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Comparing the hardness of MAX 2-SAT problem instances for quantum and classical algorithms
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An algorithm for a particular problem may find some instances of the problem easier and others harder to solve,
even for a fixed input size. We numerically analyze the relative hardness of MAX 2-SAT problem instances for
various continuous-time quantum algorithms and a comparable classical algorithm. This has two motivations:
To investigate whether small-sized problem instances, which are commonly used in numerical simulations of
quantum algorithms for benchmarking purposes, are a good representation of larger instances in terms of their
hardness to solve, and to determine the applicability of continuous-time quantum algorithms in a portfolio
approach, where we take advantage of the variation in the hardness of instances between different algorithms
by running them in parallel. We find that, while there are correlations in instance hardness between all of the
algorithms considered, they appear weak enough that a portfolio approach would likely be desirable in practice.
Our results also show a widening range of hardness of randomly generated instances as the problem size is
increased, which demonstrates both the difference in the distribution of hardness at small sizes and the value of
a portfolio approach that can reduce the number of extremely hard instances. We identify specific weaknesses
of these quantum algorithms that can be overcome with a portfolio approach, such their inability to efficiently
solve satisfiable instances (which is easy classically).
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I. INTRODUCTION

Are the small-sized problem instances typically used for
numerical simulations actually difficult enough to solve to
provide a useful test of quantum algorithms? We investigate
this question in the setting of continuous-time quantum com-
puting (adiabatic quantum computing, quantum walks, and
quantum annealing in particular) used to solve hard opti-
mization problems. Here, the word “difficult” refers to the
amount of computing resources used to solve one particular
instance of a problem, and “hard” refers to the scaling of
the computational complexity with respect to input size. Not
all instances of hard problems are actually difficult to solve,
even when they belong to a problem class that is NP-hard.
Complexity classes are concerned with the asymptotic be-
havior of computational complexity as a function of input
size, and even for uniformly hard problem classes, there are
instances that are much less difficult to solve than the others,
although they may form a vanishingly small subset in the large
size limit. However, for the small sizes we have to use for
numerical simulations, the less difficult instances could form
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a significant fraction of the instances being processed, and this
could significantly skew the results of the simulations.

Despite the above caveats, prior work by some of the
authors [1] found surprisingly good scaling for as few as
five qubit spin glass ground state problems, using quantum
walk computation. This contrasts with the search problem
[2,3], where finite size effects are apparent up to 20 or so
qubit problem sizes [4] for all continuous-time quantum com-
puting methods. Crosson et al. [5] identified 20 qubit sized
instances of MAX 2-SAT that are difficult for quantum an-
nealing (low success probabilities at anneal time t f = 100).
However, this does not guarantee that these instances are
also difficult for classical algorithms, or for other continuous-
time quantum computing methods, such as quantum walk
computation.

If different problem instances are more or less difficult for
different algorithms, the best solution method can be a hy-
brid approach. Portfolio solvers for the Boolean satisfiability
problem (SAT) are an example of this. These solvers take a
set of different core solvers or different configurations of the
same core solver, called a portfolio, and they run the solvers in
parallel on different computing cores. Heuristics and machine
learning techniques can be used to determine smart resource
allocations that assign more computing cores to solvers that
are likely to perform better, based on the features of an in-
stance. Portfolio-based SAT solving was introduced in 2008
with ManySAT [6] and solvers using the portfolio approach
have outperformed all other solvers in the parallel track of
recent SAT competitions [7].
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In this work, we consider the difficulty of the MAX 2-SAT
instances from Ref. [5], which are difficult for coherent quan-
tum annealing, for other quantum and classical algorithms.
We compare these difficult instances with typical MAX 2-
SAT instances, and also compare the performance of a good
classical algorithm. We then evaluate parallel approaches that
combine two quantum algorithms and approaches that com-
bine a quantum algorithm and a classical algorithm, to identify
portfolio-based strategies that could outperform a single algo-
rithm used alone.

The paper is organized as follows. In Sec. II, we give an
introduction to methods in continuous-time quantum comput-
ing and the MAX 2-SAT problem. In Sec. III, we outline the
datasets and methods we have used in our numerical analysis.
Then, we present the results of our work in Sec. IV, where we
make comparisons between the difficulty of instances for dif-
ferent algorithms and study the behavior of these algorithms
on satisfiable instances, which are classically easy to solve.
Finally, we give an overview of the results and present our
conclusions in Sec. V.

II. BACKGROUND

In this section, we introduce the definitions and concepts
used in this work. This includes an overview of continuous-
time quantum computing in the coherent regime, a description
of the MAX 2-SAT problem, and a mapping of MAX 2-
SAT to a problem Hamiltonian. Definitions given in this
section will be used when quantifying the success of algo-
rithms in later sections. The contents of this section are not
new work. Rather, this section is intended to be a brief review
of key concepts and prior work for readers that are new to this
literature.

A. Continuous-time quantum computing

Continuous-time quantum computing is a model for
computing that offers an intuitive approach to solving combi-
natorial optimization problems on quantum hardware. In this
approach, the problem is encoded in a problem Hamiltonian
Hproblem such that the ground state of Hproblem corresponds
to the desired solution. The computation is performed by
initialising a set of qubits to a state |ψ (0)〉, applying a time-
dependent Hamiltonian, and measuring the final state of the
qubits after a time t f has passed. Assuming that the system
stays in a fully coherent regime for the full length of the com-
putation, the evolution of the system between the initialization
and measurement steps can be described by the Schrödinger
equation. Typically, the Hamiltonian is expressed in the form

H (t ) = A(t )Hdriver + B(t )Hproblem, (1)

where A(t ) and B(t ) are the control functions, which are
generally time-dependent real numbers, and Hdriver is a Hamil-
tonian that drives state transitions.

The continuous-time quantum walk (QW) [8] is a form
of fully coherent continuous-time quantum computing where
the control functions are time-independent. The initial state
is chosen to be the ground state of Hdriver, which is known
in advance and is easy to prepare. The QW Hamiltonian is

given by

HQW(γ ) = γ Hdriver + Hproblem, (2)

where we set B(t ) = 1 and γ = A(t ) is called the hopping
rate. QW is a quantum analog of the classical continuous-time
random walk, which is a stochastic process that describes the
path of a walker as it takes random steps on a mathematical
space. The hopping rate γ can be interpreted as the probability
per unit time that the walker will move to an adjacent site. For
discussions of the connection between QW and other forms of
continuous-time quantum computing, see Refs. [1,4,9].

