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Magnetic Feshbach resonances between atoms in 2S and 3P0 states:
Mechanisms and dependence on atomic properties
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Magnetically tunable Feshbach resonances exist in ultracold collisions between atoms in 2S and 3P0 states,
such as an alkali-metal atom colliding with Yb or Sr in a clock state. We investigate the mechanisms of these
resonances and identify the terms in the collision Hamiltonian responsible for them. They involve indirect
coupling between the open and closed channels, via intermediate channels involving atoms in 3P1 states. The
resonance widths are generally proportional to the square of the magnetic field and are strongly enhanced when
the magnitude of the background scattering length is large. For any given pair of atoms, the scattering length
can be tuned discretely by choosing different isotopes of the 3P0 atom. For each combination of an alkali-metal
atom and either Yb or Sr, we consider the prospects of finding an isotopic combination that has both a large
background scattering length and resonances at a high but experimentally accessible field. We conclude that
87Rb +Yb, Cs+Yb, and 85Rb +Sr are particularly promising combinations.
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I. INTRODUCTION

There is currently growing interest in forming ultracold
molecules containing an alkali-metal atom and an atom such
as Sr, Yb, or Hg with a closed-shell ground state. These
molecules are paramagnetic in nature and have strong electric
dipole moments. Such molecules have potential applications
in quantum many-body systems [1], quantum simulation and
quantum information [2,3], precision measurement [4], test-
ing of fundamental symmetries [5], and tuning of collisions
and chemical reactions [6,7].

There are two approaches that have been successful in pro-
ducing samples of ultracold molecules. A few molecules, such
as CaF and SrF, have been cooled to ultracold temperatures by
a combination of helium buffer-gas cooling and laser cooling
[8]. However, this approach is applicable only for molecules
with near-diagonal Franck-Condon factors, which permit a
nearly closed cycle of laser absorption and emission. A wider
range of ultracold molecules has been produced from ultra-
cold atoms, by either photoassociation or magnetoassociation,
followed by laser transfer to the rovibrational ground state.
In magnetoassociation, molecules are produced by sweeping
a magnetic field adiabatically across a magnetic Feshbach
resonance, where a molecular state crosses a state of the
free atomic pair as a function of magnetic field [9,10]. This
approach has now been applied to many different molecules,
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though it is limited to those formed from atoms that are them-
selves coolable to ultracold temperatures.

Mixtures of alkali-metal and closed-shell (1S) atoms pos-
sess magnetic Feshbach resonances, but they are sparse in
magnetic field, often occurring at magnetic fields that are
too high to be experimentally accessible. They are also very
narrow, because the molecular state is coupled to the atomic
pair state by only the distance dependence of the atomic
hyperfine interaction [11–14]. Much experimental work has
been devoted to locating and observing Feshbach resonances
of this type [15–28]. They have now been observed for both
bosonic and fermionic isotopes of Sr interacting with Rb [25],
for fermionic 173Yb interacting with 6Li [27], and for 173Yb
interacting with Cs [28]. However, attempts to use them to
form ultracold molecules by magnetoassociation have so far
been unsuccessful.

We have recently proposed using alkaline-earth atoms [29]
in their excited 3P states, rather than their ground states,
for initial molecule formation [30]. Ultracold samples of Sr
and Yb are readily prepared in their metastable 3P2 and
3P0 states. An atom in a 3P state interacts with one in a
2S state to form multiple molecular electronic states, and
the resulting spin-dependent and anisotropic interactions pro-
vide additional mechanisms for Feshbach resonances. For
Rb + Yb(3P), we carried out coupled-channel calculations
as a function of magnetic field to characterize the magnetic
Feshbach resonances and the bound and quasibound states as-
sociated with them. For Rb + Yb(3P2), we showed that broad
Feshbach resonances exist, but that molecules formed at them
are likely to decay in a few microseconds to form Yb atoms in
3P0 and 3P1 states. For Rb + Yb(3P0), however, the molecules
are stable except for decay to Yb(1S) combined with Rb(2S) or
Rb(2P), and such processes are expected to be much slower.
The resonances at the Rb + Yb(3P0) threshold are typically
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broader than those for Rb + Yb(1S), and there are additional
resonances involving rotationally excited (d-wave) molecular
states. At the 3P0 threshold, by contrast with 1S, resonances
due to d-wave states can exist even for isotopes of Sr or Yb
without nuclear spin.

The purpose of the present paper is to investigate the mech-
anisms responsible for resonances between atoms in 2S and
3P0 states, and explore how the resonances depend on the
properties of the atoms. The hyperfine splitting of the 2S atom
and the spin-orbit splitting of the 3P atom vary greatly be-
tween species. As a result, the levels that can cause Feshbach
resonances have different vibrational quantum numbers, and
the couplings between the states have quite different effects.

The structure of the paper is as follows. Section II in-
troduces the interaction potentials, describes our theoretical
methods, and considers the selection rules for different terms
in the collision Hamiltonian. Section III investigates the de-
pendence of the widths on magnetic field, atomic properties,
and background scattering lengths for resonances due to both
s-wave and d-wave bound states. Section IV considers which
combinations of alkali-metal and 3P0 atoms are most likely
to have resonances wide enough to observe at experimentally
accessible fields. Finally, Sec. V presents conclusions and
perspectives.

