. The value of the field at the pivot scale is𝜙∗ ≃ 9.4with
the corresponding number of e-folds N∗ ≃ 53.4 until the end of
inflation. The scale of inflation, the spectral index and the tensor-
to-scalar ratio are given by m = (V∗∕𝜖∗)1∕4 ≃ 0.029, ns,∗ ≃ 0.9620
and r∗ ≃ 0.063, respectively. With the total field excursion approx-
imately equal to |𝜙∗ − 𝜙e| ≃ 10 in Planck units, this is an example
of large field inflation.
This particular model appears with an effective seven-fold

degeneracy without our search, corresponding to a cluster of
“nearby” models which only differ by tiny changes in the pa-
rameters. In principle the search can be refined to remove such
effective degeneracies in parameter space. In terms of the GA

Figure 3. The polynomial potential of degree 6 from Equation (3.3): large
field inflation.

Figure 4. The polynomial potential of degree 6 from Equation (3.4): small
field inflation.

a modification to remove such degeneracy could also be imple-
mented directly using a crowding penalty (where the crowding in
question is in the phenotype). Unfortunately such a modification
would be very costly in search time: for each new solution one
would have to compute its distance to all of the (105) previous
solutions. Therefore we present the raw counts, with the under-
standing that the number of non-degenerate solutions may be an
order of magnitude fewer than the raw number. In addition we
do not divide out for solutions that are related by a displacement
in 𝜙. A potentially much more efficient method for separating
the results into independent solutions would be post-processing,
first by separating them into bins with different numbers of e-
folds and r∗, and then using a clustering algorithm on the bins
individually. We will not attempt this in the present study.
The second example we will present is the potential

V(𝜙) = 2.32562 ⋅ 10−11 + 1.44128 ⋅ 10−13𝜙

− 1.33159 ⋅ 10−13 𝜙2 + 5.47169 ⋅ 10−15 𝜙3

− 2.44753 ⋅ 10−13 𝜙4 + 8.63806 ⋅ 10−15 𝜙5

+ 1.25252 ⋅ 10−14 𝜙6 , (3.4)

which has a global minimum at 𝜙m ≃ −4.0. The inflation region
(shown in red inFigure 4) starts at𝜙i ≃ 0.5 and ends at𝜙e ≃ −2.2,

Fortschr. Phys. 2023, 71, 2200161 2200161 (5 of 11) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 5. Minimum field excursions during inflation, normalised as a
probability distribution (i.e. the sum of all the bars in the histogram is
unity).

Figure 6. Histogram for the spectral index ns.

hence this is an example of small field inflation. The total number
of e-folds allowed by this model is N ≃ 330 and the pivot scale
is 𝜙∗ ≃ −0.2, corresponding to N∗ ≃ 53.9 e-folds until the end of
inflation. The scale of inflation, the spectral index and the tensor-
to-scalar ratio are m = (V∗∕𝜖∗)1∕4 ≃ 0.028, ns,∗ ≃ 0.9661 and r∗ ≃
0.001, respectively.

3.2. Statistics on the Class of Polynomial Potentials

The large number of viable inflationary potentials found during
the GA search (∼ 0.3 ⋅ 106) allows us to generate some meaning-
ful statistics. We can first look at the field range during which
the universe expands by N∗ e-folds before the end of inflation.
The histogram for the minimum field excursion |𝜙∗ − 𝜙m| dur-
ing inflation1 is displayed in Figure 5 and shows two peaks, one
corresponding to small field inflation (an ∼ (1) field excursion
in Planck units) and another one corresponding to large field in-
flation (an ∼ (10) field excursion). It is interesting to note that
a very small fraction of the models exhibit mid-range field excur-
sions or excursions larger than 15 Planck units. The distribution
for the spectral index ns, shown in Figure 6, is approximately uni-
form, indicating no particular preference shown by ns within the
allowed range. On the other hand, the distribution for the tensor-
to-scalar ratio r∗, shown in Figure 7, indicates a strong preference

1 Of course, inflation can continue for larger field excursions. However,
this is the minimum range required to satisfy all constraints.

Figure 7. Histogram for the tensor-to-scalar ratio r∗.