Another coherent form of continuous-time quantum com-
puting is adiabatic quantum computing (AQC) [10]. In AQC,
the system is prepared in the ground state of Hdriver, and
the Hamiltonian is slowly varied from Hdriver to Hproblem by
varying the control functions from A(0) = 1 and B(0) = 0 to
A(t f ) = 0 and B(t f ) = 1. If A(t ) and B(t ) are smoothly and
monotonically decreasing and increasing respectively and the
minimum gap between the energy of the ground state and the
first excited state is nonzero, then the adiabatic theorem [11]
ensures that the system will have a high probability of staying
in the instantaneous ground state throughout the computation,
provided that t f is long enough. In AQC, t f is always long
enough to be close to the adiabatic limit. We refer to proto-
cols with time-dependent control functions where coherence
and/or adiabaticity are not guaranteed as quantum annealing
(QA). Note that AQC and QA are sometimes defined differ-
ently elsewhere in the literature.

In practice, the problem Hamiltonian is typically expressed
as an Ising Hamiltonian on n qubits, which takes the form

Hproblem =
n−1∑
i=1

n∑
j=i+1

Ji jσ
z
i σ z

j +
n∑

i=1

hiσ
z
i , (3)

where the couplings Ji j ∈ R and field strengths hi ∈ R are used
to encode the problem, and σ z

i = 1⊗i−1
2 ⊗ σz ⊗ 1⊗n−i

2 is the
Pauli operator σz acting on qubit i and identities acting on all
other qubits. A common choice for the driver Hamiltonian in
both QW and AQC is the transverse-field Hamiltonian

Hdriver = −
n∑

i=1

σ x
i , (4)

where σ x
i is defined similarly to σ z

i as σ x
i = 1⊗i−1

2 ⊗ σx ⊗
1⊗n−i

2 . The ground state of this driver Hamiltonian, which in
QW and AQC is the initial state of the system, is the equal
superposition of the computational basis states,

|ψ (0)〉 = 1√
2n

2n−1∑
j=0

| j〉 = |+〉⊗n, (5)

where |+〉 = (|0〉 + |1〉)/
√

2.
Whereas in AQC the adiabatic theorem guarantees that

one can always attain a near-unity probability of successfully
measuring the state corresponding to the optimal solution by
using a long enough run time, this is not the case for QW.
Therefore, to find the optimal solution with a probability of
close to unity using QW, one should perform the computation
many times and take the best found solution. For simplicity, in
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the rest of this work we will only be considering problem in-
stances that have a unique optimal solution corresponding to a
nondegenerate ground state |ψG〉 of the problem Hamiltonian.
According to the Born rule [12], the probability of measuring
the state |ψG〉 after evolving the system for a time t f is

P(t f ) = |〈ψG | ψ (t f )〉|2. (6)

In general, the success probability P(t ) for QW fluctuates
with time in an unpredictable manner. To avoid taking every
measurement at a time when P(t f ) happens to be near a local
minimum, it is beneficial to use different values of t f for each
measurement. We will consider the same approach as in [1],
where t f is selected uniformly at random from an interval
I = [tI , tI + �tI ]. The average single run success probability
is defined as

P(tI ,�tI ) ≡ 1

�tI

∫ tI +�tI

tI

P(t f ) dt f , (7)

which is the mean success probability of individual measure-
ments in this approach. The number of repeats required to
attain an arbitrarily high probability of measuring the ground
state scales as the inverse of P(tI ,�tI ) for small P(tI ,�tI ).

For both QW and AQC, the choice of control functions is
a free parameter that can affect the performance of the algo-
rithms. In QW, this corresponds to the hopping rate γ . A good
choice for γ is one that balances the energy between Hdriver

and Hproblem in the total Hamiltonian [1]. To achieve this, we
would like to set γ such that the energy-spread of γ Hdriver is
equal to the energy-spread of Hproblem. For the transverse-field
driver Hamiltonian defined in Eq. (4), the energy-spread is
2n. However, the energy-spread of the problem Hamiltonian,
which is the difference between the maximum and minimum
number of clauses that can be satisfied, depends on the par-
ticular problem instance and it is not possible to calculate it
without solving the instance. Therefore we instead consider
the average energy-spread of Hproblem for instances of a given
number of variables n, and we calculate a heuristic hopping
rate γheur by setting this equal to the energy-spread of γ Hdriver,
giving

γheur = 〈E2n − E1〉
2n

. (8)

Here, E1 and E2n are the smallest and largest eigenvalues of
Hproblem respectively. For our analysis, the average energy-
spread 〈E2n − E1〉 was calculated for each n by diagonalising
the problem Hamiltonians of the generated instances (i.e.,
solving the problems). In practice, when the size of the in-
stances makes this approach too computationally expensive,
〈E2n − E1〉 can be calculated for similar instances with fewer
variables and extrapolated to larger n.

The choice of control functions that we have used for all
AQC simulations in this analysis is the linear schedule

A(t ) = 1 − t

t f
, B(t ) = t

t f
. (9)

While there exist strategies involving QW and AQC with
different choices of control functions that can improve per-
formance [13], we will not be exploring them in this work.
The simulations in [5] used the same linear schedule as
above with a constant duration t f = 100, which is close to

the adiabatic limit for most of the instances that were gen-
erated in their work. (Over half of the instances had success
probabilities of P(100) > 0.95.) However, the instances that
were selected for being difficult had success probabilities of
P(100) < 10−4, which puts their simulations far from the
adiabatic limit. Hence, these instances are difficult for a co-
herent QA protocol that relaxes the condition of adiabaticity
in AQC.

B. MAX 2-SAT

A Boolean formula φ = φ(x1, . . . , xn) consists of n
Boolean variables x1, . . . , xn, Boolean operators, and paren-
theses. The Boolean operators we will consider are conjunc-
tion (∧), disjunction (∨), and negation (¬). Boolean variables
can take one of the two possible logical values true (denoted
0) and false (denoted 1). A set of values that are assigned to
the n variables in a formula is called an assignment, and for
each assignment the Boolean formula φ will evaluate to either
true or false. We define 2n literals l1, . . . , ln and l−n, . . . , l−1

such that the literal li is associated with the variable xi if i is
positive, or ¬x|i| if i is negative.

In the maximum satisfiability problem (MAX SAT), a
problem instance is specified by a Boolean formula φ that is
in conjunctive normal form (CNF), which is a formula that
is structured as a conjunction of m clauses, where a clause
is a disjunction of literals. In this work, we will be studying
maximum 2-satisfiability (MAX 2-SAT), which is a special
case of MAX SAT where there are two literals in each clause.
An example of a valid formula for MAX 2-SAT is

(x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x3) ∧ (¬x1 ∨ x3) ∧
(¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3), (10)

where n = 3 and m = 6 in this case. In MAX 2-SAT, any
possible truth assignment is known as a solution, and we are
tasked with finding an optimal solution, which is a solution
that maximizes the number of clauses that evaluate to true. A
clause that evaluates to true is said to be satisfied, and a clause
that evaluates to false is said to be unsatisfied. The formula
above has four optimal solutions which each satisfy five of
the six clauses, one of which is the assignment x1 = 0, x2 =
0, x3 = 0.

