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1 Introduction

One of the most important problems in theoretical physics is to understand the collective
behaviour of large systems at finite temperature and chemical potential. This task is
particularly difficult for systems whose constituents are strongly interacting and lacking a
weakly interacting quasiparticle description [1].

At large scales, such systems are expected to be governed by the conserved quantities
of global symmetries and the Goldstone modes associated to their breaking [2]. One of
the main goals of such an effective description is to flesh out the broad properties of long
wavelength dynamics and package all the microscopic details of interactions in a set of
transport coefficients which are functions of the thermal state.
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The holographic duality provides a framework where non-trivial questions about
strongly interacting non-gravitational quantum systems can be mapped to significantly
simpler problems in theories which contain gravity [3, 4]. In a certain large N and strong
coupling limit, these theories admit a semiclassical description in which the gravitational
side becomes classical. In this regime, the thermal states from the field theory side get
mapped onto black hole solutions with the temperature set by the event horizon. This pow-
erful duality has allowed the study of phases of strongly coupled matter with symmetries
which are broken either spontaneously [5–9] or explicitly [10–15].

In the classical limit of holographic theories, one can perform real time microscopic
computations around the thermal states and in which a hydrodynamic limit is not neces-
sary. In this framework, it is therefore possible to study the validity and eventually the
breakdown of hydrodynamics [16–20]. The most well studied case is the breakdown of
hydrodynamics as a function of the wavelength of fluctuations. In this scenario, one of
the hydrodynamic poles collides with one of the poles of a UV degree of freedom which
is gapped. Holography provides an invaluable laboratory where the non-hydrodynamic
modes of the UV theory can be retained in the description.

Another approach where holography becomes particularly useful concerns the effective
theory governing the hydrodynamics modes itself. By considering its hydrodynamic limit,
holography can be used to either derive or confirm the effective theory itself from first prin-
ciples [21–25]. In this approach, one expects that the corresponding transport coefficients
should be expressible in terms of quantities related to the black hole geometries dual to
the thermal states [26–28].

Significant progress towards this direction has been made over the previous years. The
first quantity that was computed holographically was the shear viscosity of hologrpahic
theories [21] by direct computation of the retarded Green’s around the AdS-Schwarzschild
black brane solution which is known analytically. A significant improvement was later
achieved in [26] where the shear viscosity and the electric conductivity of holographic theo-
ries at zero chemical potential was expressed in terms of black hole horizon data without re-
lying on the knowledge of the analytic form of the gravitational solution. This was achieved
by exploiting the existence of a conserved electric current in the bulk theory allowing one to
relate boundary to horizon quantities. This approach is natural for the case of the electric
conductivity since the bulk gauge field which is dual to the field theory electric current
satisfies Maxwell’s equations. However, the authors of [21] had already indicated that the
shear viscosity could be extracted in a similar way after performing a dimensional reduction
and reducing the problem to solving Maxwell’s equations in a lower dimensional spacetime.

In more recent years, in the context of applications of holography to condensed matter
systems, it became natural to study the thermoelectric properties of holographic matter
at finite temperature and chemical potential. For the thermoelectric conductivities to be
finite in the zero frequency limit, momentum should be non-conserved so that it can relax.
This implies that translational symmetry has to be explicitly broken, leaving only time
translations as a symmetry for the bulk geometries. A general recipe for computing the
matrix of the DC thermoelectric conductivities was given in a series of papers [27–30]
after exploiting the existence of time translations as a symmetry in the bulk geometry and
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relating thermoelectric currents that one can define on the black hole horizon to the field
theory currents on the conformal boundary.

A common feature of the progress reported above exploits the Kubo formulae to extract
the relevant transport coefficients. Here, we will develop analytic techniques that will allow
us to write directly a set of constitutive relations for the stress tensor of neutral relativistic
fluids in terms of a local temperature and fluid velocity. Our methods are general enough
that we don’t have to rely on the explicit knowledge of the background black hole spacetimes
apart from some of their general properties. As part of our derivation, we will reproduce
the famous formula for the shear viscosity of [21, 26].

Moreover, by introducing additional scales to the problem via relevant scalar operators,
our fluids will also have a non-trivial bulk viscosity. For a given class of theories, a formula
for the bulk viscosity had been computed in the past [31] purely from the point view of
the black hole horizon fluid [32]. In our work, we will read off the bulk viscosity from the
stress tensor of the boundary theory after performing a change of hydrodynamic variables
that will bring us to the so called Landau frame.

One of the key ingredients of our method is the Crnkovic-Witten symplectic current [33]
which can be thought of as a generalisation of Liouville’s theorem to classical gravitational
and gauge theories. In the past, it has found many interesting applications which include
the minisuperspace quantisation of large families of supersymmetric solutions of higher
dimensional supergravities which are known as bubbling solutions [34–36]. Another, slightly
different application is the thermodynamics and the first law of black holes [37–39].

Here, we will use the Crnkovic-Witten symplectic form in order to derive the leading
dissipative corrections to ideal hydrodynamics for a holographic relativistic fluid. The
important feature of the symplectic current is that it is antisymmetric in the space of
perturbative solutions and that it is divergence free. Antisymmetry makes the symplectic
current expandable for perturbations which are infinitesimally close to each other. This
is certainly the case when one of the solutions used to construct the symplectic current is
a static thermodynamic perturbation and the second one is a hydrodynamic perturbation
whose infinite wavelength limit coincides with the former one. The fact that the symplectic
current is divergence free allows us to use Stokes’ theorem and relate boundary quantities
to the black hole horizon. The purpose of this paper is to explain in detail how the
procedure works in such a simple example. Note that this is independent of the existence
of conservation laws and symmetries which have been exploited in the past in the general
context of the membrane paradigm as Liouville’s theorem is always true.

The paper is organised in five main sections. In section 2 we introduce the class of
our holographic models along with the relevant thermodynamics and the important Ward
identities that will later be part of our hydrodynamic description. In section 3 we introduce
the symplectic current along with its relevance to holography in the hydrodynamic limit.
We also describe the main elements of strategy in order to extract the stress tensor of the
boundary theory. In section 4 we discuss the relevant bulk perturbations for our system.
Moreover, we discuss the thermodynamic and boost perturbations which will be the starting
point of our derivative expansion appearing towards the end of the section. In section 5
we derive the constitutive relations for our holographic fluid and we read off the shear and
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bulk viscosities. In section 6 we carry out numerical checks for our bulk viscosity formula
and we conclude with a discussion in section 7.

2 Holographic setup

In this section we will present the setup in which we wish to study holographic relativistic
fluids at finite temperature. In the first subsection we will discuss the relevant gravita-
tional models along with the black holes which are dual to the thermal states we wish to
perturb. In the second subsection we will review the important ingredients of holographic
renormalisation and the thermodynamic properties of our background geometries.