II. THEORY

A. Electronic structure and potential curves

We consider the interaction of an atom in a 2S state (atom
1) with one in a 3P state (atom 2). In the absence of spin-
orbit coupling, the interaction produces four spin-orbit-free
electronic states of symmetry 2�, 2�, 4�, and 4�, labeled by
their spin multiplicity 2S + 1 and the projection � = 0 (�) or
±1 (�) of the orbital angular momentum onto the molecular
axis. The spin-orbit interaction splits the 3P state of the iso-
lated atom into three components with total electronic angular
momentum j = 0, 1, and 2. At short range, it splits the molec-
ular 2� state into components with � = 1/2 and 3/2 and the
4� state into components with � = 1/2, 1/2, 3/2, and 5/2,
with 1/2 appearing twice because � is the magnitude of the
projection of the total electronic angular momentum (orbital
and spin) onto the molecular axis. There are a total of nine
electronic states arising from 2S + 3P: Five with � = 1/2,
three with � = 3/2, and one with � = 5/2. The spin-orbit
coupling mixes different states with different S and/or � but
the same �.

Coupled-channel calculations on these systems require
couplings between the electronic states as well as the potential
curves themselves. For this, it is most convenient to define
potential curves for the 2�, 2�, 4�, and 4� states, exclud-
ing spin-orbit coupling so that S and � are conserved. The
couplings between the states are then provided by separate
spin-orbit coupling operators, which may depend on the inter-
nuclear distance R. Suitable spin-orbit-free curves have been
obtained directly from correlated electronic-structure calcu-
lations for the ground and excited states of Li+Yb [31] and
Rb+Sr [32,33]. For Rb+Yb [34] and Cs+Yb [35], the pub-
lished curves include spin-orbit coupling, and in Ref. [30] we
fitted the curves for Rb+Yb to obtain spin-orbit-free curves

FIG. 1. Potential-energy curves for Rb + Yb(3P) [30]. (a) Adia-
batic curves including spin-orbit coupling; (b) spin-orbit-free curves;
(c) spin-averaged and spin-difference curves. The R-dependent spin-
orbit coupling functions used in Ref. [30] are not used in the present
work, so are not shown.

and R-dependent spin-orbit couplings; the results are shown in
Fig. 1 for illustration. The spin-orbit-free curves for the other
systems considered here show the same general features.

The electronic interaction operator may be written

V̂elec(R, ξ ) =
∑
S,�

V S
� (R)V̂S

�(ξ ) + V̂so(R, ξ ), (1)

where ξ represents the electronic orbital and spin degrees
of freedom. V̂so(R, ξ ) represents an R-dependent contribution
to the spin-orbit coupling, excluding the contribution from
the free atom. The operators V̂S

�(ξ ) = |2S+1�〉〈2S+1�| project
onto states with well-defined values of S and �.
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To understand the couplings responsible for Feshbach reso-
nances, it is useful to represent the interaction potentials for �

and � states in terms of isotropic and anisotropic components,
V0 and V2, for each total spin, S = 1/2 (doublet) and S = 3/2
(quartet) [36],

V S
0 (R) = 1

3

(
V S

� (R) + 2V S
�(R)

)
, (2)

V S
2 (R) = 5

3

(
V S

� (R) − V S
�(R)

)
. (3)

It is also useful to define averages and differences of the
potential curves for the doublet and quartet states, S = 1/2
and 3/2,

V ±
κ (R) = 1

2

(
V 1/2

κ (R) ± V 3/2
κ (R)

)
, (4)

where κ = 0, 2. The resulting combinations of potential
curves for Rb+Yb are shown in Fig. 1(c). The corresponding
operators may be written V̂ ±

κ (R, ξ ), with spin-dependent parts
V̂±

κ (ξ ), so that the interaction operator of Eq. (1) is

V̂elec(R, ξ ) =
∑

±,κ=0,2

V̂ ±
κ (R, ξ ) + V̂so(R, ξ )

=
∑

±,κ=0,2

V ±
κ (R)V̂±

κ (ξ ) + V̂so(R, ξ ). (5)

This representation is convenient because the operators V̂±
κ (ξ )

have simple selection rules in the angular-momentum basis
sets described below.

B. Coupled-channel methods

The Hamiltonian of the interacting pair of atoms is

Ĥ = − h̄2

2μ
R−1 d2

dR2
R + h̄2L̂2

2μR2
+ Ĥ1 + Ĥ2

+ V̂elec(R, ξ ) + V̂ d(R, ξ ). (6)

Here the first term describes the kinetic energy with respect
to the internuclear distance R, while h̄2L̂2/2μR2 is the cen-
trifugal term that describes the end-over-end rotation of the
interacting pair. Ĥ1 and Ĥ2 are the Hamiltonians of the isolated
2S and 3P atoms, including Zeeman terms for a magnetic field
B along the z axis,

Ĥ1 = ζ1 î1 · ŝ1 + (gs,1ŝ1,z + giî1,z )μBB, (7)

Ĥ2 = a2 l̂2 · ŝ2 + a(1)
2 δ j1 + (l̂2,z + gs,2ŝ2,z )μBB. (8)

