
 Evaluating Clone Detection Tools for Use during Preventative
Maintenance

Elizabeth Burd, John Bailey

The Research Institute in Software Evolution

University of Durham
South Road

Durham, DH1 3LE, UK

Abstract

This paper describes the results of a process whereby
the detection capability of 5 code replication detection
tools for large software application are evaluated.
Specifically this work focuses on the benefits of
identification for preventative maintenance that is with
the aim to remove some of the identified clones from
the source code. A number of requirements are therefore
identified upon which the tools are evaluated. The
results of the analysis processes show that each tool has
its own strengths and weaknesses and no single tool is
able to identify all clones within the code. The paper
proposes that it may be possible to use a combination of
tools to perform the analysis process providing that
adequate means of efficiently identifying false matches
is found.

1. Introduction

Software systems provide vital support for the smooth
running of an organisation’s business. It is the
responsibility of maintainers to keep the system up-to-
date and functioning correctly. It is reported by Burd
[Bur97] that “during the maintenance of legacy code, it
is common to identify areas of replicated code”. These
duplicate or near duplicate functionalities are termed
clones [Lag97]. Within this paper a clone is recognized
to be where a second or more occurrences of source
code is repeated with or without minor modifications.
Software cloning because of its ad hoc nature it is not
considered reuse, quite the opposite, Mayrand argues
that the need for such cloning indicates an organisation
“does not have a good re-use process in place”
[May97].

From the analysis of software application it appears that
the inclusion of these clones results from the addition of
some extra functionality which is similar but not
identical to some existing logic within a system. Its
seems that when presented with the challenge of adding
new functionality the natural instinct of a programmer is

to copy, paste and modify the existing code to meet the
new requirements and thus creating a software clone
[Bur97]. While the basis behind such an approach is
uncertain, one possible reason is due to time restrictions
on maintainers to complete the maintenance change.
Duccase [Duc99] points out that “making a code
fragment is simpler and faster than writing from
scratch” and that if a programmer’s pay is related to the
amount of code they produce then the proliferation of
software clones will continue.

It is generally recognised that the majority of effort
during maintenance is classified as perfective changes
i.e. “expanding the existing requirements of a system”
[Tak96]. Software cloning complicates the maintenance
process by giving the maintainers unnecessary code to
examine.

Once a clone is created it is effectively lost within the
source code and so both clones must therefore be
maintained as separate units despite their similarities. If
errors are identified within one clone then it is likely
that modifications may be necessary to the other
counter-part clones [Kom01]. Detection is therefore
required if any of the clones are to be re-identified to
assist the maintenance process. Further potential also
exists for clone detection to assist the maintenance
process. If clones can be detected then the similarities
can be exploited and replaced during preventative
maintenance with a new single code unit this will
eliminate the problems identified above.

One major problem in detecting a clone is that it is
impossible to be absolutely certain that one section of
code has been copied and pasted from another. Short
sections of code like wrapper methods in Java can have
an almost identical structure to countless others.
Furthermore, there are two types of cloning identified in
[Bur97] “Replication Within Programs” describing
situations where code has been copied and pasted once
or more within the same file. Secondly “Replication

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Across Programs” is introduced as the cloning of code
between files. Duccase [Duc97] defines “cloned files”
as “files that have a very high duplication ratio between
each other”.

Cloned code can constitute a significant proportion of a
legacy system’s code. Estimates regarding the scale of
this problem vary depending on the domain and origin
of the source code. For instance, Baxter [Bax98] has
identified up to 12.7% of code being clones; Baker
[Bak95] has identified between 13% - 20% of code
being cloned and Lague [Lag97] between 6.4% - 7.5%.
Taking these points into account it follows that any
reduction of redundant code is beneficial to the
maintenance of a system.

However, the problem is not solely restricted to the
issue of the increasing size of an application. When
code is copied and pasted systematic renaming of
variables can lead to “unintended aliasing, resulting in
latent bugs” [Joh94]. Thus, Johnson establishes that
cloning is a form of “software ageing” or making even
minor changes to the system’s design very difficult.

 There are a good number of clone detection tools
available both commercially and within academia.
Within these tools several different approaches to
software clone detection have been implemented,
including string analysis, program slicing, metric
analysis and abstract tree comparisons. The aim of this
paper is to compare a set of clone detection tools on
some large software applications. The results of the
analysis process will then be used to investigate which
of the tools are best suited to assist the process of
software maintenance in general and specifically

Table 1: clone detection tools under investigation

preventative maintenance. The investigation will
examine results gained from each tool using two
metrics; that of precision and recall. Also of interest is
investigating how similar the results achieved are in
detecting replication within a single program and
replication across distinct programs. Of further interest
is how similar the results from the different categories
of detection tools for example JPlag and Moss will only
detect replication across programs because they are
searching for cheating and copying and modifying one's
own code is not plagiarism.

The following section will describe some of the existing
tools in the field of clone detection.

2. Clone Detection Technique

Five established detection tools will be used in the
evaluation process; JPlag, MOSS, Covet, CCFinder and
CloneDr. JPlag and MOSS are web-based academic
tools for detecting plagiarism in student's source code.
CloneDr and CCFinder are stand alone tools looking at
code duplication in general. Also included in the
experiment is a prototype tool created Covet. Covet
uses metrics by Mayrand [May96] and compares the
metrics of each function to look for potential clones.

Table 1 summarizes the clone detection tools under
investigation. The languages supported by the analysis
process are highlighted, as is the analysis approach. The
column labeled domain highlights the main purpose of
the tools for either clone detection or for plagiarism
detection.

