
Received 30 December 2022, accepted 11 February 2023, date of publication 22 February 2023, date of current version 9 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3247189

Toward Supporting CS1 Instructors and Learners
With Fine-Grained Topic Detection
in Online Judges
FILIPE DWAN PEREIRA 1, SAMUEL C. FONSECA2, SANDRA WIKTOR3, DAVID B. F. OLIVEIRA2,
ALEXANDRA I. CRISTEA 4, (Senior Member, IEEE), AILEEN BENEDICT3,
MOHAMMADALI FALLAHIAN 3, MOHSEN DORODCHI3, LEANDRO S. G. CARVALHO 2,
RAFAEL FERREIRA MELLO 5, AND ELAINE H. T. OLIVEIRA 2
1Department of Computer Science, Federal University of Roraima, Boa Vista 69300-000, Brazil
2Institute of Computing, Federal University of Amazonas, Manaus 69077000, Brazil
3Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
4Department of Computer Science, Durham University, DH1 3LE Durham, U.K.
5CESAR School, Centro de Estudos e Sistemas Avançados do Recife, Recife 50030-260, Brazil

Corresponding author: Filipe Dwan Pereira (filipedwan@gmail.com)

This work was supported in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico–Brazil–Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) under Grant 308513/2020-7, in part by the Fundação de Amparoà Pesquisa do Estado
do Amazonas (FAPEAM) under Grant 01.02.016301.02770/2021-63, in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior–Brazil (CAPES) under Grant 001, and in part by the Acuity Insights under the Alo Grant Program.

ABSTRACT Online judges (OJ) are a popular tool to support programming learning. However, one major
issue with OJs is that problems are often put together without any associated meta-information that could,
for example, be used to help classify problems. This meta-information could be extremely valuable to help
users quickly find what types of problems they need most. To face this problem, several OJ administrators
have recently begun manually annotating the topics of problems based on computer science-related subjects,
such as dynamic programming, graphs, and data structures. Initially, these topics were used to support
programming competitions and experienced learners. However, with OJs being increasingly used to support
CS1 classes, such topic annotation needs to be extended to suit CS1 learners and instructors. In this work, for
the first time, to the best of our knowledge, we propose and validate a predictive model that can automatically
detect fine-grained topics of problems based on the CS1 syllabus. After experimenting with many shallow
and deep learning models with different word representations based on cutting-edge NLP techniques, our
best model is a CNN, achieving an F1-score of 88.9%.We then present how ourmodel can be used for various
applications, including (i) facilitating the search process of problems for CS1 learners and instructors and
(ii) how it can be integrated into a system to recommend problems in OJs.

INDEX TERMS CS1 syllabus, natural language processing, topic detection, deep learning, programming
autograder.

I. INTRODUCTION
Online Judges (OJ) are a special kind of massive open
online course (MOOC) that provides a reliable, automatic,
and instantaneous evaluation of an algorithm’s source code
sent by the learners [1], [2], [3], [4], [5]. The popularity

The associate editor coordinating the review of this manuscript and

approving it for publication was Utku Kose .

of OJs are increasing in CS1 classes [1], [6], [7], due to
their conveniences for both learners (e.g., automatic code
correction) and instructors (e.g., workload reduction in pro-
viding feedback on students’ code) [8], [9], [10], [11], [12].
Indeed, OJs facilitate the use of the Many Small Programs
(MSP) approach [13], [14], [15], [16]. The MSP approach
requires the students to solve many smaller programming
assignments weekly or biweekly, instead of a traditional One

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

22513

https://orcid.org/0000-0003-4914-3347
https://orcid.org/0000-0002-1454-8822
https://orcid.org/0000-0002-0506-9758
https://orcid.org/0000-0003-2970-2084
https://orcid.org/0000-0003-3548-9670
https://orcid.org/0000-0003-2884-9359
https://orcid.org/0000-0002-9652-6415

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

Larger Program (OLP), in which the learners solve a unique
and more extensive assignment in a short period of time.
Notice that the MSP approach has brought many advantages
for CS1 learners, including increased confidence, better exam
performance, and reduced anxiety [17].

Despite the benefits of OJs for learning programming,
recent studies [1], [6], [7] report that OJ systems need to be
further improved to serve students, instructors, and admin-
istrators better. In this sense, one of the most significant
issues of these systems is that the available problems are
not organised based on meta-information that facilitates the
users’ searching process [1], [2], [12], [18].More specifically,
problems are often arranged in volumes without topics classi-
fication. The main reason is that this annotation task is quite
labour-intensive and requires the availability of experts.

In light of this, a few studies [2], [18], [19], [20] have
recently proposedmethods for the automatic categorisation of
problems in OJ systems. However, such methods categorise
problems into non-granular levels, such as data structure,
beginner, paradigms, and so on. Such granularity in the
annotation is particularly useful for online judge administra-
tors and experienced students. To illustrate, administrators
can use such methods to automate the annotation process,
even considering the error component - as these methods
are based on Machine Learning (ML) techniques, which
are not 100% accurate. Students can use the automatically
annotated topics to find desirable problems in generic cate-
gories, which is far more efficient than navigating multiple
volumes [1], [18], [19].

Nonetheless, thinking of CS1 students and instructors, this
generic granularity in categorisation is not enough. To illus-
trate, CS1 instructors who use an MSP approach tend to look
for problems of a simple conditional structure (if-then-else),
nested conditional structure, or loops to compose the small
assignments lists instead of generic topics such as ‘‘begin-
ner’’, or advanced topics such as ‘‘computational geometry.
In addition, for novice students to be able to choose problems
compatible with their level of knowledge in an unassistedway
(without the intervention of the instructor/tutor), a granular
categorisation of problems, compatible with the CS1 course
syllabus, is crucial. That is, a student who is learning to
manipulate vectors would benefit from doing a search for
problems in the vector category,1 instead of looking for this
type of problem in a single category called ‘‘beginner’’.
However, to the best of our knowledge, there is no method
for automatically classifying problems available in OJ at this
level of granularity, i.e., that may further suit CS1 students,
instructors, and administrators. In this sense, we formulate
the following research question:

RQ:How can we provide a method that can be used
to support instructors, students, and OJ administra-
tors in classifying problem topics according to the
CS1 syllabus?

1We use the words category and topicwith the same meaning in this work
for the sake of simplicity.

To answer this research question, our hypothesis is that,
if an expert human (e.g., an instructor) reading a problem
statement can detect the topic, then Natural Language Pro-
cessing (NLP) techniques can be employed to represent the
statement data and be used as inputs in machine learning
algorithms to automatically classify the topics based on the
CS1 syllabus. Briefly, the main contributions of this work
are:

• proposing and validating different combinations of ML
and NLP techniques to perform topic detection based on
the CS1 syllabus;

• providing discussions of applications and implications
of employment of our best predictive model;

• providing a method to help OJ systems better assist CS1
students and instructors, and novice learners.

II. BACKGROUND
A. ONLINE JUDGES
Online judges (OJs) are systems designed for the reliable
assessment of algorithm source code submitted by learners,
which is next compiled and tested in a homogeneous envi-
ronment [1], [5], [6], [15], [18]. OJs have been used since at
least 1961, where they were developed at Stanford University
to help evaluate students’ written programs [1]. OJs were
also used in programming contests, where participants were
asked to solve as many algorithmic problems as they could
for the duration of the contest, as an automatic evaluator of
participants solutions.