Here ŝ1 and î1 are the vector operators for the electron and
nuclear spin angular momenta of the 2S atom, with compo-
nents along z indicated by subscript z, and ζ1 is its hyperfine
coupling constant. l̂2 and ŝ2 are the vector operators for the
electron orbital and spin angular momentum of the 3P atom,
a2 is its spin-orbit coupling constant, and a(1)

2 is a correction
(usually small) for the effects of j j-coupling. gs,1 and gs,2

are the g-factors for the electron spins, and gi is that for
the nuclear spin of the 2S atom. V̂elec(R, ξ ) is the electronic
interaction operator of Eq. (5), and V̂ d(R, ξ ) represents the
magnetic dipole-dipole interaction between the electron spins
on the two atoms. A nonzero nuclear spin for the 3P atom
and R-dependent contributions to hyperfine couplings could

be added straightforwardly, but they are not included in the
present work.

We carry out coupled-channel bound-state and scattering
calculations as described in Ref. [30]. The bound-state calcu-
lations are performed using the packages BOUND and FIELD

[37,38], which converge upon bound-state energies at fixed
field, or bound-state fields at fixed energy, respectively. The
methods used for bound states are described in Ref. [39].
The scattering calculations are performed using the package
MOLSCAT [38,40], which has special features for automatically
converging on and finding the parameters of Feshbach reso-
nances. All three packages use the same plug-in routines for
basis sets and interaction operators. The basis sets, propaga-
tors, and convergence parameters used here are the same as in
Ref. [30].

C. Angular momenta and selection rules

There are five sources of angular momentum in a colliding
pair, with quantum numbers s1, i1, l2, s2, and L, correspond-
ing to the operators defined above. The separated atoms
are best represented by quantum numbers (s1, i1) f , m f and
(l2, s2) j, mj , where the notation (a, b)c indicates that c is the
resultant of a and b, and mc is the projection of c onto the
z axis.

To understand the couplings that produce Feshbach reso-
nances, we use a basis set of eigenfunctions of the atomic
Hamiltonians, Eqs. (7) and (8), and L̂2. These are field-dressed
functions, but they are conveniently expanded in zero-field
functions | f , m f 〉, | j, mj〉, and |L, ML〉. Since the Zeeman
terms are diagonal in L, ML, m f , and mj and have matrix
elements off-diagonal in j or f by only ±1, the expansions
are simple.

All the operators in the Hamiltonian (6) conserve Mtot =
m f + mj + ML. V̂ +

0 is entirely diagonal. V̂ −
0 can change f

and/or j by 1; it can change m f and mj by 0,±1 while
conserving m f + mj . V̂ +

2 can change j and/or L by 0 or 2
but has no matrix elements from 0 to 0; it can change mj and
ML by 0,±1,±2 while conserving mj + ML. V̂ −

2 combines
the selection rules of V̂ −

0 and V̂ +
2 , conserving only Mtot.

III. DEPENDENCE OF RESONANCE WIDTHS ON ATOMIC
PROPERTIES AND MAGNETIC FIELD

When a molecular bound state crosses a scattering thresh-
old as a function of magnetic field, it produces a magnetically
tunable Feshbach resonance. In the absence of inelastic scat-
tering, this is characterized by a pole in the s-wave scattering
length a(B),

a(B) = abg

(
1 − 


B − Bres

)
, (9)

where Bres is the position of the resonance, 
 is its width,
and abg is a background scattering length that varies slowly
with B.

Fermi’s Golden Rule gives an approximate expression for
the energy width �E of a state that lies above an open channel,

�E = 2π |〈α, n|Ĥ ′(R, ξ )|β, k〉|2. (10)
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Here 〈α, n| represents a bound state n in closed channel α,
|β, k〉 represents a scattering state with wave vector k in open
channel β, and Ĥ ′(R, ξ ) = H ′(R)Ĥ′(ξ ) is the operator that
couples the channels and causes the resonance. The scatter-
ing state is normalized to a δ-function of energy and has
asymptotic amplitude (2μ/π h̄2k)1/2. At limitingly low colli-
sion energy Ecoll = h̄2k2/2μ, �E depends on k as [41]

�E (k)
k→0−−→ 2kabg�0, (11)

where �0 is independent of energy. The width of the resonance
in a(B) is


 = �0

δμres
, (12)

where δμres is the difference between the magnetic moment
of the molecular bound state and that of the free atom pair.
The expression for 
 factorizes into spin-dependent and radial
terms,


 = π |〈α|Ĥ′|β〉|2I2
nk

kabgδμres
, (13)

where

Ink =
∫ ∞

0
ψn(R)H ′(R)ψk (R) dR, (14)

and R−1ψn(R) and R−1ψk (R) are the radial parts of the bound-
state and scattering wave functions. It should be noted that the
Golden Rule may produce overestimates of the widths in cases
in which Ĥ ′(R, ξ ) is too large to act perturbatively.

The factor of abg in the denominator of Eq. (13) produces
large values of 
 when abg is small. However, these large
values are unphysical, because the strength of the pole in
Eq. (9) is actually abg
. It is thus convenient to define a
normalized width 
̄ = (abg/ā)
 [14], where ā is the mean
scattering length of Gribakin and Flambaum [42], which is
82.8a0 for 87Rb + 174Yb.