Although 2-SAT, the decision version of MAX 2-SAT,
is in the complexity class P [14], MAX 2-SAT is NP-hard
[15]. Nevertheless, MAX SAT solvers have made remarkable
advancements over the past three decades, and they are able
to solve or approximately solve MAX 2-SAT instances with
relatively large input sizes. This progress can in part be at-
tributed to annual competitions in producing the fastest SAT
and MAX SAT solvers [7,16] and the large demand for these
solvers, which is generated from the ability to efficiently map
a wide range of practical problems to satisfiability problems.
Examples include integrated circuit design debugging [17,18],
cancer therapy design [19], software verification [20,21], and
planning [22,23].

Outside the title and abstract of this paper, we avoid using
the word “hardness” unless we are referring to the scaling of
the computational complexity of a problem. When referring to
the amount of resources used by a given algorithm to solve a
particular instance of a problem, we use the word “difficulty”
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instead. Note that some papers use the word “hardness” in-
stead of “difficulty,” which is what we have done in the title
and abstract. An instance that is difficult for one algorithm
may not necessarily be difficult for another algorithm. The
hardness of a problem is typically measured by the worst-case
or average-case computational complexity. Due to MAX 2-
SAT being NP-hard [15], we expect a worse than polynomial
scaling of the worst-case time complexity with n for any
algorithm, assuming P 
= NP.

In practice, the average run time scaling for a given set
of instances may differ significantly from the worst-case time
complexity of the problem and may be polynomial, even if the
problem is NP-hard. The way in which instances are sampled
is often an important consideration when performing an analy-
sis on run times, especially when the problem is not uniformly
hard. It has been shown that the difficulty of random MAX
2-SAT instances increases with the clause density ρ = m/n,
and that there is a difficulty phase transition at the critical
clause density ρc = 1 [24,25]. This has been demonstrated
experimentally for QA [26] and has also been observed in nu-
merical simulations of the quantum approximate optimization
algorithm [27,28].

C. Problem mapping

In order to solve instances of MAX 2-SAT with a
continuous-time quantum algorithm, a mapping of the prob-
lem as a Hamiltonian in the form given by Eq. (3) is required.
Such a mapping should assign lower energies to eigenstates
corresponding to more desirable solutions. Under the binary
encoding of Boolean variables xi ∈ {0, 1} where 0 corre-
sponds to true and 1 corresponds to false, the disjunction
operator is equivalent to multiplication—i.e. xi ∨ x j can be
written as xix j . By identifying the variable xi with the single-
qubit basis state |xi〉, we observe that

1 − σz

2
|xi〉 = xi|xi〉, (11)

where σz is the Pauli Z operator. For a clause Ck = li ∨ l j ,
where the literal li is positive (negative) if the number i is
positive (negative), the corresponding term in the problem
Hamiltonian can be constructed by taking the product

HCk = 1 − sgn(i)σ z
|i|

2

1 − sgn( j)σ z
| j|

2
, (12)

where we have used the sign function sgn to extract the sign
of the indices. This term contributes an energy equal to xix j .
The problem Hamiltonian can then be constructed by taking a
sum over the terms corresponding to each of the clauses in the
Boolean formula φ, giving

Hproblem =
∑
Ck∈φ

HCk . (13)

The eigenvalues of this Hamiltonian are equal to the numbers
of clauses that are unsatisfied by the assignments correspond-
ing to the eigenstates.

D. Algorithm portfolios

One of the aims of this paper is to investigate the ex-
tent to which a portfolio-based strategy could improve the

performance of continuous-time quantum algorithms. The
portfolio approach is a simple method of achieving paral-
lelism that was inspired by strategies for managing risk while
increasing utility in economics [29]. It takes advantage of
the lack of correlation in the difficulty of instances between
several algorithms (together called a portfolio) by running
the different algorithms in parallel. This approach has been
applied to SAT solving [6,30], where it typically outperforms
all other parallel strategies in competitions [7]. Optimal port-
folios of recent SAT solvers and the impact of the portfolio
size on performance have been studied [31]. For overviews of
classical parallel SAT solving, see Refs. [32,33].

An advantage of the portfolio approach is that it has the
potential to decrease a strategy’s sensitivity to extremely
difficult instances. As a simple example of this, consider
two algorithms that each find a subset of instances ex-
tremely difficult to solve, where these two subsets do not
overlap. These instances may not only significantly impact
the worst-case performance of the algorithms but also the
mean performance. If these algorithms were combined into
a portfolio—for example, by running the two algorithms in
parallel and allocating each algorithm half of the comput-
ing resources—the instances that are extremely difficult for
each algorithm would be solved more efficiently by the other
algorithm. This speedup comes at the cost of decreased per-
formance for instances that the two algorithms find similarly
difficult. Similar discussions of such performance/sensitivity
trade-offs have been made in the context of no free lunch
theorems for optimization [34–36]. While the no free lunch
theorems do not apply to MAX 2-SAT in particular [37], an
analysis of the implications of these theorems for portfolios
of quantum and classical algorithms would be an interesting
direction for future work.

In the context of quantum computing, parallel computing
and the portfolio approach in particular have not been studied
in significant depth. In Ref. [38], classical and quantum port-
folios of quantum algorithms were found to perform better
than standalone quantum algorithms for random 3-SAT. In
this paper, we build on these results by studying the prac-
tical implications of a classical portfolio-based strategy for
a selection of quantum and classical algorithms for MAX
2-SAT.

In related works that are not specifically on the subject
of the portfolio approach, various hybrid quantum-classical
algorithms for near-term quantum devices have been studied
[39]. There have been efforts towards integrating quantum
processors into modern high performance computing systems
[40], which is an important step towards practically imple-
menting a portfolio of quantum and classical algorithms. With
regards to parallelism in continuous-time quantum comput-
ing, Pelofske et al. studied the use of quantum annealers to
solve multiple independent problems in parallel on a single
device [41,42].