Figure 8. Zoomed-in tensor-to-scalar ratio prediction, r∗.

towards models with a small value r∗ < 0.002. Zooming in on
the r-histogram (see Figure 8), we note that the most favoured
value of r∗ lies in the range 0.0001 ≤ r∗ ≤ 0.0004, which can be
regarded as a prediction for the value of the tensor-to-scalar ra-
tio and a hint for why primordial gravitational waves have not yet
been detected.

3.3. Polynomial + Cosine

Potentials involving a cosine function appear in what is known as
‘natural inflation’ in which the inflaton field is a pseudo-Nambu
Goldstone boson appearing after the breaking of a shift symme-
try (see for example Ref. [39] for a review of the main types of
inflation proposed over the years and their theoretical justifica-
tion). Here we use a generalisation of this type of potential which
is of the form

V(𝜙) = c0 + c1𝜙 + c2𝜙
2 + c3𝜙

3 + c4𝜙
4 + c5 cos(c6𝜙). (3.5)

As in the previous case, the constant term c0 is fixed by requiring
that V(𝜙) vanishes at the global minimum. The ranges of search

Fortschr. Phys. 2023, 71, 2200161 2200161 (6 of 11) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 9. The polynomial + cosine potential from Equation (3.7): large
field inflation.

for the remaining six parameters c1, c2… , c6 are chosen as fol-
lows:

coefficient range no. of partitions

c1 (−10−8, 10−8) 64

c2 (−10−9, 10−9) 64

c3 (−10−10, 10−10) 64

c4, c5 (−10−11, 10−11) 64

c6 (0, 5) 64

(3.6)

The intervals for c1, c2, c3, c4 and c5 are again divided into 64 val-
ues, equally spaced logarithmically. For c6, which enters the ar-
gument of the cosine, the interval is divided in 64 values, equally
spaced. As before, an inflaton potential is, therefore, described
by a binary list of length 36 and the state space consists of 236 ≃
7 ⋅ 1010 models. With the same GA settings as above, the com-
putational time for a single run is comparable to that of the sex-
tic polynomial case. A typical run results in (10) different vi-
able models.
A typical example in this class is shown in Figure 9 and corre-

sponds to the potential

V(𝜙) = 2.80939 ⋅ 10−11 + 5.92241 ⋅ 10−14𝜙 (3.7)

+ 1.13662 ⋅ 10−11𝜙2 − 3.79642 ⋅ 10−16𝜙3

− 4.10847 ⋅ 10−15𝜙4 + 1.3662 ⋅ 10−10 cos(1.05𝜙) ,

which has a global minimum at 𝜙m ≃ −2.5, a pivot at 𝜙∗ ≃ −13.2
and the end of slow roll at 𝜙e ≃ −5.2. Hence this is an example of
large field inflation. The total number of e-folds allowed, in the
range we consider, by this model is N ≃ 265. At the pivot scale
the corresponding number of e-folds N∗ ≃ 54.4, with the scale of
inflation, the spectral index and the tensor-to scalar ratio given
by m = (V∗∕𝜖∗)1∕4 ≃ 0.028, ns,∗ ≃ 0.9611 and r∗ ≃ 0.048, respec-
tively.

3.4. Polynomial + Exp × Polynomial

Finally we consider inflationary potentials motivated by Käh-
ler moduli inflation in string theory. The functional form

considered is

V(𝜙) = c0 + c1𝜙 + c2𝜙
2 + c3𝜙

3 + c4𝜙
4 (3.8)

+ (c6 + c7𝜙 + c8𝜙
2 + c9𝜙

3 + c10𝜙
4) ec5𝜙.