If the effective interaction potentials for the incoming and
resonant channels are closely parallel to one another, and the
operator Ĥ ′(R, ξ ) acts principally at short range, Ink produces
a simple dependence of 
 on abg for the incoming channel
and the binding energy En of the bound state with respect to
the threshold that supports it [13]. The dependence on abg

can be explained with quantum defect theory (QDT). Near
threshold, the amplitude of the scattering wave function is
proportional to the QDT function C(k)−1 [43]. The width is
thus proportional to C(k)−2, which near threshold is [44,45]

C(k)−2 = kā

[
1 +

(
1 − abg

ā

)2]
. (15)

The function has a minimum value of kā when abg = ā but is
approximately ka2

bg/ā when |abg| � ā. The dependence on En

arises from the behavior of near-dissociation vibrational states
[46]. For an interaction potential that varies asymptotically
as −C6R−6, as here, the amplitude of the wave function at
short range is proportional to E1/3

n , so that 
 is proportional to
E2/3

n [13].
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FIG. 2. Level diagram for 87Rb + 174Yb(3P0) with the unscaled
interaction potential. The heavy black lines show the hyperfine
thresholds for f = 1 and 2. Molecular levels with L = 0 are shown in
blue for f = 1 and red for f = 2, labeled with vibrational quantum
number n. Crossings that cause Feshbach resonances are indicated
with circles. Levels with n = −1 are too close to threshold to be
visible.

A. Resonant states with Lres = 0

In considering resonance widths, it is helpful to identify
quantum numbers associated with the incoming channel by a
subscript “in” and those associated with the resonant bound or
quasibound state by a subscript “res.” In the present work, we
are concerned with s-wave scattering, Lin = 0.

A typical level diagram showing thresholds and potentially
resonant states for 87Rb +Yb(3P0) is shown in Fig. 2. The
energies of the thresholds for f = 1 and 2 are shown as
black lines. Each threshold supports a set of near-threshold
vibrational levels, labeled by quantum number n = −1, −2,
counted downwards from the threshold that supports them.
The rotationless states (s-wave states, Lres = 0) supported by
the thresholds for f = 1 are shown as blue lines. There is only
very weak mixing between different channels with j = 0,
and each bound or quasibound state is very nearly parallel to
the threshold that supports it as a function of magnetic field
B. Resonant states with quantum numbers ( fres, m f ,res) thus
do not cross thresholds with ( fin, m f ,in ) = ( fres, m f ,res). Such
states can cross thresholds with fin = fres but m f ,in �= m f ,res.
However, when j = 0 and L = 0, Mtot = m f ; no combination
of the operators above can couple channels with different Mtot,
so such crossings do not produce Feshbach resonances.

There are also states arising from the upper hyperfine
threshold, f = 2 for 87Rb, shown as red lines in Fig. 2. For
the unscaled potential shown in Fig. 1, the states with f = 2
and n = −5 lie about 11 GHz below the thresholds for f =
2 at zero field, so 4 GHz below the thresholds for f = 1.
States with ( fres, m f ,res) can cross thresholds with fin �= fres

but m f ,in = m f ,res, and these crossings do produce Feshbach
resonances (red circles in Fig. 2).

To understand the coupling responsible for these reso-
nances, consider the channel basis functions involved at the
incoming and resonant thresholds. For example, for 87Rb +Yb
at the lowest threshold, the Rb function is predominantly
( f , m f ) = (1, 1), but with an admixture of (2,1) proportional
to B/A1 at low field, where A1 = ζ1(i1 + 1

2 ) is the hyperfine
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FIG. 3. Mechanism of the resonance in the incoming channel
( fin, mf ,in ) = (1, 1) for 87Rb +Yb(3P0), due to a bound state with
( fres, mf ,res ) = (2, 1) and Lres = 0. Components of the channel func-
tions, designated by ( f , mf , j, mj ), are shown for the incoming and
resonant channels, together with the matrix elements between them
that drive the resonance.

splitting. The Yb function is predominantly ( j, mj ) = (0, 0),
with an admixture of (1,0) proportional to B/a2. The channel
function for the pair thus has four components ( f , m f , j, mj ),
as shown in the top row of Fig. 3; the component propor-
tional to B2 is small at low fields. Conversely, the channel
function for the resonant channel is made up of the same
four components, but with different amplitudes as shown in
the bottom row of Fig. 3. The operator V̂ −

0 has direct matrix
elements between the (1,1,0,0) and (2,1,1,0) components and
between the (1,1,1,0) and (2,1,0,0) components, as shown by
the diagonal arrows in Fig. 3. These provide an overall matrix
element between the incoming and resonant channels propor-
tional to B/a2 in the Golden Rule expression (10). There is
no B-independent contribution to the matrix element because
f , j, and L couple to produce the total angular momentum
F , which is conserved at zero field; for L = 0, Fin = 1 and
Fres = 2, so no B-independent term can couple them. The
resulting widths �E and 
 are proportional to B2 at low field
and approximately inversely proportional to a2

2, although the
latter breaks down for small a2 because V̂ −

0 is too strong to act
perturbatively at short range. None of the other operators V̂ +

2 ,
V̂ −

2 , or V̂ d have any matrix elements between the functions
of Fig. 3. The operator V̂so can also have matrix elements
between the same components as V̂ −

0 , but they are usually
much smaller.

