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In recent years, interest in expanding from 2D to 3D systems has grown in the magnetism community, from
exploring new geometries to broadening the knowledge on the magnetic textures present in thick samples, and
with this arises the need for new characterization techniques, in particular tomographic imaging. Here, we present
a new tomographic technique based on Fourier transform holography, a lensless imaging technique that uses a
known reference in the sample to retrieve the object of interest from its diffraction pattern in one single step
of the calculation, overcoming the phase problem inherent to reciprocal-space-based techniques. Moreover, by
exploiting the phase contrast instead of the absorption contrast, thicker samples can be investigated. We obtain a
3D full-vectorial image of a 800-nm-thick extended Fe/Gd multilayer in a 5-µm-diameter circular field of view
with a resolution of approximately 80 nm. The 3D image reveals wormlike domains with magnetization pointing
mostly out of plane near the surface of the sample but that falls in-plane near the substrate. Since the FTH setup
is fairly simple, it allows modifying the sample environment. Therefore this technique could enable in particular
a 3D view of the magnetic configuration’s response to an external magnetic field.

DOI: 10.1103/PhysRevB.107.094425

I. INTRODUCTION

Three-dimensional magnetic textures have recently at-
tracted increasing interest both from fundamental and a
technological point of view [1–9]. This emergent field of
research comes hand in hand with the need for new char-
acterization techniques, in particular to obtain tomographic
images of the magnetic textures. Among the wide variaty of
magnetic microscopies, transmission-based techniques offer
the possibility to extend their capabilities to 3D, that is, to
probe the magnetization as a vector field through the depths of
the material. Such capability has been demonstrated for neu-
trons [10,11], x rays [1,12], and electrons [13,14], at distinct
length scales. The development done with neutrons allowed to
image the magnetic domain distribution in the bulk, electrons
permitted the characterization of the domain walls and obser-
vation of skyrmion tubes in objects of approximately 100-nm
thickness, whereas x-ray magnetic tomography allowed to
observe new textures, such as Bloch points [12], merons [15],
and vortex rings [16], in samples from 200-nm thickness for
soft x rays up to 5 µm using hard x rays.

*Marisel.DiPietro@cpfs.mpg.de

In particular, x rays offer a range of microscopic and tomo-
graphic techniques well suited to the study of micrometer-size
samples with nanoscale resolution. The magnetic sensitivity is
usually obtained by exploiting x-ray magnetic circular dichro-
ism [17], i.e., an absorption contrast for opposite helicities of
circular polarizations of the incident light. High-resolution 2D
imaging is routinely achieved with x-ray microscopes such as
full-field TXM and STXM [18]. These have been successfully
extended into magnetic tomography techniques [9,15,19–21].

Exploiting the coherence of the beam can in principle pro-
vide a higher resolution, but more interesting is that it provides
a phase contrast in addition to the absorption contrast, which
shall be referred to here as x-ray magnetic circular birefrin-
gence. This aspect is particularly appealing to investigate thick
samples, since the magnetic phase contrast can remain sizable
a few eV away from the absorption edge [22,23], which in
turn reduces the sample damage. Coherence-based imaging
techniques [24], such as coherent diffraction imaging (CDI),
Fourier transform holography (FTH) [25,26] and ptychogra-
phy, are well-suited to obtain 3D structural images [27–29]
and 2D magnetic images with nanometric resolution [30–32].
However, among the latter three techniques, only ptychog-
raphy has so far been adapted to obtain full tomographic
magnetic images [12,16,33]. Here we extend FTH capabilities
to 3D magnetic imaging.

2469-9950/2023/107(9)/094425(11) 094425-1 ©2023 American Physical Society

https://orcid.org/0000-0001-9270-0546
https://orcid.org/0000-0003-1306-9798
https://orcid.org/0000-0001-5734-1154
https://orcid.org/0000-0001-6852-2495
https://orcid.org/0000-0003-1781-7669
https://orcid.org/0000-0001-6064-0139
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.107.094425&domain=pdf&date_stamp=2023-03-22
https://doi.org/10.1103/PhysRevB.107.094425


MARISEL DI PIETRO MARTÍNEZ et al. PHYSICAL REVIEW B 107, 094425 (2023)