As before, the constant term c0 is fixed by requiring that V(𝜙)
vanishes at the global minimum. The search ranges for the re-
maining ten parameters is chosen as follows:

coefficient range no. of partitions

c1, c7 (−10−8, 10−8) 64

c2, c8 (−10−9, 10−9) 64

c3, c9 (−10−10, 10−10) 64

c4, c6, c10 (−10−11, 10−11) 64

c5 (−12.4, 12.4) 64

(3.9)

For all the coefficients except c5 the intervals are divided into
64 values, equally spaced logarithmically, while 64 equally spaced
values are used for c5. Hence, each state is described by a bi-
nary string of length 60 and the total size of the state space is
260 ≃ 1018. This increase in the size of the search space, com-
pared to the previous cases, does not pose a problem for the GA.
With the same GA settings as before, Npop = 100 individuals, a
mutation rate of 1% and a coefficient 𝛼 = 3, a typical evolution
over 50 generations leads to (1000) different viable models and
completes within a few minutes on a standard laptop. Compared
to the pure sextic polynomial case, viable potentials are easier to
find in this setting. A modest number of 1000 runs leads to over
a million distinct viable potentials.
We present two viable models from this class. The first corre-

sponds to small field inflation and is given by the potential

V(𝜙) = 5.26402 ⋅ 10−11 + 1.56 ⋅ 10−14𝜙

+ 10−15𝜙2 + 3.79642 ⋅ 10−16𝜙3

− 2.1025 ⋅ 10−16𝜙4

+ e1.2𝜙
(
− 6.9349 ⋅ 10−12

− 1.33159 ⋅ 10−13𝜙2

+ 10−16𝜙3 + 1.68795 ⋅ 10−13𝜙4
)
. (3.10)

The potential is shown in Figure 10. The global minimum at
𝜙m ≃ 2.1 is crucially determined by the exponential term. Slow
roll starts at a value 𝜙i ≃ −3.8 and ends at 𝜙e ≃ 0.5. The value
of the field at the pivot scale is 𝜙∗ ≃ −2.1, corresponding to
N∗ ≃ 53.9 e-folds until the end of inflation. Hence, this can be
considered a small-field inflationarymodel. Themaximumnum-
ber of e-folds allowed in this model is N ≃ 1860. The scale of in-
flation, the spectral index and the tensor-to-scalar ratio are m =
(V∗∕𝜖∗)1∕4 ≃ 0.025, ns,∗ ≃ 0.9645 and r∗ ≃ 0.002, respectively.
A model of large field inflation from this class is given by the

potential

V(𝜙) = 4.25907 ⋅ 10−10 − 1.33159 ⋅ 10−12𝜙

Fortschr. Phys. 2023, 71, 2200161 2200161 (7 of 11) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 10. The quartic + exp × quartic potential from Equation (3.10):
small field inflation.

Figure 11. The quartic + exp × quartic potential from Equation (3.11):
large field inflation.

+ 1.77313 ⋅ 10−11𝜙2 − 7.28605 ⋅ 10−13𝜙3

+ e−1.2𝜙
(
1.1641 ⋅ 10−13 − 1.05012 ⋅ 10−9𝜙

+ 2.76609 ⋅ 10−11𝜙2 + 4.67054 ⋅ 10−13𝜙3

− 3.04863 ⋅ 10−16𝜙4
)
. (3.11)

The relevant parameters in this model are: 𝜙m ≃ 0.8, 𝜙∗ ≃
11.0, N∗ ≃ 54.4, m = (V∗∕𝜖∗)1∕4 ≃ 0.025, ns ≃ 0.9613, r ≃ 0.058.
The model allows for a maximum number of 743 e-folds (Fig-
ure 11).

4. Other Search Methods

4.1. Reinforcement Learning

It is possible to interpret the space {s} of inflationary models as
an environment for the purpose of reinforcement learning. To
this end we consider actions a : s → s′, which map a state s to a
new state s′ by changing the value of one of the coefficients in s to
the next smaller or larger one while leaving all other coefficients

unchanged. The rewardR(s, a) of such an action can, for example,
be defined as

R(s, a) =

{
f (s′) − f (s) for f (s′) − f (s) ≥ 0

Roffset for f (s′) − f (s) < 0
, (4.1)

where f is the fitness function for states defined previously and
Roffset is a fixed (negative) value which penalises a decrease in fit-
ness. This environment can then be coupled to one of the stan-
dard policy-based RL algorithms, such as REINFORCE or actor-
critic (for a review see Refs. [13, 40]).
Unfortunately, we find it difficult to train a neural network for