III. NUMERICAL METHODS

A. Datasets

We performed our numerical study on two sets of MAX
2-SAT instances. The first set of instances were generated by
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Crosson et al. in Ref. [5], and each instance in this set contains
n = 20 Boolean variables and m = 60 unique clauses. Having
a constant clause density ρ = 3 that is well above the critical
clause density ensures that these instances are in the difficult
regime. Each of the clauses in these instances were generated
by randomly selecting two literals that are associated with
distinct variables. Instances with multiple optimal solutions
(corresponding to degenerate ground states of the problem
Hamiltonian) were discarded. Note that this may lead to a dif-
ferent relation between instance difficulty and clause density
compared to the phase transition results discussed in Sec. II B
for random MAX 2-SAT. We are not aware of any results
related to the phase transition in the context of instances
with unique optimal solutions. 202 078 of such instances were
generated, but only those with an AQC success probability
at time t f = 100 of P(100) < 10−4 were selected, meaning
that the 137 instances that remained are difficult for QA. For
convenience, these instances were transformed by negating
all literals corresponding to variables that were set to 1 in
the original optimal assignment so that the optimal solution
is always the 00 . . . 0 bit string.

The second set of instances were generated in a similar
manner as those from Ref. [5]. For each number of variables
in the range 5 � n � 20, 10 000 instances containing m = 3n
unique clauses were generated with randomly selected pairs
of literals corresponding to distinct variables for each clause,
and only the instances with unique optimal solutions were
kept. The transformation to set 00 . . . 0 as the optimal solution
was applied. Unlike the instances from [5], there was no post-
selection of a fraction of these instances based on difficulty;
hence, we will refer to these as the “typical” instances. It
has been shown that instances with an unbalanced ratio of
positive to negative literals (or unnegated to negated variables)
may be more difficult than balanced instances, where there
are an equal number of positive and negative literals [43].
These instances are balanced on average and hence are not
maximally difficult.

B. Numerical tests

All of the findings in this paper are results of numerical
simulations that were carried out using the PYTHON program-
ming language [44]. The NUMPY [45] and SCIPY [46] libraries
were used for computationally intensive calculations, and
MATPLOTLIB [47] was used for plotting. The implementation
of the least squares method in scipy.optimize.curve_fit was
used for obtaining the linear fits in this paper. The unitary time
evolutions of quantum systems were simulated using QUIMB

[48] as a convenient interface to scipy.integrate.complex_ode
and its implementation of DOP853 [49], which is a Runge-
Kutta method of order 8 with an adaptive step size. To
calculate the average success probabilities in the limit of
infinite time interval (shown in Appendix), Hamiltonians
were diagonalized using numpy.linalg.eigh. Simulations of
QW were run on high performance computers at Imperial
College London, and simulations of AQC were run on the
Hamilton high performance computing cluster at Durham
University.

The quantity of interest for our analysis of QW is the
average single run success probability P(tI ,�tI ) given in

FIG. 1. Instantaneous QW success probability P(t f ) for two ran-
domly selected pairs of instances (solid blue and dashed orange lines)
with (a) n = 5 variables and (b) n = 20 variables plotted against the
measurement time t f . Note the difference in the upper limits of the y
axes.

Eq. (7), which is defined over an interval of measurement
times I = [tI , tI + �tI ]. We set tI = 0 and �tI = 100 for our
calculations, which produces an interval that is longer than the
timescale of the QW dynamics. To demonstrate this, we plot
the instantaneous QW success probability in this interval for
pairs of randomly selected instances with n = 5 and n = 20
variables in Fig. 1, and we see that there are many oscillations
in the success probability within the time interval in each case.
As shown in Appendix, the specific choice of �tI does not
significantly impact the results as long as it is longer than the
timescale of the QW dynamics. The average success proba-
bility P(0, 100) was approximated by numerically integrating
the Schrödinger equation over the full time interval and taking
a weighted average of the instantaneous success probabilities
of the solutions that were evaluated at each iteration of the in-
tegration method, where the weights are given by the amount
of time between successive iterations.

For AQC, the quantity of interest is the minimum evolution
duration required to achieve a 99% success probability t0.99.
To find t0.99 for a given instance, the quantum dynamics were
simulated for a small duration t f and the success probability
was calculated according to Eq. (6). If the success probability
was less than 99%, t f was doubled and a new success proba-
bility was calculated. This was repeated until either a success
probability of greater than 99% was found or the simulations
became too computationally intensive to continue, in which
case t0.99 was not found. If the original success probability
was greater than 99%, t f was instead halved each time until
a duration with less than 99% success probability was found.
The bisection method was then used to search for t0.99 within
the interval of the last two durations until a precision of at
least 1% was reached.

The classical algorithm MIXBANDB [50] was applied to
all of the generated MAX 2-SAT instances to compare its
performance against the quantum algorithms. MIXBANDB was
written to mirror some of the key characteristics of a highly
competitive MAX SAT solver known as MIXSAT [51], with-
out including many of the heuristic methods that MIXSAT

employs. Like MIXSAT, MIXBANDB is a branch-and-bound al-
gorithm that uses the “Mixing method” [52] as a semidefinite
programming solver in order to produce lower bounds, and
rounding to produce good guesses. MIXBANDB does not use
a dual initialization strategy or any of the data structure or
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FIG. 2. Heatmaps of the AQC duration t0.99 against the QW suc-
cess probability P(0, 100) for typical MAX 2-SAT instances with
(a) n = 5 and (b) n = 15 variables, excluding 138 instances of size
n = 15 for which t0.99 was not successfully calculated. Visually, the
plot in (b) looks reasonably well correlated, whereas the plot in
(a) does not appear to show much correlation. This is confirmed by
Spearman’s rank correlation coefficients, which were calculated to
be ≈0.01 for n = 5 and ≈ −0.76 for n = 15.

implementation optimizations that are present in MIXSAT. For
each instance, we measured the number of times MIXBANDB

accessed the problem specification, which we refer to as the
number of problem calls Ncalls. This quantity serves as a proxy
for the run time of the algorithm.

IV. RESULTS

In this section, we present an analysis of the difficulty
of MAX 2-SAT instances for various quantum and classical
algorithms based on the results of numerical simulation. The
QW success probability P(0, 100) is used as a measure of the
difficulty of instances for QW, where a higher success prob-
ability corresponds to a less difficult instance, and the AQC
duration t0.99 is used as a measure of difficulty of instances
for AQC, where a longer duration corresponds to a more
difficult instance. We start by making a cross-comparison
between the difficulty of MAX 2-SAT instances for QW and
AQC in Sec. IV A, and we make further comparisons that
include difficulty for MIXBANDB in Sec. IV B. Where we were
able to obtain results for 20-variable instances, a comparison
with QA difficulty using the instances from Ref. [5] is also
made. In Sec. IV C, we investigate the relative difficulty of
satisfiable instances, which are classically easy to solve, for
the algorithms that we are considering.