FIG. 1. Magnetic nanotomography based on Fourier transform holography (FTH). (a) The sample for FTH has three layers: a gold mask,
the membrane, and the magnetic material of interest. (b) A circular window of 5-µm diameter is milled into the (opaque) gold layer, which
coats the membrane, to allow the x rays to pass through. Two reference slits are also milled across the sample and coating. The coherent x-ray
beam illuminates the whole sample. The complex x-ray amplitude after the sample, i.e., the exit wave, is denoted as �. After filtering the
reference from the diffraction pattern and applying an inverse Fourier transform, the magnetic projection is recovered. This one corresponds
to a 24◦ rotation around the y axis. The magnetic contrast is obtained by x-ray magnetic circular birefringence (XMCB). Tilting the sample
around axes x and y allows to probe all three components of the magnetization. (c) Top projection corresponds to normal incidence and the
bottom one corresponds to −12◦ around x axis.

The main asset of Fourier transform holography is being
able to retrieve an image of the structure from the experi-
mental data in only one deterministic step. Moreover, it only
requires a simple instrumental setup consisting of a pinhole
to impose the high coherence of the incident beam, a rotating
sample stage to select the magnetic projection and a beamstop
– protecting the high resolution 2D detector in the far-field
of the sample [34], which leaves space to implement the
modification of the sample environment, such as controlling
the temperature or applying an in situ magnetic field.

Indeed, the complexity resides mostly in the sample prepa-
ration. The required sample consists of the object of interest O
and a known reference R (described in terms of 2D, complex
transmission functions), which interfere in the coherent beam
[see Fig. 1(a)]. The holographic reconstruction provides an
image which consists of the convolution of the object O and
the reference R. As a consequence, the resolution of FTH is
limited by the reference size and quality. Additionally, phase
retrieval algorithms can be used as a complementary method
to improve the FTH resolution [35].

For extended references, following the HERALDO ap-
proach [36], a linear differential operator specific to the
chosen reference can be exactly calculated and consecutively
applied to the measured intensity. In this way, the real-space
image is deconvoluted with the reference, so that a complex-
valued image of the object can be retrieved in a single
deterministic step [see Fig. 1(b)], rather than following an iter-
ative approach. This image is equivalent to the object complex
transmission coefficient if the object and the reference do not
overlap [36].

FTH has shown to be useful to obtain 2D images of the
magnetization in flat samples [37–44]. Its inherent mechanical
stability thanks to the integration of the reference in the sam-
ple itself makes FTH particularly interesting for time-resolved
measurements [45–49]. In fact, what is measured in forward
scattering is a projection of the magnetization, just as with any
other transmission technique [50]. This is the component of m̂
that is parallel to the beam direction k̂ integrated through the
material along the said direction rk:

Pk̂ =
∫

(m̂ · k̂)drk. (1)

So whereas the first report of FTH focused on imaging the
out-of-plane magnetization, i.e., the component perpendicular
to the surface of the sample [31], if the sample is tilted the
method also allows us to probe the in-plane magnetization
components, using either a tilted reference hole [39] or an
extended reference [42]. Furthermore, it has also been shown
that it is possible to use FTH to perform tomography and
obtain the 3D electronic density [28,51].

In this work, we go further and use FTH as a 3D full-
vectorial magnetic imaging technique. To this end, we tilt the
sample around two orthogonal axes perpendicular to the beam
direction and, for each tilt, we measure a magnetic projection
image [see Fig. 1(c) for some projection examples]. Acquir-
ing a dual set of projections has been proven using other
techniques to be sufficient to reconstruct not only the charge
density of an object but also all three components of the mag-
netization in an entire three-dimensional structure[12,15,52],
including the inner configuration.

This paper is structured as follows. In Sec. II, we describe
the sample used to test the proposed technique, the experimen-
tal setup and we give the details regarding the data analysis. In
Sec. III, we present a numerical validation of the method and
analyze its limitations, followed by the experimental proof in
Sec. IV. Finally, in Sec. V, we summarize the conclusions of
this work.

II. EXPERIMENTAL DETAILS

We test the proposed tomographic method experimentally
on an Fe/Gd multilayer which displays wormlike magnetic
domains with a typical width of 1 µm, as seen by magnetic
force microscopy (MFM) [53] [Fig. 2(a)]. In-plane magne-
tization curves also show that, in spite of the dominating
perpendicular magnetic anisotropy, it is expected to also have
a nonzero magnetic remanence as shown in the inset of
Fig. 2(a). This coexistence of both in-plane and out-of-plane
magnetization promises an intriguing 3D configuration, that
cannot be mapped by 2D imaging techniques.