The evaluation procedure of an OJ, as defined by [1],
consisted of three steps: (1) submission, (2) assessment, and
(3) scoring. In the submission step, the submitted code was
compiled and verified to have been successfully executed in
the evaluation environment. Once it could be executed, the
submission was assessed, based on a problem-specific set of
test cases. The final score was computed as an average from
all test cases.

The use of online judges in education to evaluate students’
programs has brought many advantages [1], [5], [6], [15],
[17], [18]. First, the instructor could assess the correctness
of students’ submissions more efficiently and accurately. For
students, they received almost instantaneous feedback on
their submissions, as to whether or not it was correct. Some
OJs also provide the percentage of test cases that the student
code passed.

Importantly, OJs provide many problems for students and
instructors [1], [6], [12], [18]. The former can use the system
for to develop their skills in specific computer science topics
such as graphs, dynamic programming, and in beginning
concepts, such as vectors, matrices and so forth. The latter
can select problems from OJs to compose assignments and
exams in different level (from beginner to more advanced)
of programming courses. However, overall, those systems do
not provide any kind of topic annotation for the problems,
which make the searching process challenging both for stu-
dents and for instructors.

22514 VOLUME 11, 2023

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

B. MANY SMALL PROGRAMS APPROACH
Many Small Programs (MSP) is an approach which requires
the students to solve many smaller programming assign-
ments weekly or biweekly, instead of a traditional One
Larger Program (OLP), in which the learners solved a unique
larger assignment in a short period of time. The period-
icity (weekly/biweekly) could be determined by the CS1
instructors or via an institutional decision (at department
level) [13]. Recent studies suggest that the MSP approach
can help students feel less stressed, more confident, and
make them achieve higher levels of satisfaction and greater
performance [14], [17]. Indeed, based on recent MSP results,
an increasing number of computer science departments have
adopted this approach in CS1 classes [15], [16], [17], [20],
[21], [22].

TheMSP approach is enabled by OJ systems, as they allow
easy creation of assignments that give students immediate
feedback about the correctness of their code solutions.

III. RELATED WORK
Oneway to classify programming problem topics is by asking
instructors or experts to perform this task manually. However,
this process requires the availability of these annotators and
takes a considerable amount of time and human effort. Notice
that this manual annotation is not scalable. Scalability is
crucial for systems like OJs since new questions are being
registered constantly [23], [24], [25]. Thus, it is important
to propose strategies to automate the organisation and anno-
tation of OJ questions with useful meta-information. Indeed,
automatic classification methods to detect the problems’ cat-
egories in OJ are essential for instructors and students of
computer science majors [1], [2], [12]. Moreover, a poten-
tial automation in the annotation would bring many benefits
to OJ administrators, since, to the best of our knowledge,
annotation is performed manually in the few OJs in which
problems are labelled with topics. Nonetheless, extracting
knowledge concepts or topics from programming exercises is
barely explored by the Computation Education literature [26].
The few works that tackled this problem will be discussed in
this section.

Reference [18] proposed a method for the automatic detec-
tion of problem topics based on sequences of timestamped
attempts and correctness from OJ students. Using machine
learning techniques, [18] detected the following advanced
topics related to computer science: dynamic programming,
palindromes, geometry, tricky problem, hardest problem, data
structures, number theory, graph theory problem for begin-
ners, game, unusual problem, string algorithms. The authors
used student data from 940 problems collected from three
different OJs. As the students’ timestamps, attempts and
correctness might vary too much in different OJs, authors
opted to train and test the ML models with data from the
same OJ. As a result, the authors achieved a modest F1-score
of 75.1%, 64.4%, and 72.4%, for each dataset. Still, a major
limitation of the method proposed by [18] was that new

problems enrolled in the OJ could not be annotated by their
predictive method, since there were no attempts of resolution
made by the students available for the new questions. In other
words, problems needed to be solved by at least a couple
of students to render the data (timestamped attempts and
correctness) needed to feed the ML model and, thus, allow
the model to make a decision. As such, recent works used
the text extracted from problem descriptions to feed machine
learning models. This would allow the categorisation of new
problems in OJs, as a move towards scalability. Moreover,
NLP techniques have been achieving prominent results in
many other tasks [27], [28].

In this sense, [29] extracted text-data on problems’ descrip-
tion using NLP techniques and then used shallow machine
learning models to perform a multi-classification task with
5 topics (data structures, dynamic programming, greedy, ad-
hoc, and math). Using a total of 1709 problems, [29] achieved
modest F1-scores, ranging from 19.2% to 62.2%. Simi-
larly, [19] also proposed an NLP method using the problem
descriptions to automatically categorise OJ problems, using
4620 problems. In total, they used 7 topics (beginner, ad-
hoc, strings, data structure, mathematics, paradigms, graph,
computational geometry), based on the topics covered in the
International Collegiate Programming Contest (ICPC). As a
result, they achieved an F1-score of 86%. All the authors
([18], [19], [29]) cited in this section that performed topic
detection have utilised the topic-annotation provided by the
OJ system by performing web scrapping.

Note that the granularity of the topics used by the stud-
ies cited in this section is not ideal neither for novice pro-
grammers, nor for CS1 students and instructors. To illus-
trate, [19] used a category called ‘‘beginner’’, which ranges
from exercises using basic sequential structures to exercises
using vectors and matrices. On the other hand, other studies
focused only on advanced categories, such as paradigms,
computational geometry, and so on. As such, there is a gap
for novice students and CS1 students, forcing them to do
an exhaustive problem search for their respective levels. For
example, for a student who is learning simple ‘‘if-then-else
conditional structure’’, it would be ideal to find problems
for this category quickly. Moreover, CS1 instructors also
struggle to find appropriate problems to compose assignment
lists, mainly for the ones that use MSP approach. Thus, CS1
instructors could benefit from an outline annotation based on
the CS1 syllabus.

Indeed, in recent works [30] and [12] about recommending
problems in OJs to CS1 students and instructors, the authors
explained that a recommender could be useful for students
by allowing them to select appropriate problems unassisted,
and for instructors by allowing them to select problems to
compose lists of exercises and tests. Nonetheless, the recom-
mender method has a limitation related to problem topics.
The authors of both works explained that it was not possible
to make a more fine-grained recommendation in which users
would choose a topic of interest because the problem topics
have not been annotated based on the CS1 syllabus.

VOLUME 11, 2023 22515

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

As such, we for the first time, to the best of our knowledge,
employ an NLP pipeline combined with deep and shallow
machine learning algorithms to automatically detect problem
topics based on the CS1 syllabus. To do this, we use problem
descriptions as input into the NLP and machine learning
algorithms. We opted for the problem description rather than
student data, since using problem descriptions allows the
model to classify problems that have not yet been solved by
any students. Finally, it should be noted that we have made
our database available with this fine-grained topic annotation,
so that other studies can employ our pipeline and data on
online judges containing questions without such annotations.

IV. EDUCATIONAL CONTEXT
The data for this study was collected from an educational
setting, where CS1 is offered as a pre-requisite to students
taking any of 15 available non-CS courses segregated in five
majors fields: Geology, Physics, Engineering, Mathematics,
and Statistic. Although CS1 is mandatory for these courses,
there is a lack of motivation on the part of the students,
as some of them cannot see the usefulness of programming
for their professional careers. Thus, approaching advanced
content and setting a very high expectation around the content
to be taught can be frustrating for instructors, since theymight
not be able to teach everything they would like, and students,
as they might not achieve what is expected of them.