such an inflationary environment, using either algorithm. After
careful adjustment of the fitness function we have managed to
train successfully for a two-dimensional toy environment, con-
sisting of potentials with just a quadratic and quartic term. We
have not been able to achieve a successful training on any of the
larger environments which were so efficiently handled by GAs.
Intuitively, we attribute this failure to the “choppiness” of the fit-
ness function which can arise, for example, due to new global
minima developing elsewhere in the potential, even for small pa-
rameter changes. Such discontinuities, clearly easily handled by
GAs, can lead to unintended incentives for RL. The successful
run for the two-dimensional toy environment suggests it is still
conceivable that RL could be made to work on larger inflationary
environments (see also the approach of Ref. [41] where gradient
ascent in the number of e-folds was used to optimise the coeffi-
cients). This would probably require careful adjustment of the fit-
ness function and systematic hyper-parameter optimisation but,
given the efficiency of GAs, we have not attempted this.

4.2. Genetic Programming

So far we have considered potentials of certain fixed functional
forms, focusing on the optimisation of the numerical constants
that can generate an inflationary potential. However in practice
one may not know the functional form of the potential, but only
the kinds of terms that can enter, for example polynomials for per-
turbative contributions, trigonometric functions for axionic po-
tentials, exponentials for nonperturbative processes and so forth.
The way in which these components appear may vary depending
on the physical set-up. Thus it is interesting to consider a more
generic approach that can simultaneously optimise for both the
functional form and the numerical factors.
For this purpose the paradigm of genetic programming (GP)

is themost promising setting. GP operates with trees of symbolic
expressions and numerical factors. For example the tree form of
the simple cosine potential V(𝜙) = 2 + cos(𝜙∕3) is shown in Fig-
ure 12, and the tree for the inflationary cosine potential in Equa-
tion 3.7 is shown in Figure 13.
GP is an evolutionary algorithm that operates on populations

of such trees and it shares with GAs the essential features of se-
lection, crossover and mutation.[42–45] It has been used success-
fully for many different tasks including for example symbolic
regression (for a recent review that includes benchmark prob-
lems see Ref. [46]). Ideally one would operate to produce a suc-
cessful tree such as that in Figure 13 as follows. Exactly as in a
GA one first generates a random population, but in this case a

Fortschr. Phys. 2023, 71, 2200161 2200161 (8 of 11) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 12. Tree form of the potential V(𝜙) = 2 + cos(𝜙∕3).

population of trees, with the vertices being selected from a set
of allowed operands, for example {Times, Plus, Power, Cos},
and the leaves being either constants or the variable 𝜙. Every tree
can be ranked and selected for breeding as described already for
the GA. However the process for breeding follows various well
defined rules, with for example crossover implemented as a swap
of subtrees (see Ref. [45] for a review). These can take manymore
forms than a simple one-point exchange of subtrees (so-called ho-
mologous cross-over), with subtrees possibly being moved to en-
tirely different positions in the tree. After breeding, there is tradi-
tionally also a mutation stage. The effect of mutation is less clear
cut in GPs and indeed it was even omitted from Koza’s original
work,[43] however typically it is implemented and again can take
many different forms. For instance, mutation can affect individ-
ual leaves or entire subtrees (that is, a subtree could be replaced
by a random subtree of comparable complexity). With these rules
in place, the evolutionary process then adheres to the same flow-
chart as for the GA.
Considering the case at hand, our experience with GAs indi-

cates that it is crucial first to be clear about the question one
would be trying to ask in this expanded framework. In particular
if the form of the functions is incorporated into the search then
the search space becomes virtually infinite. As we have seen, a
suitable choice of coefficients can, for different functional forms,
already yield an inflationary potential, so without specifying very
carefully within theGPwhat we actually wish to achieve, the form
of most potentials will be very inelegant. One can see the poten-
tial problems that can arise if we consider the more controlled
example of the regression of a set of data that one already knows
the answer to: for example the symbolic regression of data pro-
duced by our toy function V(𝜙) = 2 + cos(𝜙∕3) (more precisely
a set of fake data produced from say 100 random choices of 𝜙).
We can ask the GP to fit this data, by for example defining the
fitness function to be a monotonically decreasing function of the
quadratic loss-function. However if we allow coefficients to be de-
fined as we have been doing with 64 logarithmically spaced pos-
sible increments, then we quickly find that the algorithm runs
into a severe version of the “bloating” phenomenon, in which ex-
pressions grow to progressively larger complexities.