The multilayer was sputtered at room temperature
with deposition rates reaching 1.7, 0.5 and 1.2 Å/s
for Ta, Fe and Gd, respectively, and limit pressure
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FIG. 2. Details of the sample for 3D Fourier transform hologra-
phy. (a) MFM image of the Fe/Gd multilayer grown on one side of a
Si3N4 membrane. (Inset) In-plane magnetic hysteresis loop. (b) SEM
image of the Au mask grown on the other side of the membrane. A
circular aperture and two reference slits are milled for doing 3D-FTH
tomography.

7 × 10−8 mbar. The nominal stacking for this sample is
Ta(6)/[Fe(0.45)/Gd(0.96)]600/Ta(6) where the thicknesses
are expressed in nm and 600 is the number of repetitions
of the bilayer. The average composition of this sample was
measured with energy-dispersive x-ray spectroscopy (EDX)
to be Fe0.667Gd0.333 and the total stack thickness as determined
from scanning electron microscopy (SEM) is approximately
800 nm.

The sample was grown on a 300-nm-thick Si3N4 mem-
brane suitable for x-ray measurements. This membrane was
covered with a 1700-nm-thick gold mask which is opaque
to soft x rays. The mask has also four 5-nm-thick Ti layers
grown intercalated with the Au to prevent the formation of
large Au grains and the subsequent leakage of x rays. Then we
milled a circular aperture of diameter d = 5 µm into the gold
mask using focused ion beam (FIB) to allow the transmission
of x rays. This aperture represents the object O in the FTH
approach (Fig. 1). To create the references R, two thin slits
of length of 11 µm, perpendicular to each other and at a
distance 10 µm of the circular aperture, were milled across
the coating and the sample [Fig. 2(b)]. The location and length
of the slits meet the HERALDO separation conditions, which
prevent the overlapping of the deconvoluted object and refer-
ence images [36]. The width of the slits, which goes down to
∼80 nm across the 2.8-µm total thickness of the full stack [see
transversal slice of the slit in Fig. 1(a)], limits the resolution
in one of the transverse directions in individual 2D images,
while the resolution in the other transverse direction is limited
to ∼50 nm by the sharpness of the slit end.

The FTH data presented in this work, i.e., the set of projec-
tions used for the tomographic reconstruction, was acquired
on the COMET endstation [34] at SEXTANTS beamline of
SOLEIL synchrotron. Complementary data used as compar-
ison and verification of the projections were measured at
beamline ID32 of the ESRF. In particular, it is worth noting
that the projections measured at the M5 Gd edge at ID32 were
in agreement with the data set acquired at the L3 Fe edge at
SEXTANTS and confirmed the sharpness of the domain walls.

Both beamlines use similar setups. Circularly polarized x
rays are delivered by a helical undulator and the energy of
the beam tuned by a grating monochromator. The coherence

of the beam is ensured by a set of apertures in front of
the endstation. The small angle coherent diffraction patterns
are acquired on an area detector with a CCD camera (SEX-
TANTS), or a CMOS camera [54] (ID32). The geometrical
settings were such that the pixel size of the direct space images
was 25 nm at SEXTANTS and 50 nm at ID32. To allow for
tilting along two orthogonal axes, an azimuthal rotation of the
sample holder was implemented, in addition to the existing tilt
rotation. This setup is also compatible with the laminography
geometry [20].

To acquire the required dual set of projections, we tilt
the sample around two orthogonal axes corresponding to the
directions of both slits. By tilting around the x axis accord-
ing to Fig. 1, for example, the vertical slit is shadowed by
the thickness of the sample, while the horizontal slit is not,
hence the latter serves as the holographic reference for the
measurements. In the same way, by tilting around the y axis,
the horizontal slit is now obscured and the vertical slit serves
as the reference. Only close to normal incidence can both
slits serve as a reference. We measured projections for 34
tilt angles in total: {−44◦, −40◦, −34◦, −29◦, −24◦, −18◦,
−12◦, −5◦, 0◦, 5◦, 12◦, 18◦, 24◦, 29◦, 34◦, 40◦, 44◦} around
axis x and y, getting 3 images per polarization for each tilt,
with a total acquisition time of 130 ms per image. The FTH
measurements were performed at room temperature and at
remanence.