A. QW/AQC difficulty comparison

To characterize the relation between the QW difficulty and
AQC difficulty of MAX 2-SAT instances, Fig. 2 shows the
joint distribution of P(0, 100) and t0.99 for typical instances
with n = 5 variables and for n = 15 variables—-the latter
being the largest problem size that we could calculate t0.99 for.
We calculate Spearman’s rank correlation coefficient for the
distributions to be ≈0.01 and ≈ −0.76 for n = 5 and 15, re-
spectively. Spearman’s rank correlation coefficient has a range
of −1 (perfect anticorrelation between the rankings of the two

quantities) through 0 (no correlation in rankings) to +1 (per-
fect correlation in rankings). Recalling that smaller P(0, 100)
and larger t0.99 values indicate more difficult instances, the
increasing negative Spearman’s rank correlation coefficient
values (anticorrelation) indicates a correlation between QW
and AQC difficulty that gets stronger with n. This suggests
that while a portfolio-based strategy may be able reduce the
total run time, it would not produce a huge improvement at
higher n, as the instances that are difficult for one algorithm
are not likely to be found less difficult by the other algorithm.

In Fig. 2(b), a long tail of instances that are extremely
difficult for both QW and AQC can be identified visually.
These instances are towards the top left of the heatmap and
are far from the location where the heatmap shows the highest
density of instances. In comparison, the tail of instances to
the bottom-right of the heatmap is much shorter, indicating
that the least difficult instances are not as outlying as the
most difficult instances for both QW and AQC. It is possible
that typical instances of the n = 15 problem size are more
dominated by less difficult instances than would be found at
larger problem sizes. In other words, the top and left sides of
the graph may have a higher density of instances when plotted
for larger n, due to there being more instances in the “difficult
tail” of the distribution. If this is the case, then the most
difficult of the typical instances may be a better representation
of the types of instances that are typically found at larger
problem sizes. On top of this, instances of practical interest
may have a significantly different composition of more and
less difficult instances than our sample of randomly generated
instances. Therefore it would be useful to find out whether the
level of correlation between P(0, 100) and t0.99 changes with
the difficulty of the instances, but this is not easy to tell from
these heatmaps.

A more detailed analysis of the difficulty of instances is
required, to distinguish between the increase in difficulty with
n that is simply due to the increase in problem size, from the
change in the distribution of the difficulty of the instances
for QW and AQC at each n. This is not easy to achieve
because we expect the proportion of very difficult instances
to increase with n. To accommodate such an analysis, we
have followed a similar approach to other authors who have
partitioned instances according to a measure of their difficulty
[53,54]. Specifically, we have grouped the typical instances
of each number of variables n into deciles that are ranked by
difficulty. Decile 1 contains the 10% of the instances that are
least difficult, decile 2 contains the next least difficult 10% of
the instances, and so on, with decile 10 containing the most
difficult 10% of the instances. This partitioning is done using
the average QW success probability P(0, 100) as the measure
of difficulty to produce “QW difficulty deciles” and similarly
done using the 99% success probability duration t0.99 for AQC
to produce “AQC difficulty deciles.” For AQC, it is assumed
that the instances that we were not able calculate t0.99 for in
a reasonable amount of time are the most difficult instances.
To identify the extremely difficult instances, we have also
grouped together the most difficult 1% of instances at each
n for QW and for AQC using the same measures of difficulty
as for the deciles. By defining the QW/AQC “difficulty per-
centiles” in a similar way as the difficulty deciles, we can refer
to the instances that are on the boundaries of the deciles by
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FIG. 3. (a) The QW success probabilities P(0, 100) of the 10th,
20th, . . . , 90th percentile instances (blue circles) and the 99th per-
centile instances (green triangles) for QW difficulty plotted against
the number of variables n on log-linear axes, with a linear fit (solid
line) for each percentile. The median QW success probability of the
instances from Ref. [5] is also plotted (orange square). Darker shades
of blue represent more difficult percentiles. (b) Plot of the values of
the scaling exponents κ that have been inferred from the gradients
of the linear fits, with error bars indicating standard errors. [(c) and
(d)] Similar plots for the AQC duration t0.99 and AQC difficulty
percentiles. The results go up to n = 20 for QW and n = 15 for AQC
due to time and resource constraints. Hence, there is no data point for
the instances from Ref. [5] shown in (c). Also note that we could not
calculate t0.99 for the 99th percentile instance for AQC difficulty at
n = 15, so there is no corresponding point in (c).

their percentiles. For example, the most difficult instance in
the third QW difficulty decile is the 30th percentile instance
for QW difficulty. Similarly, the most difficult instance for
AQC that is not one of the most difficult 1% of instances for
AQC is the 99th percentile instance for AQC difficulty.

Figure 3(a) shows a log-linear plot of the average success
probabilities P(0, 100) for the most difficult instances of each
QW difficulty decile (excluding the most difficult decile) and
the 99th percentile instances for QW difficulty against the
number of variables n. A linear fit is shown for each of the
decile boundary instances and the 99th percentile instances,
and the corresponding scaling exponents for each fit are plot-
ted in Fig. 3(b). These plots show that the scaling of P(0, 100)
gets progressively worse as the subset of selected instances
gets more difficult. Therefore, at larger problem sizes, we can
expect a bigger difference between the difficulty of the most
and least difficult instances. The inferred scaling exponents
also indicate that the tail of difficult instances gets longer as n
is increased, which means that the time spent solving many
instances would be largely dominated by the most difficult
instances. This highlights the value of a portfolio approach,
as any efficiency improvement for the most difficult instances
would make a significant difference to the total run time.

An orange point indicating the median value of P(0, 100)
for the instances from Ref. [5] is shown in Fig. 3(a). The
placement of this point shows that these instances are also
difficult for QW, which suggests that there is a correlation
between QW and QA difficulty. These instances were selected

to be the most difficult 137 instances for QA out of 202 078
randomly generated instances, meaning that they are all in the
top 0.1% of the most difficult instances for QA. However, the
median QW difficulty of these instance lies between the 90th
and 99th percentiles of the typical instances, which indicates
that the instances from [5] are not as extremely difficult for
QW as they are for QA. Given that these instances are at
least four orders of magnitude more difficult for QA than
the median of the randomly generated instances, their lower
relative difficulty for QW is substantial, and an approach
involving QA would benefit from speeding up these instances
by running QW in parallel.