This suggests that when it comes to finding inflationary po-
tentials, the precise question we should be asking is, given a par-
ticular set of operators that we know can be motivated by under-
lying physics, for example the aforementioned { Times, Plus,

Power, Cos } operands, what is the simplest form of potential
that can produce inflation?
In principle imposing simplicity on our expressions can re-

duce bloat. One can for example insert a fitness penalty that in-
creases with the tree-depth. This is typically done in symbolic re-
gression in order to avoid the GP equivalent of over-fitting. In
the case of inflationary model building this trade-off would ide-
ally render potentials of relatively low complexity, in line with the
general preference towards finding simple underlying theoretical
justifications, which can in addition correctly recover the allowed
values for the cosmological observables.
Unfortunately the results for fitting the toy potential from its

data are not encouraging. It is not possible to reduce bloat by sim-
ply adding a complexity penalty if onewishes to allow almost free-
floating constants to exist within the GP. This is a well known is-
sue when there are several constants to be determined, due to the
functional form of the GP converging faster than the constants
(see for example Ref [47] for a related discussion). In the case of
symbolic regression it is possible to circumvent this problem if
the constants can instead be optimised independently by for ex-
ample nonlinear regression. In the present example, one would
in practice allow the numerical coefficients to be undefined pa-
rameters in the tree, with the corresponding leaves filled with
‘placeholders’. In order to work out the fitness of any particular
tree in the population, one would then determine the set of coeffi-
cients that separately maximises the fitness function in a similar
fashion to that described in Refs. [48–50]. Indeed we find that this
method works well in our toy symbolic regression problem.
The present problem is, as we have stressed,more general than

a symbolic regression, however the examples above suggest ways
forwards. Implementing GPs to find optimal functions should
be organised in a nested fashion, similar to a technique that has
been called speciation in the literature,[51–53] and a related tech-
nique called niching. The idea of speciation as it would be ap-
plied to the inflationary potential problem is as follows. The evo-
lutionary algorithm is arranged in two stages. The first is the GP,
organised as described above, with any constants in the tree rep-
resented by the aforementioned placeholders. Then, in order to
calculate the fitness of all the trees in a generation, one has to
run a GA on each individual function in the population (which
effectively defines a sub-population within a niche) to optimise
its fitness, following the procedure described in the main body
of this paper. This simultaneously determines the values of all
the constants for each function.
The above procedure is guaranteed to work (modulo the need

to implement good ranges for the constants), because we know
each half of the procedure works separately, so in that sense it
constitutes a “no-lose theorem”. However it could clearly end up
being computationally expensive. If the GP part of the problem
requires a population of NGP niches, then one might expect to
incur a cost of a factor of at least NGP compared to the GA. One
could possibly reduce the penalty if the GP is still “niched”, but
with each niche containing fewer members than the individual
GA, the rationale being that niching merely needs to speed up
the convergence of constants enough to overcome the tendency

Fortschr. Phys. 2023, 71, 2200161 2200161 (9 of 11) © 2022 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH
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Figure 13. Tree form of the potential in Equation (3.7).

to bloat. We shall return to these more ambitious approaches in
a future publication.

5. Conclusions

This note has expanded the range of computational tools avail-
able in inflationarymodel building to include genetic algorithms.
We have shown that GAs can be efficiently used to identify mod-
els of inflation that are consistent with the required number of
e-folds, the current bounds on the spectral index of scalar per-
turbations, the tensor-to-scalar ratio, and the scale of inflation.
Using moderate computational resources we have been able to
construct millions of viable models, however many more can be
obtained in this way.
In particular, we have focused on three functional classes of

potentials: (1) sextic polynomials, (2) quartic polynomials + co-
sine and (3) quartic + exp × quartic. In the case of pure poly-
nomial potentials we attempted a semi-comprehensive search
which resulted in the interesting observation that low-r models
are favoured.
Reinforcement learning, which in other contexts has been

shown to perform comparably well,[33–35] was difficult to use for
the present problem. On the other hand, methods involving ge-
netic programming and symbolic regression seem promising ap-
proaches to explore. They may lead to to viable potentials with
new functional forms and could provide fresh inspiration for
model building.
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