The FTH images were reconstructed using a PYTHON note-
book based on the one provided in Ref. [44], which in turn
follows the HERALDO method [36]. The FTH reconstruction
algorithm provides complex-valued images, from which we
extracted the phase since this quantity is proportional to the
projection of the magnetization. To maximize the magnetic
contrast of the images, we worked at 704.6 eV, which is 2.1 eV
below the Fe L3 edge. See Appendix for more details on this.

Once all the measurements are processed and the set of
projections is obtained, they are used as input for reconstruct-
ing the 3D magnetic configuration. To that end, we developed
the PyCUDA library MAGTOPY [55].

The reconstruction algorithm is based on the gradient de-
scent method which has already been shown to be able to
successfully reconstruct full-vectorial 3D magnetization con-
figurations [52]. Starting with an initial guess for the 3D
magnetic structure m̂0(x, y, z) = �0, the next update is directed
by minimizing the error metric

ε =
∑

φ

∑
x,y

(P(φ)(x, y) − P(φ)
m (x, y))2, (2)

where {P(φ)
m } is the measured set of projections and {P(φ)} is

the one calculated from the guess as

P(φ)(x, y) =
∑

z

R(φ)[m̂] · ẑ. (3)

For each tilt angle φ, the rotation matrix R(φ) is applied to m̂.
Once the gradient ∂ε

∂m̂ is calculated, the structure is updated
according to

m̂new = m̂ − α
∂ε

∂m̂
. (4)
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We included a step optimization according to which the best
step α is estimated by imposing the condition

εk−1 − εk > v, (5)

so that the error decreases sufficiently in each step, that is,
more than a certain value v.

It is worth noting that the chosen programming language
for the library, PyCUDA, provides the interoperability of
PYTHON while taking advantage of high-performance comput-
ing. The main algorithm is capable of reconstructing the 3D
magnetic configuration of a 2003 voxels cube, or a (5 µm)3

cube considering a pixel size of 25 nm, in one minute [56].

III. VALIDATION OF THE RECONSTRUCTION
ALGORITHM

To validate the vectorial reconstruction of the magnetic
configuration, as well as to understand its limitations, we con-
sidered one of the most relevant and common problems that
can arise during the experiment, which is having a reduced an-
gular range for the tomography, also known as missing wedge
and addressed in Ref. [57] with a different reconstruction
algorithm. We also consider the effect of the Au mask, which
shadows the field of view when tilting the sample [compare
the three projections shown in Figs. 1(b) and 1(c)]. This also
produces a missing wedge.

Another problem of FTH is the artifacts related to the
imperfection of the references, for example an irregular slit
end causes the overlay of weaker replicas over the main re-
construction. However, since these artifacts are bound to the
sample fabrication stage, we will not address these in the
present discussion.

We used as a test case the simulated magnetic configuration
from Ref. [58] which has a size comparable to the experimen-
tal sample described above. The configuration, displayed in
Fig. 3(a), shows two main domains with opposite out-of-plane
(z-axis) magnetization and a domain wall with a Bloch-type
core and two opposite Néel closure caps. The streamlines
shown in the center of the structure highlight the position of
the Bloch core.

Measuring several projections tilting the sample around
180◦ leads to highly accurate reconstructions of the mag-
netic configuration, as can be seen in Fig. 3(b). There we
can observe only a slight deformation of the streamlines in
the domain wall core. The normalized reduced mean squared
error (NRMSE [59]) calculated in this case is smaller than 3%
for all three components of the magnetization.

However, the accessible angular range is usually limited
experimentally, for instance by the geometrical constraints of
the setup, and in particular by the geometry of the supporting
membrane and its frame, which may shadow the object of
interest at shallow incidence angles. Therefore we simulated
projections for tilting angles ranging from −45◦ to 45◦ to
match the accessible ones in the experiment. The magnetic
configuration reconstructed from the latter set is shown in
Fig. 3(c).