Based on this premise ofmaintaining a realistic expectation
of what should be taught, and on empirical observations
established over years of teaching the CS1 course for non-
CS students at Federal University of Amazonas (UFAM),
a group of instructors and researchers established a standard
methodology to be used in all CS1 classes. The methodology
is based on the pedagogical MSP approach [13].

In this methodology, the topics covered throughout the
course, taught sequentially, are the following: Variables
and Sequential Structure, Simple Conditional Structure (if-
then-else for short), Conditional Structure Nested (if-then-
else (nested) for short), Repeating by Condition (while-
loop for short), Vectors and Strings, Repeating Structure by
Count (for-loop for short), Matrices. Using this methodology,
classes are organised as follows:

• Two starter classes to teach input/output commands,
variables and online judge familiarisation.

• In subsequent classes, two weeks are set aside to teach
each topic. In total, 4 classes are taught over the two
weeks. The four classes are distributed as follows:

– a theoretical class,
– two practical classes - two laboratories,
– one exam.

It is noteworthy that this teaching methodology was
designed so that instructors could teach a piece of content
and then verify students’ understanding of it through practical
work (practical classes and the exam). Note that one effect of
using this methodology is to keep topics simple and short,

which can be taught in one concept class and tested in both
labs and subsequent exams.

This explains, for example, separating if-then-else from
if-then-else (nested) in distinct topics. In fact, based on our
classroom experience, we know that most students would not
‘digest’ the use of nested and simple conditions in a single
classroom event. Similarly, teaching the use of while-loops
and for-loops in a single class can make the student leader
only one of the two, or even confuse them.

Note that for repetition by counting, the number of repeti-
tions of a given procedure must be explicit in the statement of
the problem, whereas for repetition by condition, the condi-
tionmust be explicit. An example of repeating by count would
be, e.g., repeating a procedure six times, while repeating by
condition would be reading and accumulating numeric values
until the value of -1 is read. By teaching them separately, it is
expected that students will be able to develop both skills (for-
loop and while-loop).

Finally, to support instructors and allow immediate feed-
back to students, an OJ system was used as an instrument
to perform the automatic correction of student codes. Both
assignments and exams were made available to students
through the OJ system.

V. RESEARCH DESIGN
A. DATA COLLECTION
In this research, we extracted data2 from an online judge
system called CodeBench3 due to convenience sampling.
This system is used as a tool (more detail in Section VI-
A) to support programming classes at the Federal University
of Amazonas. In our case, only questions solved by CS1
students were considered.

In the CS1 classes, students both solved an assignment
list that preceded an exam and took the actual exam in this
system. Each assignment contained an average of 10 ques-
tions, whilst each exam comprised 2 questions. Thus, each
assignment, together with the successor exam, formed a ses-
sion for the purposes of this research. In total, 7 sessions
(s1, s2, . . . , s7) were carried out for each course. Students
used the Python programming language.

Importantly, each session is associated with a specific topic
from the CS1 curriculum (see section IV). Moreover, before
the 7 sessions, students have a first week to get used to
the Python programming language; this involves completing
simple problems that require the use of prints and input
commands. We call this introductory week the adaptation
moment a0 (see Table 1).

To create the assignment lists for each session, the instruc-
tors selected the problems from the database of questions.
There was a total of 1045 questions related to the CS1 syl-
labus available. For the exams, instructors are required to
create 10 different versions of the same exam, in order to
diminish plagiarism.

2github.com/filipedwan/IEEE-Access-CS1-Topic-Prediction
3http://codebench.icomp.ufam.edu.br/

22516 VOLUME 11, 2023

http://codebench.icomp.ufam.edu.br/

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

In an effort to facilitate the process of selecting the prob-
lems to compose assignments and exams for the CS1 classes,
the group of 12 instructors from UFAM manually annotated
the topic of all problems based on the CS1 curriculum. Using
this annotation, the instructors can filter the problems from an
specific topic to create the assignments and exams of specific
sessions.

All annotators have previous experience with CS1 teach-
ing. Since there are more than a thousand problems available
on CodeBench, the annotation scheme of each problem is
performed by a single instructor. So that each instructor anno-
tated a portion of the questions. In addition, before using the
problems in their assignments or exams, the CS1 instructors
could relabel the problems’ topics if necessary.

B. PROBLEM DEFINITION
We are interested in classifying programming problems in
terms of topics based on CS1 syllabus. A problem that can
be solved with a vector, for example, can be classified as
pertaining to the ‘vector’ topic. We used the topics presented
in section IV in our target variable since we used the data
collected from this educational context, which uses the MLP
approach, which is popular in CS1 courses.

As such, we model this task of classification as a multi-
classification problem, in which the classifier must predict
one out of eight topics for each problem description. Thus,
we use the problem statements as input. Using this input, the
classifier must provide a predicted topic. To do so, we will
first apply NLP techniques over the problems statements,
to then feed the numerical features into the ML algorithms.

Table 1 shows the descriptions for each topic (where
a0 depicts the period when students get used with the
CodeBench, and the number of problems per topic). More-
over, to clarify the concepts covered in each topic, in Table 1
we provide an example of code illustrating a typical answer
to a question on that topic.

Additionally, we performed two adaptations in the way
instructors annotate the topics. First, as we aim the resulting
algorithm to also detect the topic ‘‘input and print’’, even
if it was taught in the pre-course week, we added it to the
table. Moreover, we divided Vectors and Strings into two
different topics, since these topics have different nuances,
and instructors and students probably would like to search
for them separately.

Notice that one problem can fall in only one topic or mul-
tiple topics. The way the annotators employed to prioritise
topics if the problem belongs to multiple topics takes into
account the MSP pedagogical approach and the educational
settings presented in section IV. That way, if a problem has
elements of more than one topic (e.g., if-then-else and for-
loop), the annotators considered only the most complex topic
(repeating structures). This is because learning in the MSP
approach is cumulative, so if the student is in the week where
for-loop is learned, it is assumed that he already knows how
to deal with if-then-else. As such, there is no need for both

labels (if-then-else and for-loop), only for the most complex
topic.

VI. METHODOLOGY
This section presents the methodology we use to automati-
cally detect the topics of programming questions based on
their descriptions.

A. TOOL
We use the online judge system Codebench, a self-devised OJ
implemented and maintained by one of the authors. Figure 1
shows a screenshot of its interface. The description of the
problem can be seen in the left upper corner. A code solution
written by one of the authors (as an illustration) is also
provided on the right side of the figure. Tips and input/output
examples were not used in the machine learning algorithms,
due to two reasons: i) we observed that they typically do
not contain key context or terms to detect the problem topic
ii) many problems do not provide tips. As we wanted our
approach to be widely generalisable, we opted to not use
features which would not be available across OJs.

In the next subsections, we show how we employ this text-
data, to feed the machine learning algorithms responsible to
detect the question topics.

B. PREPROCESSING THE PROBLEM DESCRIPTIONS
Since there is a higher abundance of tools and frameworks
for natural language processing techniques to deal with text
written in English, we use first the Googletrans API4 to
translate the descriptions of the problems from Portuguese to
English.

In addition, we applied the following widely used
steps [20], [27], [31] to pre-process and clean the text-data
and prepare it for the ML algorithms:

• Step 1: Removal of HTML tags from the text.
• Step 2: Replacing line breaks with single spaces and
removal of punctuation symbols that potentially do not
provide information relevant to the detection of problem
topics.