Figures 3(c) and 3(d) show similar plots as above, but
this time for the AQC duration t0.99 and AQC difficulty
deciles/percentiles. The median value of t0.99 for the instances
from [5] was not calculated, as these instances were too large
to run AQC simulations for. Just as with the QW results,
we find that more difficult percentiles scale more harshly
for AQC, and this effect is even more prominent than for
QW. (The decile boundary scaling exponents range from
κ = 0.119 ± 0.006 to 0.28 ± 0.005 for AQC, as opposed to
κ = −0.407 ± 0.002 to −0.537 ± 0.004 for QW.) Notably,
there is a large jump in κ to ≈0.63 ± 0.02 between the 90th
and 99th percentile instances, compared with a smaller jump
to ≈ − 0.57 ± 0.01 for QW, which implies that a small subset
of the instances we are considering are extremely difficult for
AQC. This is not surprising, as it is known that AQC performs
very poorly on instances of other NP-hard problems when the
minimum energy gap between the ground and first excited
states is extremely small [55]. The steep gradient of the fit
for the 99th percentile instances may be an indication that
the number of extremely difficult instances is growing with
n, which would be consistent with the idea that we would see
a larger fraction of instances in the “difficult tail” at larger
n. Therefore we are further motivated to analyze the relation
between QW and AQC difficulty for these extremely difficult
instances.

To make a cross-comparison between QW and AQC, we
examine the QW difficulty of instances when grouped by
AQC difficulty, and vice versa. In Fig. 4(a), we plot the me-
dian values of the QW success probability P(0, 100) for the
instances in each AQC difficulty decile against n on log-linear
axes. The median values of P(0, 100) for the most difficult
1% of instances for AQC are also plotted. A straight line is
fit to the points for each of these groups of instances, and
the corresponding scaling exponents are plotted in Fig. 4(b).
The fact that more difficult AQC deciles tend to correspond
to smaller median values of P(0, 100) implies that AQC diffi-
culty is a good indicator of QW difficulty. Note that this is not
the case at the lowest values of n, but the correlation becomes
more clear as n is increased. This agrees with the correlations
we found in Fig. 2. The implied scaling exponents show that
this increase in QW difficulty with AQC difficulty becomes
more prominent across all of the deciles as n is increased.
In particular, the correlation between QW difficulty and AQC
difficulty seems to remain strong at the “difficult tail” of the
distribution. However, there is not a large jump in the scaling
for the most difficult 1% of instances for AQC on QW, which
shows that the extremely difficult instances for AQC are not
as extremely difficult for QW. This indicates a significant
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FIG. 4. (a) The median value of the QW success probability
P(0, 100) of each of the AQC difficulty deciles (blue circles) and
the most difficult 1% of instances for AQC (green triangles) plotted
against the number of variables n on log-linear axes, with a linear fit
(solid line) for each category. Darker shades of blue represent more
difficult deciles. (b) Plot of the values of the scaling exponents κ

that have been inferred from the gradients of the linear fits, with
error bars indicating standard errors. [(c) and (d)] Similar plots for
the median values of the AQC duration t0.99 for instances organized
by QW difficulty. Note that since there were more than 100 instances
that we could not calculate t0.99 for at n = 15, the plot in (a) does not
include a point at n = 15 for the median of P(0, 100) for the most
difficult 1% of instances for AQC.

advantage of the portfolio approach for solving the instances
that AQC finds extremely difficult.

We make a similar comparison in Figs. 4(c) and 4(d),
where we plot the median AQC durations t0.99, and the corre-
sponding scaling exponents, for the instances in QW difficulty
deciles and the 99th percentile instances for QW difficulty. In
accordance with the previous results, these plots indicate that
QW difficulty is a good indicator of AQC difficulty, though

FIG. 5. Histogram showing the approximate probability density
p(log10(Ncalls )) of the logarithm of the number of problem calls Ncalls

made by the MIXBANDB algorithm when solving the typical n = 20
instances (blue) and the instances from Ref. [5] (orange), which are
difficult for QA.
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FIG. 6. Heatmaps of the number of problem calls Ncalls against
[(a) and (b)] the QW success probability P(0, 100) and [(c) and (d)]
the AQC duration t0.99 on log-log axes for typical instances with
n = 15 variables. 138 instances for which t0.99 was not successfully
calculated are excluded in (c) and (d). (a) and (c) show the heatmaps
with a linear color scale, and (b) and (d) show the same distributions
with a logarithmic color scale, where the value for each cell has
been increased by one to remove the zeros. Visually, some corre-
lation can be seen in both distributions. Spearman’s rank correlation
coefficients are ≈ −0.47 for the distribution in (a) and ≈0.52 for the
distribution in (c).

this is again more clearly the case for larger n. The trend of
worsening scaling exponent with increasing difficulty decile
in both sets of comparisons indicates that the QW-AQC diffi-
culty correlation is likely to continue to larger n, even for the
tail of difficult instances. Therefore a simple portfolio-based
strategy is unlikely to produce a drastic speedup, though there
is still room for some speedup, especially for the instances that
are extremely difficult for AQC. Assuming that performing
runs of both QW and AQC for each instance incurs a cost
of roughly a factor of two to the total run time, even a small
scaling advantage obtained from this approach would make
up for this cost at large problem sizes.

B. Quantum/classical difficulty comparison

To quantify the classical difficulty of MAX 2-SAT in-
stances, we have measured the number of problem calls Ncalls

made by the classical algorithm MIXBANDB when solving
each MAX 2-SAT instance. While there exist many classical
algorithms that perform much better than MIXBANDB, they
typically employ heuristic methods to gain a speed advantage,
which make a significant difference at small problem sizes.
This is undesirable for our analysis because the quantum al-
gorithms we are comparing them to do not use such heuristics.
MIXBANDB is based on MIXSAT, which is a powerful MAX
SAT solver, but it does not incorporate the heuristic optimiza-
tions that MIXSAT uses. In this sense, MIXBANDB is a good
classical comparison to QW and AQC. However, MIXBANDB

is an exact solver, meaning that it always returns an optimal
solution at the end of a run, whereas QW and AQC cannot
give such guarantees. Since the purpose of this work is not
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FIG. 7. Histograms of the approximate probability density p of
[(a) and (b)] the QW success probability P(0, 100), (c) AQC duration
t0.99, (d) logarithm of t0.99, (e) MIXBANDB calls Ncalls, and (f) logarithm
of Ncalls for typical satisfiable (orange) and unsatisfiable (blue) MAX
2-SAT instances with [(a), (c), and (e)] n = 5 variables and [(b), (d),
and (f)] n = 15 variables. The x axes have been reversed in [(a) and
(b)] so that instance difficulty increases from left to right for all plots.
Median values of the distributions are indicated by dashed lines for
satisfiable instances and solid lines for unsatisfiable instances. Note
that the distributions in (d) do not include 138 instances for which
t0.99 was not successfully calculated.

to benchmark the scalings of these algorithms but to compare
the underlying mechanisms they use to solve problems, this
difference is not important for our analysis.