There are additional couplings between the functions of
Fig. 3 due to the R-dependence of the hyperfine coupling. This
is characterized by an additional interaction operator of the
form 
ζ1(R)î1 · ŝ1, where

ζ1(R) = ζ1 + 
ζ1(R). (16)

This is exactly analogous to Mechanism I for interaction of an
atom in a 2S state with one in a 1S state [11,14,25] which is
due to a similar term 
ζ1(R) in the hyperfine coupling. These
matrix elements are included as vertical arrows in Fig. 3, but
for 3P0 states V̂ −

0 is much stronger.
To verify that couplings involving V̂ −

0 are dominant, we
have carried out coupled-channel calculations using a sim-
plified Hamiltonian that omits V̂ +

2 , V̂ −
2 , V̂so, and V̂ d, leaving

only V̂ +
0 , V̂ −

0 , and the R-independent atomic terms (7) and

FIG. 4. Positions Bres (dashed lines) and normalized widths 
̄

(symbols) for resonances with Lres = 0, using the full (red) and
simplified (blue) Hamiltonians. The quantity frac(vD) is related to
abg through Eq. (17). The positions and widths are calculated for
87Rb + 174Yb, but would be very similar for a different isotope of
Yb for an interaction potential scaled to give the same abg.

(8). Figure 4 compares the position and width of the reso-
nance at the lowest threshold, obtained from coupled-channel
calculations using the full and simplified Hamiltonians; they
are shown as a function of the background scattering length in
the incoming channel, which in each case is adjusted with a
small overall scaling λscl of the interaction potential (less than
1% change) as in Ref. [30]. Since abg passes through a pole as
a function of λscl, we linearize the horizontal axis by plotting
the curves as a function of the fractional part of the vibrational
quantum number at threshold [47],

frac(vD) = tan−1(1 − abg/ā)

π
+ 1

2
; (17)

this is 0 when abg = ∞ and 1
2 when abg = ā. The resonance

positions and widths are very similar for the full and simpli-
fied Hamiltonians.

The resonance position depends on abg because the zero-
field binding energies En are functions of abg. If λscl is chosen
so that abg = ∞, and small shifts due to V̂ −

0 are neglected,
the least-bound state (n = −1) for each channel lies exactly at
the threshold for that channel, with binding energy E−1 = 0.
If λscl increases, so that the potential becomes deeper, abg

decreases from +∞ and all the states n become more deeply
bound. As λscl increases further, abg approaches −∞ and
passes through a pole; a new state then enters the potential
from above, and the cycle repeats. For 87Rb +Yb(3P0), the
zero-field states with fres = 2, n = −5 cross the thresholds
for fin = 1 when abg = 92.5 a0. At that point, the states with
m f ,res = +1, 0, and −1 all cross the corresponding thresholds
with fin = 1 at B = 0. As abg decreases from this value, the
binding energies increase, so that the crossings shift to higher
field.

The resonance width depends on abg through a combina-
tion of several effects. First, it is approximately proportional
to B2

res because of the contribution of channels with j = 1 as
described above. Secondly, it depends on abg through Eq. (15),
with a pronounced peak around abg = ∞, corresponding to
frac(vD) = 0. Lastly, there is a (relatively weak) dependence
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FIG. 5. Dependence of the width of the resonance in Fig. 4 on
B2

res. The dashed line shows a fit proportional to B2
res to the widths at

low fields.

on the binding energy E−5, which varies from 7.1 to 10.8 GHz
across the range shown in Fig. 4.

Figure 5 shows the calculated widths as a function of B2
res,

with the resonance position tuned using λscl as in Fig. 4. The
widths are proportional to B2

res at low field, but they deviate
at higher Bres, both because of the dependence on abg through
Eqs. (13) and (15) and because the mixing of f = 1 and 2 is
nonlinear in B at higher fields.

B. Resonant states with Lres = 2

The resonances due to states with Lres = 2 (d-wave states)
are considerably more complicated. Figure 6 shows the cross-
ings between bound states and thresholds for Rb + 172Yb with
the unscaled interaction potential. In this case, the states with
Lres = 0 are less deeply bound than those for Rb + 174Yb in
Fig. 2, so they cause resonances at lower fields, as shown by
circles in Fig. 6 [48]. The states with Lres = 2 are almost par-
allel to them as a function of B and slightly higher in energy.
However, they produce a more extensive set of resonances

FIG. 6. Level crossing diagram for 87Rb + 172Yb(3P0) with the
unscaled interaction potential. The heavy black lines show the hyper-
fine thresholds for f = 1. The quantum numbers f and n are given on
the left-hand side for each manifold of molecular levels (thin colored
lines, solid for L = 0 and dashed for L = 2). Crossings that cause
Feshbach resonances are indicated with symbols as described in
the text.

FIG. 7. Positions Bres (dashed lines) and normalized widths 
̄

(circles) for resonances with ( fres, mf ,res, jres, mj,res, Lres, ML,res ) =
(2, 2, 0, 0, 2, −1). The quantity frac(vD) is related to abg through
Eq. (17). The positions and widths are calculated for 87Rb + 174Yb
using the full Hamiltonian.

in s-wave scattering (Lin = 0) because conservation of Mtot

can be achieved with |m f ,res − m f ,in| = 0, 1, or 2, with the
change in m f compensated by a change in ML. The crossings
that produce such resonances are indicated with triangles in
Fig. 6. They can exist even for spin-zero isotopes of atoms
in 3P0 states; this contrasts with the situation for atoms in 1S
states, where resonances due to states with Lres = 2 exist only
for isotopes with nuclear spin [12,14].