• Step 3: Replacement of numeric values by the size of
their magnitudes, using the # character (e.g., 112 →

###, 12 → ##).
• Step 4: Tokenisation, that is, breaking each problem
description into a vector of single words.

• step 5: Stop words removal and lemmatisation.
To perform steps 1, 2 and 3 we created our own script and

for the steps 4 and 5 we used the spacy library.5

C. TEXT REPRESENTATION
Machine learning algorithms receive text data as a numeric
representation. (see Keras Tokenizer function6). Further-
more, the number of columns in the feature matrix is expected

4py-googletrans.readthedocs.io/en/latest/
5spacy.io/
6keras.io/preprocessing/text/

VOLUME 11, 2023 22517

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

TABLE 1. Description of CodeBench topics, number of problems, and an example of code implementation for each topic.

to be the same for all rows. In other words, the same number
of tokens is required for each sentence (row), even if the
length of the question descriptions is different. Thus, a first
measure we have taken was to complete with zeros (padding)
the tokens of the lines whose number of tokens was smaller
than that of the longest sentence. Tokenisation and padding
are standard procedures in NLP. We chose to use the tokeni-
sation and padding function of the Keras text preprocessing
library7).
Additionally, the tokens can be represented as vectors

extracted through prediction techniques with shallow models
(e.g., googleNews-Vectors) or through counting techniques.
In this study, we tested different state-of-the-art techniques
for representing tokens as vectors. The first one we tried was
googleNews-Vectors (W2V).8 In addition, we also employed
Glove [32] word embeddings. For the deep learning models,
we used layers of the network itself to represent the word

7keras.io/preprocessing/text/
8code.google.com/archive/p/word2vec/

embeddings, as explained in Keras library.9 The intention
was to test various combinations of textual representation
associated with various classifiers in order to find a pipeline
that obtained cutting-edge results for our research problem.

It is worth mentioning that we also evaluated traditional
feature extraction techniques such as Bag of Words (BoW),
Term Frequency–Inverse Document Frequency (TF-IDF) and
Latent Dirichlet Allocation (LDA). However, we decide not
to keep these techniques in our pipeline for two reasons. The
first one is theoretical, since these techniques do not capture
semantics information or correlation betweenwords, which is
important in our context because problem statements from the
same category potentially either share semantics or are corre-
lated. The second reason is practical, since we achieved poor
results for all tasks using BoW, LDA and TF-IDF representa-
tion and, hence, adding them would only increase the number
of combinations and complexity in our pipeline, without any
gain in terms of performance. Moreover, such increase in the

9keras.io/

22518 VOLUME 11, 2023

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

FIGURE 1. CodeBench interface.

number of combinations (practical implication) would make
it more difficult for other researchers to replicate our work.

D. OVERSAMPLING ON MINORITY CLASSES BY
PARAPHRASING THE PROBLEMS’ DESCRIPTIONS
To better adjust the class distribution in a move to reduce the
bias yielded by the unbalanced nature of our dataset, we opted
to use an oversampling technique. The technique consists in
creating contextual paraphrases (artificial instances) of the
statements from the training set. To do so, we used a library
called NLP augmentation [33], recommended by previous
works [34], [35], [36]. To create syntactic statements in our
training set, we used word embeddings from the pre-trained
cutting-edge model BERT. We used the k-nearest-neighbour
and cosine similarity to find similar words for replacement.

However, similar to previous works [19], [20], we, at most,
duplicate the number of instances on the minority classes
from the training set to avoid too much artificial information,
rendering the data as non-representative. The upper bound
was defined based on the number of instances present on the
topic of the majority class (N = 160). To illustrate, assume
the majority class is x, which contains x ′ problems. Also
assume that, in another given topic y, the number of problems
are y′. If y′ > x ′/2, then we create only x ′

− y′ artificial
instances for the class y, capping the number of instances in
topic y at ||x||. Otherwise, we duplicate y′.

E. CLASSIFICATION PROCESS
In this study we represented the problem as a multiclassifica-
tion problem. Thus, the last layer of all deep neural network
models was a softmax. The deep neural network models

used for the classification are: i) a Recurrent Neural Network
(RNN), ii) a Convolutional Neural Network (CNN), iii) a
hybrid RNN and CNN (RNN+CNN) and iv) a Bidirectional
Encoder Representations from Transformers (BERT). As for
the network topology, the RNN had an embedding layer
configured with the input length of 300; followed by a Long
Term and Short term memory layer with 64 nodes; followed
by a global max pooling 1D layer; one dense layers with
64 nodes; and a softmax layer. The CNN had an embedding
layer configured with the input length of 300; followed by
a convolutional layer with relu as the activation function a
filter of 128 and kernel size of 64; followed by a global max
pooling 1D layer, followed by a dense layer with 64 nodes;
and a softmax layer. For the RNN+CNN, we stacked the
aforementioned (RNN and CNN) deep learning models. For
BERT, we used the default parameters of the ‘‘bert-base-
uncased’’ pre-trained model.

Furthermore, as recommended by prior works [19], [27],
we also compared the deep learning models with the follow-
ing shallow models: i) Random Forest Classifier (RFC) ii)
Decision Tree (DT), iii) Extremely Randomized Tree Classi-
fier (ETC), iv) Support Vector Machine (SVM), v) vi) Gradi-
ent Boosting Classifier (GBC), vii) Naive Bayes (GNB), viii)
XGBoost (XGB).

F. EVALUATING THE PREDICTIVE MODELS
To evaluate the performance of the predictive models, it is
important to choose a main performance measure. Accuracy,
precision, recall and F1-score are some of the most used
measures. The accuracy is only the percentage of hits of
the model, and is not recommended for scenarios where

VOLUME 11, 2023 22519

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

FIGURE 2. Illustration of how we performed data augmentation on the
training set.

the database is unbalanced. Precision gives an idea of how
effective a model is at predicting instances of a class, but a
high precision value does not mean good correctness. The
recallmeasures how often themodel finds examples of a class
without providing precision in the classification.

In order to have a balance between precision and recall,
we adopted the F1-score as the main metric to measure the
performance of the classification models. This metric com-
bines precision and recall by calculating a harmonic average
in order to bring a single value that indicates the overall
quality of the model. In addition to the F1-score metric,
we also show a confusion matrix and an error matrix. In this
way, errors can be analysed more in-depth.

For evaluation, each classifier was independently trained
through cross-validation to minimise the possibility of over-
fitting the data. As our data has a high class imbalance,
we divided the dataset into training and testing within the
folds in a stratified way. We performed the stratified 10 fold
cross-validation 10 times, using 10 different seeds (ranging
from 0 to 99) to shuffle the data, due to statistical constraints.
Thus, we obtained 100 (10 × 10) different results, i.e. one
result for each test set. Finally, we average the computed
performance over each test set. Figure 2 illustrates the pro-
cess of data augmentation and validation. We performed that
process of evaluation employing the StratifiedKFold10 from
scikit-learn [37]. It is worth noting that we performed data
augmentation only on the training sets.

VII. RESULTS AND DISCUSSION
We built a total of 36 predictive models. Figure 3 illustrates
all the results obtained by all models applied in this research.
From this figure, as expected, in relation to the shallow
methods, we observed that ML algorithms based on ensem-
bles obtained better results than non-ensembles models (e.g.
DT and NB). We also observed a slight advantage regarding

10scikit-learn.org/stable/modules/generated/sklearn.model_
selection.StratifiedKFold.html

word representation using W2V when compared to GLOVE,
which is consistent with NLP literature [38], [39].