We observe that the NRMSE of one of the in-plane compo-
nents, mx, increases to 24%. The increased error is mainly due
to the missing wedge effect. In particular, the magnetization
along x in this simulated system has a different behavior

FIG. 3. Comparison between the (a) original magnetic configura-
tion from simulations and the reconstructed configurations from (b) a
complete angular range which includes projections of the sample
tilted from −90◦ to 90◦, and (c) the reduced angular range which
only includes tilts from −45◦ to 45◦. Streamlines in the center of
the structure highlight the core of the domain wall. The normalized
reduced mean square error in each case is: (b) NRMSE(mx ) = 3%,
NRMSE(my ) = 2%, NRMSE(mz ) = 2% and (c) NRMSE(mx ) =
24%, NRMSE(my ) = 5%, NRMSE(mz ) = 5%.

through the thickness of the sample than the rest, i.e., there is
a larger component near the substrate that is not present near
the top surface. Compare the magnetic vectors on the top of
the structure with the ones from the bottom: the former point
mainly in the z direction, while the latter are significantly
tilted towards x. The information on this inhomogeneity is
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FIG. 4. Comparison between (a) the original magnetic configura-
tion and (b) the reconstructed configuration using projections from a
reduced angular set and with a mask applied. (c) Magnetization com-
ponents in the y-z plane. The normalized reduced mean square error
is NRMSE(mx ) = 20%, NRMSE(my ) = 17%, and NRMSE(mz ) =
14%.

lost when no projections are given between 45◦ and 90◦. Nev-
ertheless, the NRMSE of the other two components remains
at 5%. A similar effect has been observed also in simulated
Py discs measured between −55◦ and 55◦ and reconstructed
with a different algorithm [57]. From the streamlines in the
center of the structure, we can see in detail how the walls
are affected. In particular for the Néel caps, we see that my

is weaker compared to the original.
To account for the effect of the Au mask, we added to the

original simulated sample a mask with a circular aperture.
We resized the original simulated sample to match the ratio
between the radius of the aperture, thickness of the mask and
the magnetic layer from the experiment. The corresponding
projections then end up with an oval shape that changes ac-
cording to the tilt angle, like in the experiment [Figs. 1(b) and
1(c)]. The angular range used in this case is the same as in
the experiment. In Fig. 4, we show the original configuration
(a), the reconstructed one (b), as well as the magnetization

components through a y-z slice. Some differences in the re-
construction with respect to the original configuration can
be seen, specially for mx, which is still the most affected
component with an NRMSE of 20%. The NRMSE in this case
increases for my and mz, to 17% and 14%, respectively.

Altogether, note that the main features in the structure,
namely, the two opposite domains and, even more importantly,
the domain wall structure through the depth of the material,
which includes the Bloch core and the Néel caps, are suc-
cessfully recovered and fully recognizable, which grants the
method a robustness against the angular limitation.

IV. EXPERIMENTAL RESULTS

Now let us return to the experiments. In Fig. 5(a), we show
the full three-dimensional reconstruction of the magnetization
vector field for the 800 nm-thick Fe/Gd multilayer described
in Sec. II. Two kinds of domains appear: one with the mag-
netization pointing mainly towards the surface of the disk
(in negative z direction) and another with the magnetization
pointing mainly away from it (in positive z direction). The
general aspect of the magnetic structure is consistent with
the MFM images performed on a full film [Fig. 2(a)]. More
interesting is the depth structure, which 2D measurements
cannot capture.

The isosurface for mz = 0 is also displayed as an overlay
in Fig. 5(a) and it shows the location of the walls that sep-
arate the two domains. From this we can observe that the
shape of the domains as seen from the surface spans through
the thickness, so that the isosurface appears perpendicular to
the surface. In another words, the volume of each domain
has a prismatic shape. In particular, a small tube, possibly
a skyrmion, can also be spotted in the lower-right corner of
the structure. Indeed, dipolar skyrmions have been reported in
Fe/Gd multilayers [60] and seem to be present in the MFM
measurement from Fig. 2(a) as well.

In Fig. 5(b), we present a transversal slice along the y
axis, through the middle of the sample, to show in detail the
magnetization vector field. Here we observe that the in-plane
component of the magnetization increases close to the sub-
strate. In that area we can distinguish the Néel caps. Close
to the borders we can notice the magnetization vector falling
into the y direction. This is an artifact that comes from the
missing information of the borders for an extended system
and it affects mostly an outer ring of approximately 500 nm.
This represents a limitation on the maximum field of view of
the method used, that can be overcome by patterning a finite
structure centered in the FTH aperture, as opposed to imaging
an extended system.