Figure 5 shows a histogram of the approximate probability
density of the logarithm of the number of calls Ncalls made
by MIXBANDB for typical instances with n = 20 variables and
the instances that are difficult for QA. It can be seen that the
typical instances form a bimodal distribution, where there is
a peak of instances that required relatively few calls and a
long tail of more difficult instances that form another peak
at a higher number of calls. This suggests that the typical
instances can be roughly divided into two sets for their dif-
ficulty classically, with the majority of instances being in
the less difficult set. The instances that are difficult for QA
also form a bimodal distribution but with a larger peak of
difficult instances than less difficult instances. The center of
this distribution is located on the “difficult tail” of typical
instances, suggesting that difficult instances for QA tend to
be difficult for MIXBANDB too.

In Fig. 6, we plot the joint distribution of Ncalls and
P(0, 100) for the typical instances with n = 15 variables, and

FIG. 8. Median QW success probability P(0, 100) for all sat-
isfiable (orange triangles) and unsatisfiable (blue circles) typical
instances against the number of variables n on (a) log-linear and
(b) log-log axes. Linear fits are shown for both the satisfiable and
unsatisfiable instances. [(c) and (d)] The same as above, but for the
AQC duration t0.99. Residuals, which are calculated logarithmically
as log2(median(t0.99)) − log2(y(n)), where y(n) is the corresponding
fit, are also shown in [(c) and (d)] for both the satisfiable (orange
crosses) and unsatisfiable (blue pluses) instances.

the joint distribution of Ncalls and t0.99 for the 9862 typical
instances that we successfully calculated t0.99 for. The for-
mer distribution has Spearman’s rank correlation coefficient
of ≈ −0.47 and the latter has Spearman’s rank correlation
coefficient of ≈0.52. These imply that correlations exist
between difficulty for MIXBANDB and difficulty for both QW
and AQC, although the correlations are not as strong as what
we previously observed between QW difficulty and AQC
difficulty at the same problem size. Therefore it seems that
a portfolio-based strategy would be more effective when ap-
plied to a quantum and classical algorithm, as opposed to QW
and AQC. This does not rule out the possibility of attaining
a better performance from other forms of (hybrid) quantum
algorithms. Examples of other techniques in continuous-time
quantum computing that can be incorporated in a hybrid ap-
proach include: Preannealing [13]; local quantum searches,
which can be performed with the addition of a biased Hamilto-
nian in coherent annealing [56–59] or with just the driver and
problem Hamiltonians in dissipative reverse annealing [60];
annealing schedules that interpolate between QW and AQC
[4]; and a variety of approaches that fall under the umbrella of
diabatic quantum computing, which are reviewed in Ref. [61].
For a detailed review of hybrid approaches involving quantum
and classical algorithms, see Ref. [39].

We note that since different classical algorithms will have
varying levels of correlation with each other, our measure of
“classical difficulty” cannot be extended to represent diffi-
culty for classical algorithms as a whole, since such a thing
does not exist. However, the fact that some correlation exists
between difficulty for the quantum algorithms and difficulty
for MIXBANDB is still interesting, as it indicates that there are
some characteristics of instances that make them typically
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more difficult for both the quantum algorithms and some
“good” classical algorithms. Further work is required to find
out if there are other good classical algorithms with lower
levels of correlation with the quantum algorithms.

C. Satisfiable instances

Satisfiable instances of MAX 2-SAT are easy to solve
classically because the optimal solution can be found with a
2-SAT solver, and 2-SAT is known to be in P; a linear time
algorithm for 2-SAT was found in Ref. [14], which is based on
finding the strongly connected components of the problem’s
implication graph. Some of the typical instances that we are
analyzing are satisfiable, the proportion of which decreases
with n. A good classical MAX SAT solver will take advantage
of this to solve satisfiable instances efficiently, for example
by calling a 2-SAT solver at the start of the algorithm. How-
ever, since the quantum algorithms we are studying do not
explicitly check for the satisfiability of formulas, it is unclear
whether they will solve satisfiable instances efficiently. In this
subsection, we analyze the difficulty of satisfiable instances
for QW and AQC and discuss the implications of this for a
portfolio approach.

The plots in Figs. 7(a) and 7(b) show the approximate prob-
ability density of the QW success probability P(0, 100) for
satisfiable and unsatisfiable instances with n = 5 and n = 15
variables. The median value of each distribution is indicated
by a vertical line. We find that the median P(0, 100) for
satisfiable instances is larger than for unsatisfiable instances at
n = 15, but at n = 5, the satisfiable instances have a smaller
median P(0, 100) than the unsatisfiable instances. This in-
dicates that QW finds satisfiable instances less difficult on
average except in the case of very small n, although even at
n = 5 the most difficult instances still tend to be unsatisfiable.
We note that the long tail of difficult instances cannot be
as easily identified in Fig. 7(b) as it can in Fig. 2, which
is because we are using a linear x axis in Fig. 7 and QW
difficulty is inversely proportional to P(0, 100). The tail of
difficult instances can be clearly seen in both of the n = 15
distributions when plotting 1/P(0, 100) or using a logarithmic
x axis.

In practice, the satisfiable instances are less difficult for
QW than what can be inferred from the plots in Fig. 7. This
is due to the fact that the QW success probability is generally
much less than 1, so repeat runs are needed to increase the
probability of finding the optimal solution. From Eq. (12), we
can see that each unsatisfied clause adds an energy contribu-
tion of 1. A simple improvement to a QW strategy would be
to measure the energy of the final state or classically evaluate
the formula with the solution given by QW to efficiently
determine the number of clauses that are left unsatisfied
by the corresponding solution. If the optimal solution of a
satisfiable instance is found, it would become immediately
obvious that there are no more clauses that can be satisfied,
so repeat runs would no longer be necessary. For unsatisfiable
instances, we cannot be certain that we have found an optimal
solution based on the information gained from QW alone,
so there will typically be “wasted” runs conducted after find-
ing the optimal solution. The number of extra runs depends
on the specific strategy used to determine when to stop doing

repeats. There has been previous work on applying sophisti-
cated methods of determining the stopping point to quantum
annealing [62].

Figures 7(c) and 7(d) show the approximate probability
density of the AQC duration t0.99 for typical satisfiable and
unsatisfiable instances with n = 5 variables, and similarly
for the approximate probability density of the logarithm of
t0.99 for n = 15. The satisfiable instances have shorter median
durations than the unsatisfiable instances for both n = 5 and
n = 15, indicating that AQC finds these problems less difficult
on average. Since AQC achieves a high success probability in
a single run, we do not need to do repeat runs as in the case
for QW, so these plots are a good representation of the differ-
ence in AQC difficulty between satisfiable and unsatisfiable
instances. Figures 7(e) and 7(f) show similar results for the
MIXBANDB algorithm, which like the quantum algorithms does
not check for satisfiability. Satisfiable instances are found less
difficult on average, but the distributions for satisfiable and
unsatisfiable instances overlap.