Another observation we identified is that the deep learn-
ing models, in general, outperformed the shallow models,
as expected. We performed the Mann-Whitney hypothesis
statistical test, and the model with the highest performance
is the CNN model using paraphrasing, with an F1-score of
≈89% (p − value < 0.05/36 - Bonferroni correction).
Although it is not usual for CNNoutperforms BERT, previous
studies reported that for a dataset similar to the one used in
this work, this result is not unique [40], [41].

We can also notice that paraphrasing has not improved
the F1-score (weighted) in most of the models. Indeed,
paraphrasing boost significantly (p − value < 0.05/2 -
Bonferroni Correction) only the results of the BERT clas-
sifier. BERT achieved an F1-score of ≈83%, without para-
phrasing, whereas with paraphrasing, the model achieved
≈86%, an increase of 3%. These results are contradictory to
previous studies [19], [20], [31], which also use contextual
paraphrasing with BERT as a step to augment the training
data. However, it is important to highlight that our dataset is
smaller in terms of the number of instances in total and in
each class, which probably affected the outcome of BERT,
causing overfitting or unstable learning [28].

In addition, in Figure 4 we can analyse the performance of
our best predictive model on each topic. The leftmost figure
shows the confusion matrix obtained by our CNN, where the
lines represent the real values, whilst the columns depict the
estimated values. Our model achieved a recall of over 75%
across all topics. In some topics, our model achieved a recall
of more than 90% (e.g. if-then-else (nested), matrices, and
vectors). We are not able to compare it fairly with the litera-
ture, since we did not find any work that performed this task
of classification based on CS1 topics. However, compared to
similar works which also performed topic classification in
OJ systems, we can notice that our results are satisfactory.
Indeed, [19] achieved the highest F1-score for a similar task,
which is inferior to our CNN performance.

Next, analyse the model’s errors in more detail. In order to
compare errors proportionately, we divide each value in the
confusion matrix by the number of instances in the relevant
class. Then we fill the major diagonal with zeros, allowing
us to focus solely on the misclassifications. In the rightmost
image in Figure 4, we can see the resulting error matrix. Here,
the darkest regions of the matrix show the places where the
classifier made more errors. The misclassifications are not
perfectly symmetrical. To illustrate, there are more if-then-
else problems misclassified as if-then-else (nested), than the
reciprocal. Moreover, the sequential structure was mainly
confused with print and input and if-then-else, which makes
sense, since the sequential structure concept is present in
almost all of the other topics, making it challenging for multi-
classification. This occurs in other classes as well, such as if-
then-else, which can be contained in problems of repetition,
matrices and so forth. Another likely source of misclassifica-
tion is that of for-loops being estimated as vectors. A possible

22520 VOLUME 11, 2023

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

FIGURE 3. F1-score for CS1 topic prediction. We plot the weighted average F1-score, since our dataset is
imbalanced and this metric considers the proportion of each class for calculation. In this figure, PAR refers to the
use of paraphrasing in the training set.

justification is that a vector problem might be solved using
for-loops.

VIII. ADDRESSING THE RESEARCH QUESTION
We can state that our CNN achieved results that support our
RQ (How can we provide a method that can be used to sup-
port instructors, students, and OJ administrators in classify-
ing problem topics according to the CS1 syllabus?). Indeed,
we believe that our method can be employed in an online
judge system to support CS1 students and instructors. As we
have shown, OJs are popular tools that provide programming
assignments to CS learners. However, the topic information
of the problems provided in OJs is usually missing. Existing
work on topic classification of CS problems is either coarse-
grained or designed for advanced topics, and is not suitable
for classifying the basic topics taught in a CS1 course. Thus,
to address our RQ, we propose a predictive model that can
detect topics of programming problems based on a CS1 syl-
labus. Our pipeline applies text embedding and augmentation
techniques, along with several off-the-shelf classifiers (RF,
SVM, CNN, RNN, etc) to perform the classification for seven
topics. The best CNN model achieved an average F-1 score
of 88.9%. In the following section we also discuss the appli-
cations and implications of topic classification for different
stakeholders.

IX. APPLICATIONS AND IMPLICATIONS
In this study we propose and validate different combina-
tions of ML and DL pipelines for problem topic prediction,

based on the CS1 syllabus. We believe that the results of our
best model are satisfactory and can be used for automatic
annotation of topics in OJs. The automatic classification of
topics can be applied in several teaching scenarios, from
the formulation of exams, to even systems using automatic
question recommendation, based on the student’s skill level.

For students, annotation of topics would be useful because
they would not have to carry out an exhaustive search for
problems related to the CS1 topics in volumes of problems
without any categorisation. Notice that this exhaustive search
process can demotivate the student [12], [18], [30], [42].
Moreover, the ease of appropriateness for learners is vital
to consider when developing a tool to facilitate learning.
To illustrate (via a counterexample), the learner can access
problems that are extremely incompatible with their level
(e.g., graph problems for a CS1 student), which could dis-
courage the programmer from using the OJ system.

Note that beyond maintaining student participation,
OJ systems must take responsibility for providing a logical,
cohesive structure of instruction for students, without disor-
ganising their learning [1], [18], [19], [42]. For example, if a
student is presented with a question beyond their level, they
may attempt to research the solution on their own, resulting
in the student gaining an incomplete grasp of this higher-level
topic. This may discourage true learning in favour of copying
or memorisation of the solution, leading to the development
of poor programming habits. Such a disorganised process
can also decelerate student learning, as the time the learner
takes to study a subject beyond their level could have been

VOLUME 11, 2023 22521

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

FIGURE 4. Confusion Matrix of our best model (left) and error density by topic (right). True values are presented on the rows whilst
predicted values are depicted on the columns.

spent developing a strong understanding of material at an
appropriate level.

For future work, our annotation is also useful to track
what CS1 concepts the students are mastering based on the
problems they solved and the ones they failed. Such works
may verify the reasons why students fail a given problem of
a specific topic provided by our model. This would be useful
for creating interventions that provide meaningful feedback
for students about the topics with which they struggle. Prob-
lems could also be recommended to strengthen the students’
identified conceptual weaknesses.

For instructors, one of the most recurrent teaching tasks
is the selection of questions to compose assignments and
exams [6], [9], [12]. Assignments and exams are typically
associated with a CS1 topic (e.g., an exam on the use of rep-
etition structures) [12], [17]. With the automatic annotation
of topics, instructors can access problems in an organised
way, making their work easier and giving them more time
to focus on other teaching tasks. This enables instructors
to provide students with more coding examples, covering a
wider breadth of scenarios and concepts than they would
have access to otherwise due to the time constraints of fil-
tering appropriate problems. When teaching programming
principles, it is vital to cover the details of a certain topic
in different contexts so that students develop an algorithmic
understanding of how to approach similar problems. Without
a large set of examples covering different aspects of the
same topic, instructors are unable to sufficiently cover the
various implementations possible, making it more difficult
for students to generalise problem solutions from their lim-
ited experiences. Annotated problems alleviate the strain that
instructors may face when searching for appropriate learning
material.

Additionally, our method helps administrators of OJs, who
could use our method to help organise problems in a way that
is beneficial for students of different levels and instructors

of different disciplines. While administrators of OJs could
manually label future questions as they create them without
much overhead, this can waste valuable unlabelled resources
that already exist. Therefore, this model can not only improve
future systems, but can also improve currently available
systems.