2.1 The holographic model

Here we will introduce the class of holographic theories we will use to model our non-
conformal fluids. Apart from the bulk metric, we will include a number nS of bulk scalar
fields ϕI , dual to the field theory operators OI . Without loss of generality, we will assume
that the bulk theory is described by the action,

Sb =
∫
d4x
√
−g

(
R− 1

2ΦIJ ∇µϕI ∇µϕJ − V
)
, (2.1)

where the functions ΦIJ and the potential V can, in general, depend on the scalar fields
ϕI . The above action gives rise to the equations of motion,

Rµν −
1
2gµν V −

1
2ΦIJ ∇µϕI ∇νϕJ = 0 ,

∇µ
(
ΦKJ ∇µϕJ

)
− 1

2∂ϕKΦIJ ∇µϕI ∇µϕJ − ∂ϕKV = 0 . (2.2)

In order for the geometry to asymptote to AdS4 of unit radius, we will assume that for
small values of the scalar fields the functions that appear in our bulk action (2.1) behave as,

V ≈ −6 + 1
2
∑
I

m2
I (ϕI)2 + · · · ,

ΦIJ ≈ δIJ + · · · . (2.3)

As usual, the bulk mass parameters m2
I determine the conformal dimensions ∆I of the

dual operators OI according to ∆I (∆I − 3) = m2
I . In order to break conformality, it will

be important for us that nR < nS of our scalar operators are relevant with respect to the
UV theory having conformal dimensions 1/2 < ∆I < 3, I = 1, · · · , nR. In this case, we
can introduce constant deformation parameters ϕI(s) which preserve the Lorentz symmetry
of the dual theory.

The black brane backgrounds capturing the thermal states we will be interested in are
captured by the ansatz,

ds2 = −U(r) dt2 + dr2

U(r) + e2g(r)
(
dx2 + dy2

)
,

φI = φI(r) . (2.4)
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Near the conformal boundary, our functions will admit the expansions,

U(r) ≈ (r +R)2 + · · ·+
g(v)
r +R

+ · · · , g(r) ≈ ln(r +R) + · · · ,

ϕI(r) ≈
ϕI(s)

(r +R)3−∆I
+ · · ·+

ϕI(v)
(r +R)∆I

+ · · · . (2.5)

The deformation parameters ϕI(s) are part of our fixed conditions on the conformal bound-
ary, while ϕI(v) fix the VEVs 〈OI〉 of the dual field theory operators. The constant of
integration R in (2.5) is chosen so that the horizon of our black brane geometry is fixed at
r = 0. Close to the horizon, regularity imposes the analytic expansion,

U(r) ≈ 4πTr + · · · , g(r) = g(0) + g(1) r + · · · ,
ϕI ≈ ϕI(0) + · · · , (2.6)

where T is the Hawking temperature of the event horizon and is kept fixed. The constants
of integration g(0), ϕI(0), g(v) and ϕI(v) are fixed by solving the equations of motion (2.2),
subject to the above boundary conditions.

It is important to note that some of the scalar operators might take a VEV sponta-
neously as we lower the temperature of the system. This is allowed to happen since our UV
theory is assumed to have been deformed by at least a relevant operator, with the defor-
mation parameter setting a scale and therefore breaking scaling invariance at low energies.

2.2 Thermodynamics and Ward identities

An important aspect of our paper is that we will be able to extract quantities which are
directly relevant to the field theory living on the conformal boundary. In order to do this,
the bulk action (2.1) needs to be supplemented by suitable counter terms that render it
finite [40]. Equally important is the fact that these counter terms will make the variational
problem well defined [39]. For simplicity, here we list a few universal terms which are
necessary,

Sbdr = −
∫
∂M

d3x
√
−γ (−2K + 4 +Rbdr)

− 1
2

∫
∂M

d3x
√
−γ

∑
I

[
(3−∆I)(ϕI)2 − 1

2∆I − 5 ∂aϕ
I ∂aϕI

]
+ · · · , (2.7)

where γab is the induced metric on the hypersurface ∂M of constant radial coordinate r.
The Ricci and extrinsic curvature scalars of γab are Rbdr and K correspondingly.

To obtain the free energy of our black hole spacetimes (2.4), we need to compute
the total action ITot = Ib + Ibdr for the Euclidean backgrounds with Wick rotated time
t = −i τ . The free energy density wFE will then be given by wFE = T ITot. After exploiting
the existence of the Killing vector ∂t for the background solutions (2.4), the bulk part of
the action can be written as a total derivative,

Ib = 1
T

∫ ∞
0

dr
(
e2g U ′

)′
. (2.8)
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The free energy density and the energy density ε of our system are related by the usual
Legendre transformation,

wFE = ε− T s , (2.9)

where s is the entropy density arising from the horizon contribution of the integral (2.8).
We also note here that our black holes satisfy the enlarged first low of thermodynamics,

dwFE = −s dT − 〈OI〉 dϕI(s) . (2.10)

In terms of the horizon data appearing in the expansion (2.6) we have,

s = 4π e2 g(0) . (2.11)

This is the Bekenstein-Hawking formula for the entropy relating the entropy s to the volume
density of the horizon. Combining the asymptotic expansion (2.5) with (2.8) and (2.7) we
obtain the energy,

ε = −2 g(v) − ϕI(s) 〈OI〉 , (2.12)

in terms of the constants of integration on the boundary with the scalar VEV 〈OI〉 =
(2∆I − 3)ϕI(v).

By varying the total action S = Sb +Sbdr with respect to the metric on the conformal
boundary γab, we can obtain the expectation value of the field theory stress tensor Tab. At
this point, it is useful to discuss a version of the bulk action which only contains first order
derivatives. After integrating by parts the Einstein-Hilbert terms in (2.1), and dropping
the horizon contribution, the term at infinity cancels the Gibbons-Hawking term in the
boundary terms of equation (2.7). This yields a first order action which takes the form,1

S =
∫
d4xL

(
gµν , ∂λgµν , ϕ

I , ∂λϕ
I
)

+ S̃bdr . (2.13)

As we explain in appendix A, the new boundary action now only contains the countert-
erms which are necessary to regularise the bulk action and which also define the correct
variational problem. More concretely, the universal terms read,

S̃bdr = −
∫
∂M

d3x
√
−γ (4 +Rbdr)

− 1
2

∫
∂M

d3x
√
−γ

∑
I

[
(3−∆I)(ϕI)2 − 1

2∆I − 5 ∂aϕ
I ∂aϕI

]
+ · · · . (2.14)

The above allows us to write the expression for the VEVs of the boundary stress tensor
and the scalar operators,

〈Tµν〉 = lim
r→∞

2 r5
√
−γ

[
∂L

∂(∂rgµν) + δS̃bdr
δγµν

]
,

〈OI〉 = lim
r→∞

r∆I

√
−γ

[
∂L

∂(∂rϕI)
+ δS̃bdr

δϕI

]
, (2.15)

1Note that in order to obtain this form of the action, we have also dropped a term coming from the
horizon of the black holes. For the static backgrounds, this term gives the entropy term in the expression
for the grand canonical free energy. However, for calculations in real time this term is dropped.
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which will become useful when we discuss our use of the gravitational symplectic current
in context of holography.