The significant overlap between the distributions of satisfi-
able and unsatisfiable instances in Fig. 7 either imply that QW
and AQC do not find the difficulty of satisfiable instances to
be as low as their difficulty for the best classical algorithms,
or that a large fraction of the unsatisfiable instances at these
problem sizes have just as low difficulties as the satisfiable
instances, which can be solved efficiently. To determine which
of these two cases is true, we can check whether the difficulty
of satisfiable instances scales exponentially for the quantum
algorithms, which would support the former as it would indi-
cate that QW and AQC cannot solve them efficiently.

We plot the scaling of the median QW success probability
and AQC duration with n for satisfiable and unsatisfiable
instances on log-linear and log-log axes in Fig. 8. An expo-
nential scaling would fit better to a straight line on log-linear
axes, whereas a polynomial scaling would have a better
linear fit on log-log axes. For QW, we can see that the
log-linear axes produce better fits for both sets of instances,
meaning that the median of P(0, 100) appears to scale
exponentially with n for both satisfiable and unsatisfiable in-
stances. For AQC, it is unclear which fits are better. We note
that these results cannot be used to make statements about the
form of the scalings with certainty, as the problem sizes are
very small compared to practically relevant instances and the
scalings may change at larger sizes.

Given the linear worst-case scaling of good classical 2-
SAT solvers and the apparent exponential scaling of QW
(and potentially AQC) on satisfiable instances, we can con-
clude that a classical algorithm should most likely be used to
efficiently check the satisfiability of instances at the start of
any portfolio-based strategy involving QW and/or AQC, as
these instances cannot be solved efficiently by the quantum
algorithms. This will speed up the time to solution for sat-
isfiable instances while only contributing a linear overhead
to the run time for unsatisfiable instances. An added benefit
of this approach is that instances with exactly one clause left
unsatisfied by an optimal assignment can be solved faster by
QW. This is because by running a classical 2-SAT solver in
advance, it would become known when a formula is unsatis-
fiable and that any assignment satisfying all but one clause is
optimal. Therefore there would be no need for repeat runs of
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QW after an optimal solution is found, for the same reasons
as we mentioned for satisfiable instances. This does not apply
to AQC as it does not require repeat runs.

V. CONCLUSIONS

We have examined both the relative difficulty of different
instances and the correlation in difficulty for a selection of
both classical and quantum algorithms. These include algo-
rithms that behave in conceptually different ways, for example
quantum walk, which relies on many repeats with a relatively
low success probability, versus adiabatic quantum computing,
which succeeds with a high probability after a single run.
Our work shows that it is important to include a thorough
characterization of the problem instances used for numerical
studies of the performance of quantum algorithms. We have
found that while there is some correlation in MAX 2-SAT
instance difficulty between methods, the correlation seems
weak enough that a strategy of attempting a portfolio of al-
gorithms in parallel is viable and likely to be desirable in
real computation. We also note unique features of specific
strategies. For example, the performance of the most difficult
instances for AQC is drastically worse than for more “typical”
problems, much more so than for quantum walk. This can be
attributed to the presence of instances with extremely small
spectral gaps, which limit the performance of AQC [63,64].
Extremely small gaps have been observed in other contexts
[65]. This catastrophic failure of AQC suggests that a “stand-
alone” adiabatic strategy without attempting others in parallel
is likely to be particularly undesirable. We further find that
while the performance of quantum algorithms is generally
better for satisfiable problems (which can be solved efficiently
classically), these problems are still not solved efficiently by
either of the quantum algorithms. This strongly suggests that
first performing a classical check for satisfiability is useful. In
a sense, attempting different algorithms in parallel can be seen
as the most trivial case of a hybrid algorithm. If the algorithms
are classical and quantum then it is a hybrid quantum-classical
algorithm, but there can also be hybrids between two quantum
algorithms, such as AQC and QW. While not the topic of
this paper, the fact that even such simple hybrid methods
are desirable bodes well for more complicated methods of
combining algorithms that are likely to lead to further gains,
for example, preannealing in [13] as a quantum-quantum al-
gorithm, or various biasing and reverse annealing techniques
[60] as examples of quantum-classical hybrids.

The correlations do suggest that while attempting multiple
different algorithms in parallel is likely to be fruitful, there is
also likely a more fundamental sense of difficulty in terms of
being resistant to being efficiently solved by any algorithm,
quantum or classical. Furthermore, the double peaked nature
of many of the distributions of effort required for problems
suggests that the transition toward being predominantly diffi-
cult as problems scale toward the large size limit is not simple,
at least not in the case of MAX 2-SAT. This behavior is par-
tially explained by the difference between satisfiable and un-
satisfiable instances, but this appears not to be the whole story
because there is significant overlap between the two in terms
of difficulty. While we have made significant steps in under-
standing relative problem difficulty over different algorithms

at sizes relevant for exhaustively simulated quantum comput-
ing, there is still much work to be done to fully understand
this important topic which underlies many numerical studies.

The data for all MAX 2-SAT problem instances used in this
research are openly available at Ref. [66].
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APPENDIX

Our numerical analysis of QW is based on the average
success probability P(0, 100), which is taken over an arbitrary
time interval �tI = 100. Since this time interval is longer than
the timescale of the QW dynamics (see Fig. 1), we expect
that the success probability would not be significantly affected
by a different choice of �tI that is also sufficiently large.
To confirm this, we consider the infinite time interval limit
of the average success probability, P∞ ≡ lim�tI →∞ P(0,�tI ).

FIG. 9. Heatmap of the QW success probability P(0, 100) av-
eraged over a time interval �tI = 100 against the same average
probability in the limit of infinite time interval, P∞, for the typical
MAX 2-SAT instances with n = 11 variables. A logarithmic color
scale is used for better visibility, and the zeros have been removed
by adding 1 to the number of instances for each cell. Spearman’s
rank correlation coefficient between the two quantities is ≈1.00,
indicating an almost perfect correlation.
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We followed the procedure outlined in Ref. [1] to calculate P∞
by numerically diagonalising the QW Hamiltonian. Figure 9
shows that for the typical instances with n = 11 variables, P∞

and P(0, 100) are in very good agreement. Therefore we can
assume that the results of this paper are not dependent on our
specific choice of �tI .
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