Furthermore, note that our best model has an F1-score
of 88.9%. In this way, classification errors may occur with
the implementation of our model in a real scenario. In cases
where there is a misclassification, the instructor, or even the
students, could identify and correct it. The detection and
correction process by instructors and even students could
be relatively simple, since the CS1 topics are elementary.
Before releasing an automatically generated exam, an instruc-
tor should check the generated problems (a relatively small
task) and annotate those that are not appropriate (to be thus
signalled to the algorithm), and ask for reallocation of those
specific problems, until satisfied. Thus, the tendency is for
errors to decrease with the use of the system, as humans re-
label the problems.

Moreover, this human support would help the AI to
improve its rules to and to become even more precise in
annotating topics. Furthermore, such human/AI interaction
is claimed by the literature [43], [44], [45] to be dominant
in modern systems. The reason is that humans and AI have
different strengths and weaknesses, and the combination of
the heterogeneous intelligence of both agents can be quite
powerful.

A. LIMITATIONS
When thinking about the task of classifying problems used
in assignments and exams, our predictive model can hurt
students by giving them a set of more complex or easier
questions than desired. However, as our model has a high
F1-score, classification errors would not occur frequently.

22522 VOLUME 11, 2023

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

Furthermore, on a platform that combines human knowledge
with AI, this limitation could be overcome by corrections
(re-annotation) from students, instructors andOJmaintainers.
That is, as a user encounters a misclassified problem, he/she
could suggest the correct topic annotation.

Moreover, we define the problem tackled in this work
as a multiclassification instead of multi-label classification.
We did so because for the pedagogicalMSP approach point of
view, a multiclassification definition of the problem is more
suitable since the students should solve the code questions
andmake progress gradually, achieving small single (in terms
of topics) learning goals (e.g., mastering simple conditional
structure, instead of mastering structural conditions – more
general). Consequently, even if a problem could be associated
with more the one topic, one of these topics would be more
complex and dominate the other topic. In other words, the
easier topic would be into the other topic (in terms of set
theory), considering that content is taught in a cumulative
way, as it generally is. To illustrate, consider a question of
while topic that also needs conditional structures to be solved.
In such a case, the while subject dominates the conditional
structure concept since it is expected that a student masters
conditional structure in order to learn the while structure
in the MSP approach. Thus, there is no need to define the
problem in a more difficult way (multi-label classification)
without any benefits for instructors and students who follow
the MSP approach. However, for other methodologies that
employed in OJ systems that may use problems with multiple
learning objectives, suchmulti-label definition of the problem
might be more suitable for.

X. CONCLUSION, LIMITATIONS AND FUTURE WORK
CS1 classes have a high failure rate around the world, which
is why it is so important to invest in tools that might support
the teaching and learning process.

Our results provide proof that metrics extracted from the
problems’ descriptions can potentially be used to automate
this process. Our approach can be applied to automatically
and relatively accurately annotate problems in OJs with the
CS1 curriculum. We also explain challenge, such as specific
topics which increase the complexity of the solution. More-
over, although the results may not surpass human evaluators,
our approach-allows for easy scalability, especially for large
datasets, in which new questions are registered frequently.
Notice that our method can quickly classify new questions,
as the database of questions grows.

As future work, we intend to check the predictive power
of our model in other online judges. Moreover, we intend
to use our best model, coupled with a recommender system
mechanism, to recommend problems for CS1 students and
instructors.

ACKNOWLEDGMENT
The present work is the result of the Research and Devel-
opment (R&D) project 001/2020, signed with Federal Uni-
versity of Amazonas and FAEPI, Brazil, which has funding

from Samsung, using resources from the Informatics Law
for the Western Amazon (Federal Law n◦ 8.387/1991), and
its disclosure is in accordance with article 39 of Decree
No. 10.521/2020. This study was financed in part by Con-
selho Nacional de Desenvolvimento Científico e Tecnológico
- Brasil - CNPq (Process 308513/2020-7), Fundação de
Amparo à Pesquisa do Estado do Amazonas - FAPEAM
(Process 01.02.016301.02770/2021-63), and Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001. Moreover, this study was
financed in part by the Acuity Insights under the Alo Grant
program.

REFERENCES
[1] S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal, ‘‘A survey

on online judge systems and their applications,’’ ACM Comput. Surv.,
vol. 51, no. 1, pp. 1–34, Jan. 2019.

[2] C. M. Intisar, Y. Watanobe, M. Poudel, and S. Bhalla, ‘‘Classification of
programming problems based on topic modeling,’’ in Proc. 7th Int. Conf.
Inf. Educ. Technol., Mar. 2019, pp. 275–283.

[3] F. D. Pereira, E. Oliveira, A. Cristea, D. Fernandes, L. Silva, G. Aguiar,
A. Alamri, and M. Alshehri, ‘‘Early dropout prediction for programming
courses supported by online judges,’’ in Proc. Int. Conf. Artif. Intell. Educ.
Cham, Switzerland: Springer, 2019, pp. 67–72.

[4] A. A. Sánchez-Ruiz, G. Jimenez-Diaz, P. P. Gómez-Martín, and
M. A. Gómez-Martín, ‘‘Case-based recommendation for online judges
using learning itineraries,’’ in Proc. Int. Conf. Case-Based Reasoning.
Cham, Switzerland: Springer, 2017, pp. 315–329.

[5] D. Joyner, ‘‘Toward CS1 at scale: Building and testing a MOOC-for-
credit candidate,’’ in Proc. 5th Annu. ACM Conf. Learn. Scale, Jun. 2018,
pp. 1–10.

[6] C. L. Gordon, R. Lysecky, and F. Vahid, ‘‘The rise of program auto-grading
in introductory CS courses: A case study of zyLabs,’’ inProc. ASEE Virtual
Annu. Conf. Content Access, 2021.

[7] F. D. Pereira, L. M. de Souza, E. H. T. de Oliveira, D. B. F. de Oliveira,
and S. G. L. de Carvalho, ‘‘Predição de desempenho em ambientes com-
putacionais para turmas de programação: Um mapeamento sistemático da
literatura,’’ in Proc. Anais 31st Simpósio Brasileiro Informática Educação,
2020, pp. 1673–1682.

[8] H. Sun, B. Li, and M. Jiao, ‘‘YOJ: An online judge system designed
for programming courses,’’ in Proc. 9th Int. Conf. Comput. Sci. Educ.,
Aug. 2014, pp. 812–816.

[9] J. L. Bez, N. A. Tonin, and P. R. Rodegheri, ‘‘URI online judge academic:
A tool for algorithms and programming classes,’’ in Proc. 9th Int. Conf.
Comput. Sci. Educ., Aug. 2014, pp. 149–152.

[10] A. G. de Oliveira Fassbinder, T. G. Botelho, R. J. Martins, and
E. F. Barbosa, ‘‘Applying flipped classroom and problem-based learning
in a CS1 course,’’ in Proc. IEEE Frontiers Educ. Conf., Oct. 2015, pp. 1–7.

[11] C. Hogg and M. Jump, ‘‘Designing autograders for novice programmers,’’
in Proc. 53rd ACM Tech. Symp. Comput. Sci. Educ., Mar. 2022, p. 1200.