The gravitational constraints which one can obtain by foliating the bulk spacetime by
constant r hypersufaces can be imposed anywhere as the equations of motion guarantee
that they will be satisfied everywhere. Choosing the hypersurface close to the conformal
boundary yields the Ward identities,

∇a〈T ab〉 = ∇bϕI(s) 〈OI〉 . (2.16)

In our context, the boundary metric and the background sources preserve translations.
Moreover, as we will later see, the pertrurbative sources we will include are going to be
order O(ε) in the derivative expansion. In order to extract the leading order corrections
to the ideal fluid, we will need to know the boundary stress tensor only up to order O(ε2).
This simple observation allows us to drop the derivative terms that come from varying the
boundary action (2.14) leading to,

〈Tµν〉 ≈ lim
r→∞

2 r5
√
−γ

[
∂L

∂(∂rgµν) −
√
−γ

(
2− 1

4 (∆I − 3) (ϕI)2
)
γµν

]
+O(∂2) ,

〈OI〉 ≈ lim
r→∞

r∆I

√
−γ

[
∂L

∂(∂rϕI)
+
√
−γ (∆I − 3)ϕI

]
+O(∂2) . (2.17)

From the above, we see that for our purposes it is only the algebraic counterterms that
will contibute to hologrpahic renormalisation at the order of the derivative expansion we
will be working.

It is useful to note that the non-trivial expectation values of the stress tensor compo-
nents are given by,

〈Ttt〉 = ε , 〈Txx〉 = 〈Tyy〉 = p , (2.18)

where p is the pressure of our thermal state. Given that ∂x and ∂y are Killing vectors
of our geometry, we also have the relation p = −wFE between the pressure and the free
energy. This result can be shown by either exploiting the Komar integrals or one can give
an argument similar to that of [41] for such geometries.

3 The symplectic current strategy

In this section we will introduce the Crnkovic-Witten symplectic form [33] focusing on our
application to the hydrodynamic expansion. It has already been used in similar applications
the past [14, 42] and here we will highlight the important ingredients and strategy for the
present work. To define it, we consider a generic classical Lagrangian field theory of a
collection ϕI of fields and two perturbative solutions δ1φ

I and δ2φ
I around a background

φIb . If the Lagrangian density L(φI , ∂µφI) can be written in terms of the fields and their
first derivatives then the vector density,

Pµδ1,δ2
= δ1φ

I δ2

(
∂L

∂∂µφI

)
− δ2φ

I δ1

(
∂L

∂∂µφI

)
, (3.1)
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is divergence free,
∂µP

µ
δ1,δ2

= 0 . (3.2)

Given the bulk action (2.1), the contributing terms to the derivatives of the bulk action
in (3.1) are given by,

∂L
∂∂µgαβ

=
√
−g Γµγδ

(
gγα gδβ − 1

2 g
γδgαβ

)
−
√
−g Γκκλ

(
gµ(α g β)λ − 1

2 g
µλgαβ

)
,

∂L
∂∂µϕI

= −
√
−gΦIJ ∂

µϕJ . (3.3)

The symplectic current (3.1) is antisymmetric in field space and as such, when the
second perturbative solution is infinitesimally close to the first one, the symplectic form
is expandable around zero. In our work, the role of this parameter will be played by the
wavenumber of the hydrodynamic perturbations which we will take to be parametrically
small, of order O(ε).

As we will see in the next sections, the role of one of the two solutions needed to
construct the symplectic current (3.1) will be played by a static solution. The second
solution will always be the hydrodynamic perturbations we wish to study and which are
infinitesimally close to thermodynamic perturbations. As we will argue, the latter can be
obtained from the background black holes of equation (2.4) by either varyring with respect
to temperature by δT ∼ O(ε) or by performing coordinate transformations corresponding
to a Lorentzian boost from the boundary theory perspective. In the limit we will be
working, the boost parameters will be given by a fluid velocity parameter δvi ∼ O(ε).

In general, both the static (known) solutions as well as the hydrodynamic perturbations
we wish to construct will contain perturbative sources. The sources of the hydrodynamic
perturbations will be suppressed in the ε expansion. Our main strategy will be to exploit
the fact that the radial component of the symplectic (3.1) will asymptote to,

P rδ1,δ2 = 1
r3

(
δ1ϕ

I
(s) δ2

(√
−γ 〈OI〉

)
− δ2ϕ

I
(s) δ1

(√
−γ 〈OI〉

))
+ 1
r3

1
2
(
δ1γab δ2

(√
−γ 〈T ab〉

)
− δ2γab δ1

(√
−γ 〈T ab〉

))
+ · · · (3.4)

for all the pairs of solutions we will consider, at leading order in the hydrodynamic expan-
sion. In the non-hydrodynamic limit, the above expression will have to be supplemented by
the non-trivial contribution of the derivative terms in (2.14). However, these terms would
not contain any additional information in terms of the VEVs and would be fixed entirely
by the sources.

The above shows that by integrating the divergence free condition (3.2), we can relate
the asymptotic form (3.4) to horizon quantities and bulk integrals. Therefore, by choosing
appropriate static seed solutions, we can draw conclusions about the VEVs of operators
along the hydrodynamic perturbations we wish to study. As we will see in detail, the bulk
integrals will eventually drop out in the hydrodynamic limit, leading to expressions relating
the VEVs of the stress tensor components to horizon quantities.
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Finally, the last step will be to obtain closed expressions for the stress tensor of our
theory in terms of δT and δvi. By choosing source free perturbations to construct the sym-
plectic current (3.1), we will be able to express all the near horizon constants of integration
as functions of temperature fluctuations δT and the local fluid velocity δvi. This step will
give us the constitutive relations for our hydrodynamics after fixing an appropriate fluid
frame. These relations will turn the Ward identy (2.16) to a closed system of equations
that will allow us to determine the linear response of our system against external sources.

4 Perturbations

In this section we will construct the hydrodynamic perturbations of our relativistic system.
Before considering their hydrodynamic limit, we will set up the more general framework of
perturbations which can depend on the field theory coordinates

(
t, xi

)
. The fluctuations

we are interested in will be around the static backgrounds of equation (2.4) which also
enjoy translational invariance.

This allows for a Fourier decomposition of perturbations according to,

δF(t, xi; r) = e−iw (t+S(r))+ikixi δf(r) , (4.1)

where δF represents perturbations of the scalars as well as the metric field components.
Moreover, by choosing the function S(r) to approach S(r)→ ln r

4πT + · · · close to the black
hole horizon at r = 0, we are guaranteed to the correct infalling boundary conditions
provided that δf(r) admits a Taylor series expansion there. Finally, in order for the
holographic dictionary to be solely dictated by the asymptotics of δf(r), we will choose
S(r) to behave as S(r)→ O(1/r3) close to the conformal boundary.