Figure 7 shows the calculated resonance positions and
widths for ( fres, m f ,res, Lres, ML,res) = (2, 2, 2,−1). The res-
onance widths show a similar general dependence on abg to
those for Lres = 0 in Fig. 4, peaking at large values of |abg|.

The lowest-order coupling between the incoming and res-
onant states is due to the Zeeman term combined with V̂ −

2 .
The compositions of the field-dressed incoming and resonant
states, and the couplings between their components due to V̂ −

2 ,
are shown in Fig. 8. In addition to the direct couplings shown,
there are indirect couplings involving the combination of V̂ +

2
and V̂ −

0 via additional intermediate states. Furthermore, for

FIG. 8. Mechanisms of resonances in the incoming channel
( fin, mf ,in ) = (1, 1) for 87Rb +Yb(3P0), due to bound states with
Lres = 2. Components of the channel functions, designated by
( f , mf , j, mj, L, ML ), are shown for the incoming and resonant chan-
nels, together with the matrix elements between them that drive the
resonances. State compositions are shown for resonant states in both
the lower hyperfine manifold, with ( fres, mf ,res ) = (1, 0), and in the
upper hyperfine manifold, with ( fres, mf ,res ) = (2, 0).
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Lres = 2 there are B-independent terms that can contribute to

: these exist even at zero field because the incoming total
angular momentum Fin is 1, and jres = 0, fres and Lres = 2
can couple to give several values of Fres that include 1. How-
ever, their contributions are very small, and 
 is dominated
by terms proportional to B2 at the fields of interest, as for
Lres = 0.

Molecules formed below the Yb(3P0) thresholds cannot
decay by the mechanisms included in our model, so they
have infinite lifetime in the present calculations. There are
nevertheless two mechanisms by which they can decay: radi-
ationless decay to form Rb(2P)+Yb(1S) or Rb(2S)+Yb(1S),
and radiative decay to form Rb(2S)+Yb(1S). The rate of the
radiationless processes is very hard to estimate because they
involve spin-orbit coupling matrix elements that cannot be
extracted reliably from the electronic structure calculations
of Ref. [34]. Nevertheless, such processes are expected to be
slow because of the large kinetic energy releases involved. In
addition, we can estimate the rate of radiative decay. Bound
states below the Yb(3P0) thresholds have some 3P1 character
at short range due to the couplings involving V̂ −

0 and V̂ −
2 .

The lifetime of the bound state will be approximately τmol =
τat/p1, where τat is the radiative lifetime of Yb(3P1) and p1

is the fraction of 3P1 character in the bound state. We obtain
p1 = 4.79 × 10−3 from coupled-channel calculations of the
bound-state wave function below the resonance at 2070 G for
the unscaled potential. Together with τat = 850 ns [49], this
gives τmol = 0.18 ms. This is not a quantitative prediction, but
nevertheless indicates that radiative decay will be very slow.

IV. LIKELIHOOD OF WIDE RESONANCES
AT MODERATE MAGNETIC FIELD

A major purpose of the present paper is to consider the
relative widths expected for resonances in systems containing
different 2S and 3P atoms. For the 2S atoms we consider the
alkali-metal atoms from Li to Cs (nine isotopes in total), and
for the 3P atoms we consider Yb and Sr, both of which have
multiple spin-0 isotopes.

Current cold-atom experiments can comfortably reach
magnetic fields around 1000 G, but fields of 2000 G or more
are experimentally challenging, particularly when precise
field control is needed. Since the resonance widths contain a
factor proportional to B2, it is highly desirable to find systems
where resonances appear in a Goldilocks zone, with a field
neither too high nor too low.

Similar considerations apply to abg. The largest widths
occur when |abg| is large, but large positive abg may prevent
mixing of condensates, while large negative abg may cause
condensate collapse. These issues can be circumvented by
loading the atoms into an optical lattice or tweezers, but
such approaches are challenging in themselves. As described
above, there is also a close connection between abg and the
binding energies En of near-threshold states, which gives rise
to a connection between abg and the fields at which resonances
occur. We cannot predict abg from theory alone; it must be
determined from experiments. However, since the two effects
described both depend on abg, we can determine whether there
are ranges of abg for which they are simultaneously favorable
for a given system. Even if the region of the enhancement is

FIG. 9. (a) Energy levels of 2S +Yb(3P0) systems, in reduced
energy units Ē , for different alkali-metal atoms. Colored horizon-
tal lines represent the energy of the lower hyperfine level of each
alkali-metal isotope, relative to the upper level. The shaded regions
are 2 GHz deep below the lower threshold, and they correspond to
regions of binding energy where resonances would be expected at
fields below about 1000 G; the opacity increases with binding energy
below the lower threshold, so that deeper colors indicate higher fields
that will increase resonance widths. (b) Similar plot for 2S +Sr(3P0)
systems. In both cases, 41K is omitted because it obscures the band
for 39K, but a version of the figure including 41K instead of 39K is
given in the Supplemental Material [50].

quite narrow, abg can be tuned to some extent by choosing
different isotopes of the 3P atom.