[12] F. D. Pereira, H. B. F. Junior, L. Rodriguez, A. Toda, E. H. T. Oliveira,
A. I. Cristea, and D. B. F. Oliveira, ‘‘A recommender system based on
effort: Towards minimising negative affects and maximising achievement
in CS1 learning,’’ in Proc. Int. Conf. Intell. Tutoring Syst. Cham, Switzer-
land: Springer, 2021, pp. 466–480.

[13] J. Allen, F. Vahid, K. Downey, and A. Edgcomb, ‘‘Weekly programs in a
CS1 class: Experiences with auto-graded many-small programs (MSP),’’
in Proc. ASEE Annu. Conf. Expo., 2018.

[14] J. M. Allen and F. Vahid, ‘‘Concise graphical representations of Student
effort on weekly many small programs,’’ in Proc. 52nd ACM Tech. Symp.
Comput. Sci. Educ., Mar. 2021, pp. 349–354.

[15] F. D. Pereira, E. H. T. Oliveira, D. B. F. Oliveira, A. I. Cristea,
L. S. G. Carvalho, S. C. Fonseca, A. Toda, and S. Isotani, ‘‘Using learning
analytics in the Amazonas: Understanding students’ behaviour in introduc-
tory programming,’’ Brit. J. Educ. Technol., vol. 51, no. 4, pp. 955–972,
Jul. 2020.

[16] I. Karvelas and B. A. Becker, ‘‘Sympathy for the (novice) developer:
Programming activity when compilation mechanism varies,’’ in Proc. 53rd
ACM Tech. Symp. Comput. Sci. Educ., Feb. 2022, pp. 962–968.

VOLUME 11, 2023 22523

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

[17] J.M. Allen, F. Vahid, A. Edgcomb, K. Downey, andK.Miller, ‘‘An analysis
of using many small programs in CS1,’’ in Proc. 50th ACM Tech. Symp.
Comput. Sci. Educ., Feb. 2019, pp. 585–591.

[18] W. X. Zhao, W. Zhang, Y. He, X. Xie, and J.-R. Wen, ‘‘Automatically
learning topics and difficulty levels of problems in online judge systems,’’
ACM Trans. Inf. Syst., vol. 36, no. 3, pp. 1–33, Jul. 2018.

[19] F. D. Pereira, F. Pires, S. C. Fonseca, E. H. T. Oliveira, L. S. G. Carvalho,
D. B. F. Oliveira, and A. I. Cristea, ‘‘Towards a human-AI hybrid system
for categorising programming problems,’’ in Proc. 52nd ACM Tech. Symp.
Comput. Sci. Educ., Mar. 2021, pp. 94–100.

[20] S. C. Fonseca, F. D. Pereira, E. H. Oliveira, D. B. Oliveira, L. S. Carvalho,
and A. I. Cristea, ‘‘Automatic subject-based contextualisation of program-
ming assignment lists,’’ in Int. Educ. Data Mining Soc., 2020.

[21] L. N. Gamage, ‘‘A bottom-up approach for computer programming educa-
tion,’’ J. Comput. Sci. Colleges, vol. 36, no. 7, pp. 66–75, 2021.

[22] L. Rodrigues, F. Pereira, A. Toda, P. Palomino, W. Oliveira, M. Pessoa,
L. Carvalho, D. Oliveira, E. Oliveira, A. Cristea, and S. Isotani, ‘‘Are they
learning or playing? Moderator conditions of Gamification’s success in
programming classrooms,’’ ACM Trans. Comput. Educ., vol. 22, no. 3,
pp. 1–27, Sep. 2022.

[23] A. Godea, F. Bulgarov, and R. Nielsen, ‘‘Automatic generation and clas-
sification of minimal meaningful propositions in educational systems,’’ in
Proc. COLING, 2016, pp. 3226–3236.

[24] X. Wang, S. T. Talluri, C. Rose, and K. Koedinger, ‘‘UpGrade: Sourcing
student open-ended solutions to create scalable learning opportunities,’’ in
Proc. 6th ACM Conf. Learn. Scale, Jun. 2019, pp. 1–10.

[25] C. Charitsis, C. Piech, and J. C. Mitchell, ‘‘Using NLP to quantify program
decomposition in CS1,’’ in Proc. 9th ACM Conf. Learn. Scale, Jun. 2022,
pp. 113–120.

[26] Q. Liu, Z. Huang, Y. Yin, E. Chen, H. Xiong, Y. Su, and G. Hu, ‘‘EKT:
Exercise-aware knowledge tracing for student performance prediction,’’
IEEE Trans. Knowl. Data Eng., vol. 33, no. 1, pp. 100–115, Jan. 2021.

[27] A. Géron, Hands-on Machine Learning With Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.
Sebastopol, CA, USA: O’Reilly Media, 2019.

[28] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, ‘‘Pre-train,
prompt, and predict: A systematic survey of prompting methods in natural
language processing,’’ 2021, arXiv:2107.13586.

[29] V. Athavale, A. Naik, R. Vanjape, and M. Shrivastava, ‘‘Predicting algo-
rithm classes for programming word problems,’’ in Proc. 5th Workshop
Noisy User-Generated Text (W-NUT), Hong Kong, 2019, pp. 84–93.

[30] H. B. D. F. Junior, F. D. Pereira, E. H. T. D. Oliveira, D. B. F. D. Oliveira,
and L. S. G. D. Carvalho, ‘‘Recomendação automática de problemas
em Juízes online usando processamento de linguagem natural e análise
dirigida aos dados,’’ in Proc. Brazilian Symp. Comput. Educ., Nov. 2020.

[31] T. Aljohani, F. D. Pereira, A. I. Cristea, and E. Oliveira, ‘‘Prediction of
users’ professional profile in MOOCs only by utilising learners’ writ-
ten texts,’’ in Proc. Int. Conf. Intell. Tutoring Syst. Cham, Switzerland:
Springer, 2020, pp. 163–173.

[32] J. Pennington, R. Socher, and C. Manning, ‘‘GloVe: Global vectors for
word representation,’’ in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), 2014, pp. 1532–1543.

[33] E.Ma. (2019).NLPAugmentation. [Online]. Available: https://github.com/
makcedward/nlpaug

[34] M. Raghu and E. Schmidt, ‘‘A survey of deep learning for scientific
discovery,’’ 2020, arXiv:2003.11755.

[35] S. Vajjala, B. Majumder, A. Gupta, and H. Surana, Practical Natural
Language Processing: A Comprehensive Guide to Building Real-World
NLP Systems. Sebastopol, CA, USA: O’Reilly Media, 2020.

[36] A. Bartoli and A. Fusiello, Computer Vision—ECCV 2020 Workshops.
Glasgow, U.K.: Springer, Aug. 2021, vol. 12540.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
and M. Blondel, ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[38] W. L. Hamilton, K. Clark, J. Leskovec, andD. Jurafsky, ‘‘Inducing domain-
specific sentiment lexicons from unlabeled corpora,’’ inProc. Conf. Empir-
ical Methods Natural Lang. Process., 2016, p. 595.

[39] W. L. Hamilton, J. Leskovec, and D. Jurafsky, ‘‘Diachronic word embed-
dings reveal statistical laws of semantic change,’’ 2016, arXiv:1605.09096.

[40] M. Malekzadeh, P. Hajibabaee, M. Heidari, S. Zad, O. Uzuner, and
J. H. Jones, ‘‘Review of graph neural network in text classification,’’ in
Proc. IEEE 12th Annu. Ubiquitous Comput., Electron. Mobile Commun.
Conf. (UEMCON), Dec. 2021, pp. 0084–0091.