Our perturbations will then be governed by the asymptotic expansions,

δgab(r) = (r +R)2
(
δsab + · · ·+ δtab

(r +R)3 + · · ·
)
,

δgra(r) = O
( 1
r3

)
, δgrr(r) = O

( 1
r4

)
,

δϕI(r) =
δϕI(v)

(r +R)∆I
+ · · · , (4.2)

where the constants of integration δsab correspond to perturbative sources for the stress
tensor of the boundary theory. The constants of integration δtab and δϕI(v) will fix the
VEVs of the stress tensor and scalar operators correspondingly. Note that we prefer to not
fix a particular coordinate system everywhere in the bulk. We will only fix the asymptotic
behaviour of our coordinate system through the expansion (4.2).
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On the other side of the geometry, near the horizon at r = 0, we want to impose
infalling boundary conditions which can be achieved through the expansions,

δgtt(r) = 4πT r δg(0)
tt + · · · , δgrr(r) = δg

(0)
rr

4πT r + · · · ,

δgti(r) = δg
(0)
ti + r δg

(1)
ti + · · · , δgri(r) = δg

(0)
ri

4πT r + δg
(1)
ri + · · · ,

δgij(r) = δg
(0)
ij + · · · , δgtr(r) = δg

(0)
tr + · · · ,

δϕI(r) = δϕI(0) + · · · . (4.3)

In order to achieve regularity, the above need to be supplemented by

−2πT (δg(0)
tt + δg(0)

rr ) = −4πT δg(0)
rt ≡ δTh ,

δg
(0)
ti = δg

(0)
ri ≡ −δui . (4.4)

where we have defined a sense of a local temperature δTh and fluid velocity δui on the
black hole horizon. These will not be directly relevant to us since we will discuss the fluid
from the boundary point of view.

In the next subsections, we will consider the hydrodynamic perturbations of the system.
We will think of these as deformations of the static thermodynamic perturbations we will
consider in subsection 4.1. In subsection 4.2 we will consider all possible static solutions
which can be obtained by large coordinate transformations in the bulk and which we will
use in order to introduce hydrodynamic sources in our system.

4.1 Thermodynamic perturbations

In this subsection we will discuss the source free static solutions which will be the infinite
wavelength limit of our hydrodynamic perturbations. The first example is the solution we
can obtain by varying the temperature of the background black holes (2.4) according to,

δT gtt = −∂TU , δT grr = −∂TU
U2 , δT gtr = U ∂TS

′ ,

δT gra = δT gtx = δT gty = δT gxy = 0 , δT gxx = δT gyy = 2 e2g ∂T g ,

δTϕ = ∂Tϕ . (4.5)

Notice that apart from a simple partial derivative with respect to temperature, we have
also performed an infinitesimal coordinate transformation,

t→ t− ∂TS δT , (4.6)

in order to satisfy the infalling boundary conditions of equations (4.3) and (4.4) with
δp = 4π δT and vi = 0. From the boundary point of view, the perturbation generated by
varying the temperature will yield the non-trivial stress tensor components,

δT 〈T tt〉 = ∂T ε = T ∂T s ,

δT 〈T ij〉 = δij ∂T p = δij s . (4.7)
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The second static solution we would like to consider is generated by boundary infinites-
imal Lorentz boosts with parameter δvi. From the boundary point view, this corresponds
to the isomorphism,

t→ t− δvi xi , xi → xi − δvi t . (4.8)
In order to obtain a regular solution in the bulk, we need to see the above as the asymptotics
of a large coordinate transformation which is otherwise regular everywhere in the bulk. This
is achieved by the coordinate transformation,

t→ t− δvi xi , xi → xi − δvi (t+ S(r)) , (4.9)

leading to the bulk perturbation,

δvjgtt = δvjgrr = δvjgtr = 0 , δvjϕ = 0 ,

δvjgti = δji

(
U − e2g

)
, δvjgri = −δji e

2g S′ . (4.10)

The above perturbation for the metric satisfies the infalling boundary conditions (4.3)
and (4.4) with δTh = 0 and δui = e2g(0)

δvi. The above leads to the following perturbation
for the components of the boundary stress tensor,

δvj 〈T ti〉 = δvj 〈T it〉 = (ε+ p) δij . (4.11)

4.2 Large differomorhisms

In the previous subsections we discussed source free static perturbations which will natu-
rally lead to black hole quasinormal modes when promoted to hydrodynamic perturbations.
Here, we will discuss static perturbations which will contain sources for the stress tensor
from the field theory point of view.

A natural way to achieve this is to consider large coordinate transformations which are
everywhere regular and which alter the form of the asymptotic metric. This is in contrast
with the Lorentz boosts of the previous section which asymptote to Killing vector of the
boundary metric.

From the boundary point of view, it is easy to see that we can obtain coordinate
independent metric deformations through the simple coordinate transformations,

xa → xa + δsab (xb + δbt S(r)) , (4.12)

leading to the boundary metric perturbations,

δgab = ηac δs
c
b + ηbc δs

c
a = 2 δs(ab) . (4.13)

The extra term in the bracket of (4.12), is there to guarantee regularity close to the horizon
at r = 0. It will later be useful to list the precise form of the perturbations we obtain from
the inequivalent coordinate transformations,

δsttgtt = 2U , δsttgtr = U S′ ,

δstxgtx = U ,

δsxtgtx = e2g , δsxtgrx = e2g S′ ,

δsxxgxx = 2 e2g ,

δsxygxy = e2g . (4.14)
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In the above we have omitted the obvious transformations corresponding to δsty and δsyy
as well as the components of the perturbations which remain trivial.

From the previous discussion, there seem to be two ways to introduce a static source
δγti for the boundary metric, depending on whether δsti or δsit is non-zero. However, the
two are connected by a source-free Lorentz boost. In order to introduce appropriate space-
time dependent sources for our boundary theory later, we will only use the transformation
which has δsti = 0. The reason is that this transformation preserves the Cauchy surfaces
of constant time from the field theory point of view. Its only effect is to change the vector
of the time flow with respect these Cauchy surfaces. In other words, at zero frequency
and wavevector, the source δγti will reduce to a Galilean boost. Another way to see this
is to realise the perturbation generated by δsti is nothing but a linear combination of the
perturbation generated by δsit with that generated by the boost δvi.

We will close this subsection by summarising the perturbations for the VEVs of the
stress tensor components,

δstt〈T tt〉 = 2 ε ,
δstx〈T tx〉 = p ,

δsxt〈T tx〉 = −ε ,
δsxx〈T xx〉 = −2 p ,
δsxy〈T xy〉 = −p , (4.15)

where p is the pressure of the thermal state.

4.3 Hydrodynamic perturbations

In the previous subsections we considered static perturbations which are independent of
the field theory coordinates. In this section we will use those as seed solutions in order
to construct perturbations which depend weakly on the boundary coordinates. In order
to introduce this time dependence, we will use the Fourier mode decomposition (4.1) with
ki = ε qi and ε a small number which will serve as our hydro expansion parameter. Similarly,
we will extract a factor of ε from the frequency according to w = ε ω since at exactly ε = 0
we expect to recover the static modes we discussed in subsections 4.1 and 4.2.

This observation also allows us to write an ansatz for the ε bulk hydrodynamic modes
according to,

δHf = ε δf (1) + ε2 δf (2) + · · ·

= δT f δT + δvif δvi + δsabf δsab + ε2 δf (2) + · · · , (4.16)

where we took the temperature variation δT , the fluid velocity parameter δvi and the
sources δsab to all be of order ε. In the language of hydrodynamics, the leading piece δf (1)

constructed from the static solutions, will play the role of the ideal part of the fluid. The
corrections δf (2) are the important bit we are missing in order to supplement the ideal hy-
drodynamics we have written in the previous sections with the first dissipative corrections.
This is one of the aspects where the symplectic current of section 3 will be useful.
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At this point we can write the constitutive relations for the stress tensor fluctuations,

δ〈T tt〉 = T ∂T s δT + 2 ε δstt + ε2 δ〈T tt〉(2) + · · · ,
δ〈T it〉 = δ〈T ti〉 = (ε+ p) δvi + ε δsit + ε2 δ〈T ti〉(2) + · · · ,

δ〈T ij〉 = δij s δT − 2p δs(ij) + ε2 δ〈T ij〉(2) + · · · , (4.17)

where δ〈T ab〉(2) are the dissipative pieces of the stress tensor which are not captured by
the ideal part.