In Fig. 5(c), we show an area of the previous slice in more
detail. Close to the top left corner, the streamlines help iden-
tifying the area of the Bloch core, similarly to the simulated
system in Sec. III. The color code of the streamlines highlights
that the upper area have negative my whereas the bottom
have positive my, corresponding to the two Néel caps. The
colored triangles correspond to the area where my > 0.5, and
they represent the Néel caps. Complementary, this can also be
observed in Fig. 5(d), where the magnetization components
of each voxel are shown. In particular, Bloch cores of 2 to
3 pixels wide can be spotted in the image for mx. It can also
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FIG. 5. 3D magnetic image of the Fe/Gd multilayer obtained
using Fourier transform holography with the two reference slit setup:
(a) overview of the magnetic vector field imaged through the circular
aperture. In grey, the isosurface for mz = 0 hints mostly prismatic
domains. The dashed rectangle indicates the slice shown in (b), and
in (b) the dashed rectangle indicates the area shown in more detail in
(c). The components mx , my, and mz from the same area are shown in
(d). (b)–(d) have the same axis orientations.

be observed that the Néel caps closer to the substrate are larger
than the ones close to the surface.

FIG. 6. The inverted out-of-plane hysteresis loop of the Fe/Gd
multilayer demonstrates the ferrimagnetic behavior of the sample.

Regarding this difference, on the one hand, one should con-
sider that the sample was measured with FTH as grown, i.e.,
no annealing nor external magnetic field was applied to the
sample before the experiment, which hints to the possibility
of having a magnetic configuration that is not completely at
equilibrium.

On the other hand, the Gd content has an specific effect
on the sample behavior. Specifically, this sample effectively
displays a ferrimagnetic behavior, such that the magnetic mo-
ments of Fe and Gd are antiferromagnetically coupled. This
is observed by EHE measurements (Fig. 6) showing inverted
loops. Indeed, at our average sample composition, the mag-
netization of the alloy is dominated by Gd [61], whereas the
EHE is expected to be more sensitive to the perpendicular
magnetization of Fe in this material [62], and since the Fe is
antiferromagnetically aligned with the Gd, the magnetic loop
is consequently expected to be inverted [63–66].

It has previously been observed that in transition-metal-
Gd thin films, the Gd may segregate towards the surfaces
[67] where oxidation can occur [68]. Aside from oxidation,
a loss in Gd moment has also been reported for decreasing
CoGd thickness in Ir/CoGd/Pt multilayers [69], suggesting a
detrimental role of the interfaces with the transition-metal-Gd
alloy. On top of that, the difference between the nominal
composition, 43% Gd, and the measured composition from
EDX, 33% Gd, could also indicate an evolution of the real
thicknesses during the sputtering process (more Fe and/or less
Gd, for instance), and a progressive decrease of the Gd content
from the substrate to the surface of the sample. All of these
material-specific phenomena, in addition to the more generic
trend towards flux closure in thick films, add plausibility to
distinct magnetic behaviors close to the sample surfaces com-
pared to its bulk.

To estimate the width of the domain walls, we measured mz

profile along y in the first layer close to the surface (z = 0 nm)
and in the last layer near the substrate (z = 775 nm), and we
fitted a hyperbolic tangent. This will give us the domain wall
width convoluted with the spatial resolution. We obtained a
width of 100 nm in the surface and 325 nm near the substrate.
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FIG. 7. Spatial resolution and error in the 3D magnetic image
of the Fe/Gd multilayer. (a) Spatial resolution estimated via Fourier
shell correlation (FSC) for the three magnetization components. The
1/2-bit threshold (dashed line) is used to estimate these values.
(b) Error E between the reconstructions acquired with two com-
plementary projection sets. Only 1% of the reconstruction has an
error larger than 0.9 which means a complete opposite orientation of
the magnetic moments. These are in turn concentrated in areas with
artifacts coming from the FTH projection measurements and some
specific regions of the domain walls.

If we do the same for the position of the core marked by the
streamlines in Fig. 5(c) (z = 200 nm), we obtain a width of
63 nm.

The spatial resolution was estimated by calculating the
Fourier shell correlation (FSC) [70] between two independent
reconstructions. To this end, we split the projection set in two,
and obtain a reconstruction configuration for each. We used
the 1/2-bit threshold criterion to ascertain the value of the
spatial resolution [71]. We show these curves in Fig. 7(a). The
spatial resolution is 80, 75, and 60 nm for each of the com-
ponents of the magnetization: mx, my, and mz, respectively.
These numbers are in-between the width of the slits (∼80 nm)
and the sharpness of the slit ends, estimated to ∼50 nm from
individual 2D images. In particular, the resolution for mz

matches the size of the Bloch core reported above. 2D FTH
could achieve significantly higher resolution with a thinner

and sharper reference (17 nm claimed in Ref. [43]), which in
turn would improve the resolution in the 3D reconstruction.
For comparison, in previous soft x-ray dual-axis magnetic
tomography based on transmission microscopy, a resolution
of 85 nm for a 400-nm-thick film [15] and 10 nm for a 120-
nm-thick superlattice [33] has been reported.