For a single-channel system with an asymptotic potential
−C6R−6, there is always a single s-wave bound state (with
n = −1) within ∼36Ē of threshold, where Ē = h̄2/(2μā2).
This is known as the “top bin,” and its width depends on only
the reduced mass μ and the C6 coefficient, but the position
of the bound state within the bin depends on frac(vD) (or
equivalently on abg). There are similar bins for n < −1, with
depths approximately proportional to (n + 1

8 )3. The quantity
(En/Ē )1/3 is linear as a function of frac(vD) [46], with a small
deviation near threshold [42,51]. This is shown as a solid line
in Fig. 9 for a pure C6 potential, with a hard wall to adjust vD.
The corresponding quantity for d-wave states is shown as a
dashed line. The binding energies are system-independent to
the extent that the long-range potential can be represented by
C6 alone, with all the scaling encapsulated by different values
of Ē .

The positions of resonances also involve the hyperfine
splitting of the alkali-metal atom. This brings in a different
energy scale and introduces system dependence. In Fig. 9 the
hyperfine splitting is shown by a horizontal colored line for
each alkali-metal isotope, scaled by the appropriate Ē . The
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TABLE I. Dispersion coefficients C6, mean scattering lengths ā, and corresponding energies Ē for combinations of alkali-metal atoms with
Yb and Sr in 3P0 states. Values are given for 172Yb and 86Sr, but are very similar for other isotopes. Also given is the magnetic field B2 GHz at
which the two hyperfine states of the alkali-metal atom with mf = i − 1

2 (or −i + 1
2 for 40K) are separated by 2 GHz more than at zero field.

172Yb 86Sr

C6 (Eha6
0) ā (a0) Ē/h (MHz) C6 (Eha6

0) ā (a0) Ē/h (MHz) B2 GHz (G)

6Li 2313 40.0 194 2620 40.9 192 760
7Li 2313 41.5 155 2620 42.4 155 830
23Na 2427 55.3 29.1 2724 55.4 32.4 910
39K 3888 69.6 11.7 4442 69.0 14.1 780
40K 3888 70.0 11.4 4442 69.3 13.8 780
41K 3888 70.3 11.0 4442 69.6 13.4 760
85Rb 4266 82.4 4.67 4874 79.3 6.71 880
87Rb 4266 82.7 4.57 4874 79.6 6.60 1120
133Cs 5158 92.6 2.81 5928 87.6 4.51 890

values of Ē are calculated using values of C6 from Tang’s
combining rule [52] together with atomic polarizabilities and
homonuclear C6 coefficients [53–56]. The values of C6, ā,
and Ē are given in Table I. In this representation, the bound
states are those from channels of the upper hyperfine state, and
the horizontal lines are the zero-field energies of the lower
hyperfine state. Low-field resonances for a specific system
thus occur for values of frac(vD), where there is a bound state
just below its corresponding horizontal line. However, dis-
tances below the horizontal lines scale differently for different
systems, due to both the E1/3

n scaling of the axis and different
values of Ē . We therefore also show shaded regions covering
2 GHz below each line, placed to show where there is a state in
this window. For 87Rb, a state at the bottom of this region will
cause a resonance with m f ,res = m f ,in = 1 at about 1120 G;
the corresponding field for other alkali-metal isotopes is in-
cluded in Table I. The d-wave states (dashed lines in Fig. 9)
are close to the corresponding s-wave states on this scale, so
they will cause resonances for similar ranges of abg. They will
cause additional resonances with m f ,res > m f ,in at somewhat
lower magnetic fields, which may be more accessible.

The most favorable resonances will occur when both |abg|
and Bres are large but not too large. On Fig. 9, the former
occurs near either end of the horizontal axis, while the latter
corresponds to regions near the right-hand (darker) end of
the appropriate shaded bar. For the Yb systems [Fig. 9(a)],
it can be seen that there are regions that match both these
criteria well for 40K, 87Rb, and 133Cs; for the Sr systems
[Fig. 9(b)], 40K and 85Rb look the most promising, although
the right-hand edges of the shaded regions shown in Fig. 9(b)
correspond to large negative scattering lengths, which may
pose experimental challenges.

Higher-order terms in the potentials will also affect these
results, particularly for the deeper states. Inclusion of the
next two dispersion terms −C8R−8 − C10R−10 with plausible
strengths shifts the crossing point for 133Cs +Yb to lower vD

by about 0.1 and proportionately less for lighter atoms.
We now consider how much vD, or equivalently abg, can

be tuned for different systems by changing the isotope of the
3P atom. Yb has stable isotopes from 168Yb to 176Yb and Sr
from 84Sr to 88Sr. vD is approximately proportional to μ1/2.
Table II shows the tuning of reduced mass, and the percentage
tuning of vD possible for various systems. This demonstrates

the degree to which a large mass ratio between 2S and 3P
atoms inhibits the possible tuning. The present potential for
Rb + Yb(3P0) supports 136 bound states, so varying the Yb
isotope allows tuning of vD by ∼1.1, covering more than
a full cycle of scattering length. Interaction potentials and
numbers of bound states are unavailable for most other sys-
tems. However, by analogy with the potentials for alkali-metal
atoms with ground-state Yb [13], we expect that the number of
bound states, and thus the tuning, will be significantly smaller
for the lighter atoms. This again emphasizes the benefit of
working with the heavier 2S atoms when substantial tuning
of the scattering length with isotope is desired.