In particular, using the hydrodynamic perturbation (4.16) as one of the two pertur-
bative solutions for the symplectic current along with the solutions of section 4.2 and 4.3,
we will be able to write the leading dissipative corrections to the stress tensor in terms
of the fluctuations δT and δvi. After fixing a specific fluid frame, we will see that the
corresponding transport coefficients can be expressed in terms of the black hole horizon
data entering in the near horizon expansion (2.6).

It is worth noting that the ideal part of the constitutive relations in equations (4.17)
is universal. When used in the Ward identities (2.16), they yield the leading part of the
fluid equations of motion,

∂tδT = − s

∂T s
δij (∂i(δvj − δsjt) + ∂tδsij) +O(ε3) ,

∂tδvi = ∂iδstt − T−1 ∂iδT +O(ε3) . (4.18)

With the sources set to zero, the above equations yield the two sounds modes and the
shear mode which are familiar from relativistic hydrodynamics. The dispersion relations
at leading order are,

ω = ± cs
√
q2

1 + q2
2 , ω = 0 , (4.19)

with the speed of sound c2
s = s/(T∂TS). The relations (4.18) are going to be useful

later, in section 4.3 when we derive the dissipative part of the stress tensor components of
equation (4.17).

5 The constitutive relations

In this section we will extract the next to leading order correction for the VEVs of the
hydrodynamic perturbations we started constructing in section 4. In order to achieve this,
we will use the technique surrounding the asymptotic behaviour of the radial component
of the symplectic current in equation (3.4).

To make our strategy more specific, we will consider the symplectic current for the
hydrodynamic ansatz (4.16) with the static solutions summarised by equations (4.5), (4.10)
and (4.14). The next step is to examine the implications of the conservation equation (3.2)
order by order in an ε expansion.

At leading order in ε, it is only the radial component of the symplectic current that
will carry non-trivial information since any derivative along the boundary directions will
introduce additional factors of ε. Moreover, at this order, only the term δf (1) of our
mode will contribute to the symplectic current. Since δf (1) is itself a linear combination
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of the static solutions (4.5), (4.10) and (4.14), it is obvious that this should be trivially
satisfied since the static perturbations are solutions themselves. We list the corresponding
conditions in appendix C as these will be useful in subsection 5.2.

In subsection 5.1 we will use the static perturbations generated by the large diffeomor-
phisms of section 4.2. This will allow us to relate the VEVs of the stress tensor components,
at order ε2, to horizon data of the perturbation and bulk integrals over the static solutions.
These integrals will come from integrating the terms in (3.2) containing partial derivatives
along the boundary directions.

The final two steps will be made in section 5.2 where we will consider the symplectic
current formed by our hydrodynamic perturbation (4.16) and the static solutions of sec-
tion 4.1. This will allow us to express the horizon data that will appear in the expressions
for the stress tensor components in section 5.1, in terms of the hydrodynamic variables
δT and δvi. However, there will still be bulk integrals which we will simplify using the
constraints of appendix C. This will leave us with simpler bulk integrals which are pure
artefacts of the fluid frame. We will remove them by moving our description to the Landau
frame where all bulk integrals will eventually drop out.

5.1 The stress tensor in terms of horizon data

In this section we will consider the sympectic current Pµδsab,δH that we can form based on
our hydrodynamic expansion (4.16) and the static solutions of equation (4.14). Our first
step is to consider the expansion of the current in ε according to,

P rδsab,δH = δsab ε P
r(1)
δsab ,δH

+ δsab ε
2 P

r(2)
δsab ,δH

+ · · · ,

P cδsab,δH = δsab ε P
c(1)
δsab ,δH

+ · · · . (5.1)

As we explained in the beginning of the section, the only term of the hydrodynamic expan-
sion (4.16) that contributes to P r(1)

δsab,δH
, is the term δf (1) which is a linear combination of

the static solutions. Therefore, the constraints we list in appendix C will make sure that
the leading part,

∂rP
r(1)
δsab ,δH

= 0 , (5.2)

of the divergence free condition (3.2) is satisfied.
Moving on to the next order in ε, we see that the terms appearing in (5.1) have to

satisfy,
∂rP

r(2)
δsab ,δH

− iω
(
P
t(1)
δsab ,δH

+ S′ P
r(1)
δsab ,δH

)
+ iqi P

i(1)
δsab ,δH

= 0 . (5.3)

After integrating this equation in the bulk from the horizon to the conformal boundary we
obtain,

δ〈T ab〉(2) = P
r(2)
δsab ,δH

∣∣∣
r=0

+ i

∫ ∞
0

dr
(
ω
(
P
t(1)
δsab ,δH

+ S′ P
r(1)
δsab ,δH

)
− qi P i(1)

δsab ,δH

)
= P

r(2)
δsab ,δH

∣∣∣
r=0

+Bab , (5.4)

which also defines the quantity Bab. To obtain it we used our observation in equation (3.4)
regarding the asymptotics of the symplectic current. From the above equation it is clear
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that the leading correction to the VEV of the stress tensor will come from evaluating the
radial component of the symplectic current on the black hole horizon. We see that the
bulk integrals that come from integrating the divergence free condition are not zero.

After explicit evaluation we obtain,

εδ〈T tt〉(2) = i

4π
(
−sqi

(
δsit+δvi

)
+ω

(
sδij δsij+∂T sδT

)
−εi8π2T δij δg

(2)(0)
ij

)
+εBtt ,

εδ〈T ti〉(2) =− i

4π
(
qi
(
sδklδskl+∂T sδT

)
+ωsδvi+εisδij

(
δg

(2)(1)
tj −2δg(2)(0)

tj g(1)
))

+εBti ,

δ〈T ti〉(2) =−4πT δij δg(2)(0)
tj +Bit ,

εδ〈T ij〉(2) =− is4π
(
2
(
q(i δs j)t+q(i δv j)

)
−δij

(
qkδs

kt+qkδvk
))
−ε sT2 δij

(
δg(2)(0)
rr +δg(2)(0)

tt

)
− iω4π

(
δij
(
2sδklδskl+∂T sδT−sδstt

)
−2sδs(ij)

)
+εBij . (5.5)

It is interesting to note that we can obtain two inequivalent expressions for the ti compo-
nents of the stress tensor, depending on the static solution we use to read it off. However,
the two static solutions are related by a perturbative boost which is also a solution to the
equations of motion.