While the FSC quantifies the resolution on average, to get
a sense of the spatial localization of the error, we present
also Fig. 7(b). Here, we show the error for each voxel of the
reconstructed structure, defined as

E = 1
2

√
(mx,1 − mx,2)2 + (my,1 − my,2)2 + (mz,1 − mz,2)2,

(6)

where the components with subscript 1 and 2 correspond to
the two different projection sets used to calculate the FSC as
described above. Note how the error is mainly concentrated
approximately 75 nm around the area of the domain walls
as well as in specific regions of the domains. The latter can
be directly related to FTH measurement artifacts previously
observed in the projection images, and in the reconstruction,
these affect the inner layers (larger z) the most, doubling its
value for the layer closest to the substrate. Altogether, this
shows that the 3D reconstruction concentrates its reliability
in the domain area.

V. CONCLUSIONS

We presented the first full-vectorial magnetic tomography
based on Fourier transform holography achieving a resolution
of 80, 75, and 60 nm in mx, my, and mz, respectively. To
that end, we used a sample with two slits as holographic
references which allowed us to probe all three components
of the magnetization within the sample.

We acquired the magnetic projections by deconvoluting
the object from these references. The recovered image is
complex-valued and, in particular, its phase is proportional to
the magnetic projection. Measuring the phase at the pre Fe L3

edge also allows us for high contrast in soft x rays even in a
800-nm-thick sample.

To validate our reconstruction method, we studied the ef-
fect of having a reduced angular range for tilting the sample
and found that the missing wedge does not affect the recover-
ing the out-of-plane magnetization nor the domain walls but it
can fail recovering strong magnetic inhomogeneities or small
domain caps.

To avoid reconstruction artifacts due to the missing in-
formation in the borders, we propose to use in the future
patterned (finite) systems when utilizing FTH tomography
with the dual-axis setup. For extended samples, the laminog-
raphy setup represents a promising alternative since the
information in the border of the disk is not lost. A future
challenge will be to implement the aforementioned setup for
FTH.

The resolution of the measurement is currently limited
by the width of the reference and the sharpness of its ends,
while the 3D reconstruction does not degrade it. It could in
principle be significantly higher than demonstrated here, as
2D FTH images can be achieved down to 17 nm resolution at
3d transition metal L edges [43].
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Magnetic tomography by FTH can take advantage of the
fairly simple FTH setups, which allow large and various sam-
ple environments. It could for instance be performed under
applied magnetic field using a multicoil rotatable magnetic
field [34] opening up the study of the either static or even
dynamic response of the 3D magnetic configuration to this
stimulus.
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APPENDIX

In a well conceived FTH experiment, the Fourier transform
of the scattered intensity g(r) measured in the far field pro-
vides the convolution between the exit wave from the sample
�(r) and its inverse: g(r) = �(r) � �(−r). The exit wave can
be considered as the sum over the exit wave from the object
of interest �O(r) and the exit wave from the reference �R(r).
A region of interest in g(r) provides one of the cross-terms
between object and reference: �O(r) � �R(r). For the sake
of simplicity, we assume in the following that the reference
wave is a Dirac function, such that we consider the extracted
term as the exit wave from the object �O(r). The HERALDO
approach with an infinitely sharp slit, which is the one we use
in this paper, yields the same result after the application of a
linear filter [36].

The exit wave results from the propagation through the
sample of the incident wave. Assuming an incident flat wave,
the exit wave can be expressed as

�(x, y) = exp

(
2π i

λ

∫
ndz

)
, (A1)

where λ is the wavelength, n is the optical index, the inte-
gration is along the beam axis z and x and y are the transverse
coordinates. The optical index includes a magnetic part, which
will be detailed below.