V. CONCLUSIONS

We have investigated the mechanisms of magnetically tun-
able Feshbach resonances between alkali-metal atoms and
atoms such as Yb and Sr in 3P0 states. We have found that
resonances due to s-wave bound states are driven by a combi-
nation of the Zeeman effect and a component of the potential
V̂ −

0 that characterizes the isotropic part of the difference be-
tween the singlet and triplet electronic states. Because of this,
the widths of the resonances are to a good approximation
quadratic in magnetic field B. We have also investigated the
dependence of the widths on the background scattering length

TABLE II. Variation 
μ of reduced mass across the range of
available isotopes for Yb and Sr, together with the resulting change
in 
vD/vD, for different alkali-metal atoms.

168Yb to 176Yb 84Sr to 88Sr


μ (u) 
vD/vD (%) 
μ (u) 
vD/vD (%)

6Li 0.01 0.08 0.02 0.15
7Li 0.01 0.09 0.02 0.18
23Na 0.11 0.28 0.18 0.49
39K 0.27 0.43 0.39 0.73
40K 0.28 0.44 0.40 0.74
41K 0.30 0.45 0.42 0.75
85Rb 0.88 0.77 0.99 1.16
87Rb 0.90 0.79 1.01 1.18
133Cs 1.52 1.02 1.47 1.42
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abg; there is a very strong dependence, peaking when the
magnitude of abg is large.

Resonances due to d-wave bound states can also occur, and
there are more of them than those due to s-wave states. Their
mechanisms are more complicated, but they are mostly driven
by an analogous mechanism involving the anisotropic part of
the difference potential, V̂ −

2 . Their widths have generally a
similar dependence on magnetic field and abg.

The mechanisms for both s-wave and d-wave states involve
mixing between 3P0 and 3P1 states due to the difference po-
tential. The resonances are therefore generally expected to be
broader for Sr than for Yb, because of its smaller spin-orbit
splitting.

The resonances are generally narrow except when they
occur for an isotopic combination with a large magnitude of
abg. Fortunately, both Sr and Yb have several isotopes, and
the differing reduced masses offer some discrete tuning of
abg. We have quantified the extent of this tuning: for heavier
alkali-metal atoms (Rb and Cs), abg can be tuned over most or
all of a complete cycle from +∞ to −∞.

A further consideration involves the magnetic field. The
broadest resonances occur at large B. However, precise
magnetic field control is experimentally challenging at fields
much above 1000 G. We have developed a quantitative pic-

ture, based on the pattern of near-threshold levels, to identify
combinations of alkali-metal and 3P atoms that can have large
background scattering lengths at the same time as resonant
fields at the upper end of the accessible range. Particu-
larly promising systems include 87Rb +Yb, Cs + Yb, and
85Rb +Sr.

Analogous resonances will exist in systems made up of an
alkali-metal atom and an atom such as Cd or Hg in a 3P state.

The work described here paves the way for a new approach
to making polar molecules in 2� states by magnetoassociation
followed by laser transfer to the ground state. Such molecules
have important potential applications in a variety of fields,
ranging from quantum simulation to the testing of fundamen-
tal symmetries of nature.

The data presented in this work are available from Durham
University [57].
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P. S. Żuchowski, and J. M. Hutson, Observation of Feshbach
resonances between alkali and closed-shell atoms, Nat. Phys.
14, 881 (2018).

[26] A. Green, J. H. S. Toh, R. Roy, M. Li, S. Kotochigova, and S.
Gupta, Two-photon photoassociation spectroscopy of the 2�+

YbLi molecular ground state, Phys. Rev. A 99, 063416 (2019).
[27] A. Green, H. Li, J. H. S. Toh, X. Tang, K. C. McCormack,

M. Li, E. Tiesinga, S. Kotochigova, and S. Gupta, Feshbach
resonances in p-wave three-body recombination within Fermi-
Fermi mixtures of open-shell 6Li and closed-shell 173Yb atoms,
Phys. Rev. X 10, 031037 (2020).

[28] T. Franzen, A. Guttridge, K. E. Wilson, J. Segall, M. D. Frye,
J. M. Hutson, and S. L. Cornish, Observation of magnetic
Feshbach resonances between Cs and 173Yb, Phys. Rev. Res.
4, 043072 (2022).

[29] Atoms such as Yb and Hg are grouped along with alkaline-earth
atoms because of their closed-shell ground states and similar
pattern of excited states to Ca and Sr.

[30] B. Mukherjee, M. D. Frye, and J. M. Hutson, Feshbach reso-
nances and molecule formation in ultracold mixtures of Rb and
Yb(3P) atoms, Phys. Rev. A 105, 023306 (2022).

[31] P. Zhang, H. R. Sadeghpour, and A. Dalgarno, Structure and
spectroscopy of ground and excited states of LiYb, J. Chem.
Phys. 133, 044306 (2010).
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