As we can see more explicitly, equations (5.5) express the stress tensor components in
terms of horizon data plus a bulk integral. However, we have not yet achieved to express
it solely in terms of the local temperature δT and fluid velocity δvi fluctuations. Instead,
we have the appearance of the constants of integration δg(2)(0)

ij , δg(2)(0)
ti , δg(2)(0)

rr and δg(2)(0)
tt

as well as the expansion coefficient δg(2)(1)
ti . This is the first aim of the next subsection

where we will manage to eliminate them from the constitutive relations. As we will see,
the constants of integration δg

(2)(0)
ti and the combination δg(2)(0)

rr + δg
(2)(0)
tt can be simply

removed by redefining δvi and δT . Another way to see this is to observe that adding
the static solutions to the correction δf (2) would still give a solution at that order in ε.
Those constants of integration can therefore be thought of as the corrections of the local
temperature and fluid velocity at order ε2.

5.2 The stess tensor in terms of hydrodynamic variables

In this section we will finalise the derivation of our hydrodynamics and we will show that
it indeed agrees with the general intuition of relativistic hydrodynamics. However, during
the process we will derive expressions for the shear and bulk viscosities η and ζ in terms
of the black hole horizon data of equation (2.6).

Our first step is to eliminate the constants of integration from the expression (5.5) by
expressing them in terms of derivatives our hydrodynamic variables δT and δvi. In order
to achieve this, we consider the symplectic current (3.1) when the role of the static per-
turbation is played by one of the solutions obtained from themodynamic variations. These
static perturbations were discussed in section 4.3 and we will call PµδT,δH and Pµ

δvi,δH
the

symplectic current corresponding temperature and fluid velocity variations correspondingly.
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Similarly to the analysis of section 5.1, after expanding the symplectic currents in ε,
the divergence free condition (3.2) yields the non-trivial equations,

∂rP
r(2)
δT ,δH

− iω
(
P
t(1)
δT ,δH

+ S′ P
r(1)
δT ,δH

)
+ iqi P

i(1)
δT ,δH

= 0 ,

∂rP
r(2)
δ
vj
,δH − iω

(
P
t(1)
δ
vj
,δH + S′ P

r(1)
δ
vj
,δH

)
+ iqi P

i(1)
δ
vj
,δH = 0 . (5.6)

After integrating from the horizon up to the conformal boundary we obtain the relation,

P
r(2)
δT ,δH

∣∣∣
r=0

+BT = 0 ,

P
r(2)
δ
vj
,δH

∣∣∣
r=0

+Bj = 0 . (5.7)

To obtain the above equations we used that both our static solutions have zero sources at in-
finity. This implies that, according to equation (3.4), the radial component of the symplec-
tic current must asymptote to zero at infinity. For clarity we write the defining equations,

BT = i

∫ ∞
0

dr
(
ω
(
P
t(1)
δT ,δH

+ S′ P
r(1)
δT ,δH

)
− qi P i(1)

δT ,δH

)
,

Bj = i

∫ ∞
0

dr
(
ω
(
P
t(1)
δ
vj
,δH + S′ P

r(1)
δ
vj
,δH

)
− qi P i(1)

δ
vj
,δH

)
, (5.8)

with explicit expressions in terms of bulk fields appearing in appendix B.
Evaluating the radial components on the horizon by using the boundary condi-

tions (2.6) and (4.3), we obtain the relations,

−(∂T s)2

s
ω δT + ε 8iπ2 δijδg

(2)(0)
ij − ω ∂T s

(
δij δsij − δstt

)
(5.9)

+ε 2i π T∂T s
(
δg(2)(0)
rr + δg

(2)(0)
tt

)
+ s ωΦ(0)

IJ ∂Tϕ
I(0) ∂Tϕ

J(0) δT = −ε 4πiBT ,

i qj
(
s δklδskl∂T + s δT

)
− ε 2

(
8π2 T − s g(1)

)
δg

(2)(0)
tj + s

(
iω δvj − δg(2)(1)

tj

)
= ε 4πBj .

The second equation together with the relation,

Bti −Bit = −δijBj , (5.10)

between the bulk integrals, simply implies the equivalence between the two expressions
for the ti component of the stress tensor in equation (5.5). The first equation in (5.9)
can be used to eliminate the constants of integration δg

(2)(0)
ij from the tt component of

equation (5.5) to yield,

ε δ〈T tt〉(2) = −ε 1
2∂T s T

2
(
δg(2)(0)
rr + δg

(2)(0)
tt

)
+ iω

1
4πT ∂T s δstt

+ iω
s

4π

(
∂T s

s
− (∂T s)2

s2 T + T Φ(0)
IJ ∂Tϕ

I(0) ∂Tϕ
J(0)

)
δT

+ iω
s

4π

(
1− T ∂T s

s

)
δijδsij −

is

4πqi
(
δsit + δvi

)
− ε T BT + εBtt . (5.11)
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Using the ideal order fluid equations (4.18), we can show the important identity

Bij = δij
s

T ∂TS

(
−T BT +Btt

)
, (5.12)

for the bulk integrals. The above relation shows that after performing the change of fluid
frame,

δT → δT − ε

T ∂T s
Btt , δvi → δvi − ε

ε+ p
Bti , (5.13)

we can eliminate the bulk integrals from our constitutive relations. At this point, this
might seem like a miracle. However, by observing the form of the bulk integrals that we
list in appendix B, the integrands are all proportional to derivatives of the function S which
was chosen arbitrarily in equation (4.1) when we wrote the form of our Fourier modes. All
that we can fix about this function is its leading behaviour close to the black hole horizon
at r = 0 and that it has to vanish sufficiently fast at the conformal infinity. After fully
fixing the fluid frame, the transport coefficients in our constitutive relations cannot depend
on coordinate system dependent quantities in the bulk and the single remaining non-trivial
combination of the bulk integrals has to vanish.

Taking a step further, we perform the change of hydrodynamic variables,

δT → δT − ε

T ∂T s
δ〈T tt〉(2) , δvi → δvi − ε

ε+ p
δ〈T ti〉(2) , (5.14)

along with the fluid equations (4.18), to obtain the constitutive relations in the Landau
frame,

ε2 δ〈T ij〉(2) = η δikδjl
(
δkl δ

rs (∂tδsrs − ∂rδsst)− 2
(
∂tδs(kl) − ∂(k δs l)t

))
+ η δikδjl

(
δkl δ

rs∂rδvs − 2 ∂(k δv l)
)

+ ζ δij δkl (∂kδslt − ∂tδskl − ∂kδvl) ,

δ〈T ti〉(2) = 0 , δ〈T tt〉(2) = 0 . (5.15)

In the above we have defined the transport coefficients,

η = s

4π , ζ = s

4π

(
s

∂T s

)2
Φ(0)
IJ ∂Tϕ

I(0) ∂Tϕ
J(0) , (5.16)

with η and ζ being the shear and the bulk viscosities respectively.
We would now like to show that the identification of equation (5.16) is indeed correct.