In many published works using FTH, the real part of
�(x, y) is used, since it has shown to give good qualitative
images for the magnetization [31,38,40,42–44]. However, in
order to perform tomography, a quantitative set of projections
is needed. These are images that provide a quantity directly
proportional to the magnetization of the sample. In that case,
we notice that the real part actually consists in a mix between
the absorption and refraction effects, both with magnetic com-

ponents. Therefore we take the phase instead, which includes
only refraction effects. The phase of �(x, y) is


(x, y) = 2π

λ

∫
n′dz, (A2)

where n′ is the real part of the optical index. Equation (A2)
remains correct as long as the phase spans over less than 2π .

Next we will detail the magnetic dependence of the optical
index and its circular dichroism. The optical index reads

n = 1 − reλ
2

2π
ρ f , (A3)

where re is the classical electron radius, ρ the density of scat-
terers, and f their atomic scattering factor. At an absorption
edge of the scatterers, when the incident beam is circularly
polarised, the atomic scattering factor can be written as

f = fc ± fmm̂ · k̂, (A4)

where fc corresponds to the electron density factor, fm to
the dichroic scattering factor and m̂ · k̂ is the magnetization
component along the beam direction [50,72]. fc and fm are
resonant spectroscopic terms with generally both real and
imaginary parts, i.e., fm = f ′

m + i f ′′
m. The sign of the magnetic

term in Eq. (A4) changes with the helicity of the circular
polarization. We point out that in the following, we will
consider only the (resonant) scattering factors of iron. The
contributions of Gd to magnetic scattering are negligible in
our case, since we are measuring several hundreds of eV away
from any absorption edge of Gd.

Combining Eqs. (A2)–(A4), and assuming ρ fm constant
(i.e., assuming the chemical homogeneity of the sample), we
obtain the circular dichroism applied to the phase 
(x, y) of
the FTH reconstruction:

�
(x, y) = −reλρ f ′
m

∫
m̂ · k̂dz (A5)

We see that the dichroic phase shift is proportional to the
integrated projection onto the beam axis.

As mentioned above, Eq. (A2) is valid a long as the phase
shift spans over less than 2π , otherwise phase wraps will
appear. If we assume the chemical homogeneity of the sample,
the problem applies only to the dichroic part. According to
Eq. (A5), in the case of saturated magnetization along the
beam direction, the phase shift is

�
 = −reλρ f ′
md, (A6)

where d is the thickness of the magnetic material. In the
sample studied here, the total Fe thickness is around 255 nm,
which corresponds to a phase shift around ∼0.6 rad at the
energy of the measurement, well below the absorption edge
(Figs. 8 and 9).

In contrast, the absorbance at the same energy is much
lower, such that the absorption contrast would be very poor.
At the peak of the magnetic absorbance, the phase contrast
would vanish and the absorption contrast would be highest
[23], but the dependence of the absorption contrast on the
magnetization is only approximately linear, for a sufficiently
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FIG. 8. Calculated phase shift �
 = 2πn′
m,FedFe/λ and ab-

sorbance 2πn′′
m,FedFe/λ induced by the magnetization in the Fe/Gd

multilayer for a positive photon helicity, assuming saturated mag-
netization along the beam. The total Fe thickness is dFe = 255 nm.
The real n′

m,Fe and imaginary n′′
m,Fe parts of the resonant magnetic

contributions to the refractive index derive from the atomic scattering
factor using nm,Fe = − reλ

2

2π
ρFe fm,Fe; the latter was taken from the

measurements by Chen et al. [73]. At the used photon energy, we
find a phase shift of −0.649 rad, and an absorbance of 0.107.

optically thin sample. The same holds for the real part of the
difference between reconstructions, which is then the main

FIG. 9. Spectroscopic data pertaining to Fe (dashed blue line)
and transmission measurements on a reference Fe filter as well as
our Fe/Gd multilayer (full lines, K and K ′ are arbitrary normaliza-
tion constants). The imaginary part of the atomic scattering factor
[73] related to the charge ( f ′′

c,Fe, blue dashed line) and the intensity
transmitted through a thin Fe film (red full curve) were used to
remove the small energy offset (∼1 eV) between the data obtained
by Chen et al. and the measurements from SEXTANTS. The photon
energy we used, ∼2.1 eV below the peak of absorption, is indicated
by the vertical dashed line. It lies at the onset of the measured
transmission through the multilayer, and yet corresponds to the best
signal-to-noise ratio we obtained with FTH.

reason why using it to calculate quantitatively the magneti-
zation projection is only valid for thin samples.
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