[41] B. Gupta, P. Prakasam, and T. Velmurugan, ‘‘Integrated BERT embed-
dings, BiLSTM-BiGRU and 1-D CNNmodel for binary sentiment classifi-
cation analysis of movie reviews,’’Multimedia Tools Appl., vol. 81, no. 23,
pp. 1–20, 2022.

[42] R. Yera and L. Martínez, ‘‘A recommendation approach for programming
online judges supported by data preprocessing techniques,’’ Appl. Intell.,
vol. 47, pp. 277–290, Mar. 2017.

[43] D. Dellermann, P. Ebel, M. Söllner, and J. M. Leimeister, ‘‘Hybrid intelli-
gence,’’ Bus. Inf. Syst. Eng., vol. 61, no. 5, pp. 637–643, 2019.

[44] K. Holstein, V. Aleven, and N. Rummel, ‘‘A conceptual framework for
human–AI hybrid adaptivity in education,’’ in Proc. Int. Conf. Artif. Intell.
Educ. Cham, Switzerland: Springer, 2020, pp. 240–254.

[45] F. D. Pereira, S. C. Fonseca, E. H. T. Oliveira, A. I. Cristea, H. Bellhauser,
L. Rodrigues, D. B. F. Oliveira, S. Isotani, and L. S. G. Carvalho,
‘‘Explaining individual and collective programming students’ behavior
by interpreting a black-box predictive model,’’ IEEE Access, vol. 9,
pp. 117097–117119, 2021.

FILIPE DWAN PEREIRA received the B.S.
degree in computer science from the Federal
University of Roraima and theM.S. degree in com-
puter science from the Federal University of Ama-
zonas, where he is currently pursuing the Ph.D.
degree in artificial intelligence applied to educa-
tion. Since 2013, he has been a Auxiliar Professor
with the Department of Computer Science, Fed-
eral University of Roraima. His research interests
include education data mining, learning analytics,

artificial intelligence, machine learning, big data, computing in education,
and information systems.

SAMUEL C. FONSECA is currently pursuing the
bachelor’s degree in computer engineering with
the Federal University of Amazonas. He also
works as a Software Developer with SIDIA, the
largest research and development institute in Latin
America. His research interests include machine
learning, computer vision, and natural language
processing.

SANDRA WIKTOR is currently pursuing the
Ph.D. degree with the University of North Car-
olina, Charlotte, focusing on computer science
education and learning analytics using natural
language processing and machine learning tech-
niques. Her research interests include text-based
emotion detection with reflective writing, investi-
gating student sentiment toward a learning envi-
ronment, and intervention methods.

DAVID B. F. OLIVEIRA received the Doctoral
degree in computer science from the Federal Uni-
versity of Minas Gerais, in 2010. He is currently a
Professor with the Institute of Computing, Federal
University of Amazonas, Brazil, where he works
as a Researcher, a Professor, and an Advisor in
undergraduate. He has experience in informa-
tion retrieval and informatics in education areas.
He is also the Development Team Manager of
the CodeBench System, which is an online judge,

which automatically grades the programming assignments submitted by
students. He has worked on the following research topics: search for struc-
tured content, online judges, gamification of educational systems, and web
development.

22524 VOLUME 11, 2023

F. D. Pereira et al.: Toward Supporting CS1 Instructors and Learners With Fine-Grained Topic Detection

ALEXANDRA I. CRISTEA (Senior Member,
IEEE) is a Professor, the Head of the Artificial
Intelligence and Human Systems (AIHS) Group,
and the Deputy Head with the Computer Science
Department, Durham University; and an Honorary
Professor with the Computer Science Department,
Warwick University. Her research interests include
web science, learning analytics, user modeling and
personalization, semantic web, and social web.
She has authored over 300 papers on these subjects

(over 4000 citations on Google Scholar, H-index is 35). She was classi-
fied within the top 50 researchers in the world in the area of educational
computer-based research according to Microsoft Research. She has been
highly active and has an influential role in international research projects.
She has led various projects, has been keynote/invited speaker, an organizer,
a co-organizer, a panelist, and a program committee member of various
conferences in her research field. She is a member of the Editorial Board
of the IEEE TRANSACTIONS ON LEARNING TECHNOLOGIES, an Executive Peer-
Reviewer of the IEEE LTTF EDUCATION TECHNOLOGY AND SOCIETY JOURNAL,
and an Associate Editor of Frontiers in Artificial Intelligence.

AILEEN BENEDICT is currently pursuing the
Ph.D. degree with the University of North Car-
olina, Charlotte. She is also a GAANN Fellow
with the University of North Carolina, who has
been mentored in teaching, since 2016. Her work
mainly focuses on computer science education and
learning analytics, with specific interests in reflec-
tive practices and predictive analytics. She also
has research interests in recommender systems and
human-centered AI.

MOHAMMADALI FALLAHIAN is currently pur-
suing the Ph.D. degree in computer science with
the University of North Carolina, Charlotte. He has
been working as a Senior Software Developer for
over ten years. His research interests include deep
learning, generative models, big data, and approx-
imate query processing. In addition, he has collab-
orated actively with researchers in designing soft-
ware patterns and architecture on applied machine
learning projects.

MOHSEN DORODCHI is a Full Teaching Pro-
fessor of computer science with the Univer-
sity of North Carolina, Charlotte. His research
interests include learning and predictive analyt-
ics/visualization, teaching innovation, computer
science education research, software engineering,
and broadening participation in computing. His
research has been supported by the National Sci-
ence Foundation (NSF) and state and local organi-
zations and industries.

LEANDRO S. G. CARVALHO received the B.S.
degree in electronic engineering from the Techno-
logical Institute of Aeronautics, Brazil, in 2000,
and the M.S. and D.S. degrees in informatics from
the Federal University of Amazonas, Brazil, in
2004 and 2011, respectively. Since 2006, he has
been a Professor with the Institute of Comput-
ing, Federal University of Amazonas. His research
interests include computer science education and
educational data mining. He has been an organizer,

a co-organizer, and a program committee member of various conferences in
his research field.

RAFAEL FERREIRA MELLO holds a permanent
faculty position with the Federal Rural University
of Pernambuco, Recife, Brazil, where he is one of
the coordinators of the AIBox Laboratory. He has
worked on several multinational research projects
involving institutional and organizational partners
in Europe, Australia, and Latin America. He has
coauthored 84 publications, including one book,
four book chapters, 18 journal articles, and 61 ref-
ereed conference papers. A key theme of his recent

research has been the use of natural language processing in applied fields,
such as education and for analyzing the content of a range of documents
through text-summarization and topic-modeling algorithms.

ELAINE H. T. OLIVEIRA received the Diploma
degree in computer science from the University
of São Paulo, Brazil, and the Ph.D. degree from
the Graduate Program in Informatics in Education,
Federal University of Rio Grande do Sul, Brazil,
in 2011. Since 2002, she has been a Professor
with the Institute of Computing, Federal Univer-
sity of Amazonas. Her current research is focused
on studying students’ behavior as them learn how
to program, using learning paths and data-driven

approaches. The data is collected by the interaction of the students with a
self-devised online judge and learning management systems. The goals of
her research are to predict outcomes, help decision making, and provide
adaptive learning through learning analytics. She is an Associate Editor of
the Brazilian Journal of Computers in Education (2019–2021).

VOLUME 11, 2023 22525