For this reason, we remind the reader that the leading dissipative part of the stress tensor
in the Landau frame reads,

τµν = −η∆µα∆νβ
(
2∇(αuβ) − gαβ ∇λuλ

)
− ζ ∆µν ∇λuλ ,

∆µν = gµν + uµ uν . (5.17)

One can easily show that this agrees with the expressions of (5.15) given that,

ds2 = gµν dx
µ dxν =

(
ηµν + 2 δs(µν)

)
dxµ dxν

= ηµν dx
µ dxν + δsit dt dx

i + 2 δs(ij) dx
i dxj ,

u =
(
1 + δstt

)
∂t +

(
δvi + δsit

)
∂i , (5.18)

along with the matching condition (5.16).
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6 Numerical checks

In this section we perform numerical checks on the bulk viscosity result of the previous
section. In order to do this, we focus on the model (2.1) with I, J = 1, 2, where

V (ϕ1, ϕ2) = −6− (ϕ1)2 + λ1(ϕ1)4 − (ϕ2)2 + λ3(ϕ2)4 − λ2(ϕ1)2(ϕ2)2 ,

ΦIJ(ϕ1, ϕ2) = δIJ
2 (cosh(ϕ1) + cosh(ϕ2)) . (6.1)

Note that the scalars correspond to operators in the dual field theory with scaling di-
mensions ∆1 = ∆2 = 2. In what follows we will focus our attention on the case
λ1 = λ3 = 1 , λ2 = 0 .

Given the ansatz (2.4) and the UV and IR boundary expansions, (2.5) and (2.6) re-
spectively, we proceed to solve the boundary condition problem numerically for boundary
deformations for the scalars given by ϕ1

(s) = 1, ϕ2
(s) = 1/2. This configuration corresponds

to our background solution, around which we will consider perturbations in order to com-
pute the bulk viscosity.

6.1 Quasinormal modes

We now move on to compute quasinormal modes for the backgrounds constructed above.
We consider perturbations of the form

δds2 = −Uδhttdt2 + 2Uδht xidtdxi + e2g
(
h11dx

2
1 + h22dx

2
2 + 2h12dx1dx2

)
, (6.2)

together with δϕ1, δϕ2, where the variations are taken to have the form

f(t, r, x1) = e−iωv(t,r)+iqx1f(r) , (6.3)

with v the Eddington-Finkelstein coordinate defined as

v(t, r, x1) = t+
∫ r

∞

dy

U(y) . (6.4)

Note that our choice for the momentum q to point in the direction x1 is without loss of
generality, because the background is isotropic. Plugging this ansatz in the equations of
motion, we obtain 4 first order ODEs and 4 second order giving rise to 12 integration
constants.

We now outline the boundary conditions for these fields. In the IR, we impose in-falling
boundary conditions at the horizon

δhtt = c1 r + . . . ,

δht x1 = c2 + . . . , δht x2 = c3 + . . . ,

δhx1x1 = c4 + . . . , δhx2x2 = −c4 + . . . ,

δhx1 x2 = c5 + . . . , δϕ1 = c6 + . . . ,

δϕ2 = c7 + . . . ,

(6.5)
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where the constants c1, c2, c3 are not free but are fixed in terms of the others. Thus, for
fixed value of q, the expansion is fixed in terms of 5 constants, ω, c4, c5, c6, c7.

On the other side of the geometry, in UV, one can write down the following expansion

δhtt = δh
(s)
tt + . . . ,

δhtx1 = δh
(s)
t x1 + . . . , δhtx2 = δh

(s)
t x2 + . . . , ,

δhx1x1 = δh(s)
x1 x1 + . . . , δhx2x2 = δh(s)

x2 x2 + · · ·+ δh
(v)
x2 x2

(r +R)3 + . . . ,

δhx1 x2 = δh(s)
x1 x2 + · · ·+

δh
(v)
x1 x2

(r +R)3 + . . . , δϕ1 =
δϕ1

(s)
(r +R) +

δϕ1
(v)

(r +R)2 + . . . ,

δϕ2 =
δϕ2

(s)
(r +R) +

δϕ2
(v)

(r +R)2 + . . . (6.6)

For the computation of quasinormal modes, we need to ensure that we remove all the
sources from the UV expansion up to a combination of coordinate reparametrisations

[δgµν + Lζ̃gµν ]→ 0 , (6.7)

where the transformations are of the form

xµ → xµ + ζ̃µ ζ̃ = e−iωt+iqx1 ζ̃µ ∂µ , (6.8)

for ζ constant. This requirement boils down to the sources appearing in (6.6) taking the
form

δh
(s)
tt = 2iω ζ̃1 − 2ζ̃2 ,

δh
(s)
tx1 = iq ζ̃1 + iω ζ̃3 ,

δh
(s)
tx2 = iω ζ̃4 ,

δh(s)
x1 x1 = −2ζ̃2 − 2iq ζ̃3 ,

δh(s)
x2 x2 = −2ζ̃2 ,

δh(s)
x1 x2 = −iqζ̃4 ,

δϕ1
(s) = 0 ,

δϕ2
(s) = 0 . (6.9)

We now see that the UV expansion is fixed in terms of 8 constants: ζ̃1, ζ̃2, ζ̃3, ζ̃4 and
δh

(v)
x2 x2 , δh

(v)
x1 x2 , δϕ

1
(v), δϕ

2
(v). Overall, for fixed q, we have 13 undetermined constants, of

which one can be set to unity because of the linearity of the equations. This matches
precisely the 12 integration constants of the problem and thus we expect our solutions to
be labelled by q.

We proceed to solve numerically this system of equations subject to the above boundary
conditions using a double-sided shooting method. We expect to find a pair of sound modes
with dispersion relation

ω = ±q cs − i
Γ
2 q

2 , (6.10)
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Figure 1. The solid lines correspond to Re[ω]/q and Im[ω]/q2 as functions of q in the hydrodynamic
limit. The dashed lines correspond to cs and Γ/2, calculated using the analytic expressions (6.11)
and (5.16). Here λ1 = λ3 = 1, λ2 = 0, ϕ1

(s) = 1, ϕ2
(s) = 1/2, T = 1/10.

where the attenuation Γ is given in terms of the bulk viscosity ζ through

Γ = 1
s T

(
s

4π + ζ

)
(6.11)

and c2
s = s/(T∂TS) is simply the speed of sound.

In figure 1, we plot the real and imaginary part of the dispersion relation obtained
numerically divided by the appropriate powers of the momentum so that they asymptote
to a constant in the hydrodynamic limit. The dashed lines correspond to cs and Γ/2, where
the latter was calculated using the analytic expression of the bulk viscosity (5.16). We see
good quantitative agreement.

7 Summary and discussion

In this paper we presented a general technique to derive the effective hydrodynamic descrip-
tion of long wavelength perturbations of relativistic holographic fluids. The most important
ingredient in our construction was the existence of a generalisation of Liouville’s theorem
for classical gravitational and gauge theories. This is essentially captured by the fact that
the Crnkovic-Witten symplectic current is divergence free when evaluated on-shell.

It is worth comparing and contrasting our work with the standard fluid-gravity cor-
respondence. As one would expect, the common ground of both approaches is that the
gravitational and gauge constraints in the bulk serve as the conservation laws of the effective
theory. The input of the gravitational side is the radial equations which fix the constitutive
relations for the stress tensor and the electric currents in terms of the hydrodynamic vari-
ables. Our work has made significant progress by showing that explicit solutions for the
gravitational equations are not required for this task. We achieved this by reformulating
the problem in a way that allowed us to derive the constitutive relations based on general
properties of the background black holes. However, we have achieved this only at a lin-
earised level in the hydrodynamic fluctuations. An important question would be to better
understand how the non-linearities of hydrodynamics could be dealt with in this framework.
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An interesting direction is to apply our techniques in different scenarios as this will
provide the extraction of new transport coefficients. A natural example would be superflu-
ids at finite chemical potential which have more transport coefficients to be fixed [43, 44].
In our previous work [14], we only fixed the transport coefficients of the current sector of
holographic superfluids at zero chemical potential. However, we expect our technique to
be able to fix all transport coefficients of holographic superfluids even at finite chemical
potential. This would necessarily include the stress tensor since it couples to the electric
current at finite density.

Another important application for our techniques is related to critical phenomena and
phase transitions. From the formula (5.16) for the bulk viscosity, it is easy to conclude that
this blows up like (Tc−T )−1 close to the critical temperature Tc. Earlier numerical studies
have revealed similar behaviour of the bulk viscosity near the critical point [45]. This is
very similar to the situation that was noticed in [14] in the context of superfluid phase
transitions at zero chemical potential or in the probe limit at finite chemical potential [43].
This kind of infinity is related to the fact that we have not included the relevant amplitude
mode which becomes gapless at the critical point. It would therefore be interesting to
extend our work on the amplitude mode in order to include it in the effective description
of large but finite wavelength hydrodynamic modes.
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A The first order action

In this appendix we will examine the sum of the bulk action (2.1) and the Gibbons-
Hawking term in the boundary action (2.7). In particular, we will examine the result of
the integration by parts in the bulk leading to an action which only contains first order
partial derivatives of the metric components. This will prove the claim that the first order
form (2.13) for the total action is equivalent to the sum of (2.1) and (2.7), provided the
asymptotic boundary conditions of equation (2.5).

SEH =
∫
M
ddx
√
−g R

=
∫
M
ddx ∂κ

(√
−ggµνΓκµν −

√
−ggµκΓννµ

)
+
∫
M
ddxL(gµν , ∂kgµν)

=
∫
∂M

dd−1x
√
−hnr

(
(gµνΓrµν − gµrΓννµ

)
+
∫
M
ddxL(gµν , ∂kgµν) , (A.1)

where ∂M is the (conformal) boundary hypersurface defined by a constant value of the ra-
dial coordinate r and n = N dr the unit norm normal one-form. The induced metric on the
hypersurface ∂M is hµν = gµν−nµnν and we can decompose our bulk metric according to,

ds2 = N2 dr2 + γac (dxa +Na dr) (dxc +N c dr) (A.2)
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The Gibbons-Hawking term is designed to cancel out the normal derivatives of the
variations of the metric coming from the bulk action,

SGH = 2
∫
r→∞

dd−1x
√
−hK , (A.3)

where Kµν = hµ
λ∇λnν is the extrinsic curature tensor and K = gµν Kµν is its trace. We

can now write the Gibbons-Hawking term as,

SGH =
∫
∂M

dd−1x
√
−h

(
−gµνΓρµνnρ + Γµµσgσρnρ + gµρ∂µnρ + ∂µn

µ
)
. (A.4)

Adding up the bulk action with the boundary term we obtain,

SEH + SGH =
∫
M
ddxL(gµν , ∂kgµν) +

∫
∂M

dd−1x
√
−h (gµρ ∂µnρ + ∂µn

µ)

=
∫
M
ddxL(gµν , ∂kgµν)−

∫
∂M

dd−1x
√
−hN−1 ∂a (Na) , (A.5)

where we use that Nµ∂µ = ∂r − N nµ ∂µ. As we can see, even though the total action
is covariant, the two individual terms are not. The cause of this lies in the fact that we
performed an integration by parts in the second derivative parts of the Ricci tensor and
we showed that the resulting bulk term is covariant up to surface terms which are meant
to be cancelled by the final surface term.

Strictly speaking, the surface term of the action (A.5) is meant to be kept at all
times in order to guarantee diffeomorphism invariance of the theory. However, it will not
contribute to the boundary stress tensor when varying with respect to the boundary metric
γac provided that the shift vector Na decays fast enough and this can always be guaranteed
by an appropriate choice of the bulk coordinate system.

B Bulk integrals

In this appendix we list the bulk integrals that we obtained after integrating the divergence
free condition (3.2) over the bulk.

εBtt=
∫ ∞

0
dr
((
iqk
(
δskt+δvk

)
−iωδklδskl

)(
e2gUS′

)′
−2iωδT

(
e2gUS′∂T g

)′)
,

εBij=δij
∫ ∞

0
dr
((
−iqk

(
δskt+δvk

)
+iωδstt

)(
e2gUS′

)′
+iωδT

(
−∂TU

e2g

U

(
US′

)′+2e2gUS′∂T g
′+Ue2gS′∂Tφ

IΦIJφ
J ′
))
,

εBit=iqi
∫ ∞

0
dr

((
−δklδskl+δstt−2δT∂T g

)(
e2gUS′

)′
−e

2g

U
δT
(
∂TU

(
S′U

)′−U2S′∂Tφ
IΦIJφ

J ′
))
,

εBT =
∫ ∞

0
dr

((
−iqk(δskt+δvk)+iωδklδskl

)(e2g

U
∂TU

(
US′

)′−∂TφIΦIJφ
J ′e2gUS′

)
(B.1)

+2
(
−iqk

(
δskt+δvk

)
+iωδstt

)
∂T g

(
e2gUS′

)′
+2iω

(
−δklδskl+δstt

)
e2gU∂T g

′S′
)
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Moreover, we have the two identities,

Bti = 0 , Bi = Bit , (B.2)

which can be easily obtained by direct evaluation of the symplectic current. Based on the
above expressions, one can show the identities (5.12) by using the ideal fluid equations (4.18)
and performing integrations by parts in order to get rid of the second derivatives of the
function S.

C Constraints for static perturbations

Here we will discuss the constraints which are implied by the divergence free condition (3.2)
of the symplectic current when considered for pairs of the static perturbative solutions
that we discussed in sections 4.1 and 4.2. For this, we need to consider all different pais of
solutions to form the symplectic currents Pµδsµν ,δsρσ , P

µ
δsµν ,δvi

, Pµδsµν ,δT and PµδT ,δvi . In this
paper, these constraints have not been used in our derivations but we list them here for
completeness.

The solutions that enter all these symplectic currents are independent of the boundary
directions and therefore only the radial components of the current will carry non-trivial
information. For these, we can therefore write,

P rδ1,δ2(r) = P rδ1,δ2(r = 0), (C.1)

yielding the constraints,

e2g (U ′ − 2Ug′) = Ts ,

−e2g (−2U ′ ∂T g + 2 g′ ∂TU + 4U ∂T g′ + 4U g′∂T g + U ∂Tφ
I ΦIJ φ

J ′) = T ∂T s ,

e2g (∂TU ′ + 2U ∂T g′ + U ∂Tφ
I ΦIJ φ

J ′) = s . (C.2)

In particular, the first constraint can be found using any of the Pµδstt ,δsii , P
µ
δsti ,δvi

, Pµδsit ,δvi
or Pµδsit ,δsti . The second using Pµδstt ,δT and the third using PµδT ,δsii .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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