Tool Author Supported
Languages

Domain Approach Category Background

CCFinder T.Kamiya C, C++,
COBOL, Java,
Emacs Lisp,
Plain Text

Clone
Detection

Transformation
followed by token
matching

Academic

CloneDr I. Baxter C, C++,
COBOL, Java,
Progress

Clone
Detection

Abstract Syntax Tree
comparison

Commercial

Covet

J. Bailey
J. Mayrand

Java Clone
Detection

Comparison of
Function Metrics

Academic

JPlag G. Malpohl C, C++, Java,
Scheme

Plagiarism
Detection

Transformation
followed by token
matching

Academic

Moss A. Aiken Ada, C, C++,
Java, Lisp, ML,
Pascal, Scheme

Plagiarism
Detection

Unpublished Academic

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

Further details of the different approaches taken to
examining source code by the clone detection
techniques are now given.

CCFinder [Kam01] focuses on analyzing large-scale
systems with a limited amount of language dependence.
It transforms the source code into tokens. CCFinder
aims to identify "portions of interest (but syntactically
not exactly identical structures)". After the string is
tokenised a token-by-token matching algorithms is
performed. CCFinder also provides a dotplotting
visualisation tool that allows visual recognition of
matches within large amounts of code.

CloneDr [Bax98] analyses software at the syntactic
level to produce abstract syntax tree (AST)
representations. A series of algorithms are then applied
to the tree to detect clones. The first algorithm searches
for sub-tree matches within the ASTs. Then a “sequence
detection” algorithm attempts to detect “variable size
sequences of sub-tree clones”. A third algorithm uses
combinations of previously detected clones and looks
for “more complex near-miss clones”. The final clone
set includes the clones detected in the second and third
algorithms. CloneDr can automatically replace cloned
code by producing a functionally equivalent subroutine
or macro.

Covet uses a number of the metrics as defined by
Mayrand [May96]. These metrics were selected by
taking known clones and identifying which of the Datrix
metrics best highlighted the known clone set. Covet
does not apply the same scale of clone likelihood
classification as Mayrand. Rather within Covet this is
simplified; there is no scale of clone, functions are
either classed as clones or distinct. The tool is still in
the prototype stages and is not capable of processing
industrial sized programs.

JPlag [Pre00] uses tokenised substring matching to
determine similarity in source code. Its specific purpose
is to detect plagiarism within academic institutions.
Firstly the source code is translated into tokens (this
requires a language dependent process). JPlag aims to
tokenise in such way that the "essence" of a program is
captured and so can be effective for catching copied
functionality. Once converted the tokenised strings are
compared to detect the percentage of matching tokens
which is used as a similarity value. JPlag is an online
service freely available to academia.

MOSS [Aik02] Aiken does not publish the method
MOSS uses to detect source code plagiarism, as its
ability to detect plagiarism may be compromised. Moss
like JPlag is an online service provided freely for
academic use. Source code is submitted via a perl script

and then the results are posted on the MOSS’s webpage.
Users are emailed a url of the results.

3. Approach

If different approaches to clone detection are taken then
the results achieved will vary considerably. How much
variation is to be addressed by comparing the results of
several clone detection tools. Both commercial and non-
commercial tools are used in the experiment, including
two that use clone detection techniques in order to find
plagiarism in academia.

The experiment will involve running a set of clone
detection tools over source code of GraphTool.
GraphTool is a graph layout tool developed in 1999 at
the University Of Durham. It is used internally within
the computer science department. GraphTool was
written in Java by a postgraduate and currently consists
of 63 individual source files, 16335 lines of code totally
660KB. It was chosen because it is a medium size
application. Also GraphTool is written in Java and so
will be "understood" by the majority of detection
software.

Each tool produces a set of matches (clone
relationships) these results will be analyzed to assess the
similarity between the resulting sets. In order to
compare the results of each tool some translation will be
required to allow comparison of intersection and
difference of the result sets. To standardize the results
of the different tool and to perform a comparison the
start and end lines from each function is taken as the
indices. This is necessary due to the different approach
utilized by the different tools, for instance, Covet looks
for cloned functions rather than disparate segments of
code. Whereas the other tools provide start and end line
indices showing exactly where the clones appear, this is
not possible with Covet.

In order to establish the coverage of each tool their
output was translated into a single data structure, a
GeneralPair. This GeneralPair holds two matched
sections of code (either within the same file or from
separate source files). Implemented in Java it holds the
name of the file(s) involved and the code regions that
have been matched. Each code region is identified by a
start and end index (line numbers). Each tool's
GeneralPairs are stored in a set. If two GeneralPairs
overlap then it is considered a match. For example

FileA.java(110-130) & FileB.java(340-360) GeneralPair_One
FileB.java(310-350) & FileA.java(115-150) GeneralPair_Two

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

GeneralPair_One and GeneralPair_Two are considered
as a match because the code region in both FileA and
FileB overlap.

An initial comparison of the tools is made through the
use of two metrics that of Precision and Recall.
Precision is the number of clones of the identified set
that are also in the clone base. Thus precision is the
measure to the extent to which the clones identified by
the tool are extraneous or irrelevant. Recall is the
number of clones in the clone base that are also in the
identified set. Recall is therefore a measure to the extent
to which the clones identified by the tool matches the
clone base within the GraphTool application. In order to
establish the clone base (the total number of clones
within GraphTool) the results of clone identification
from all tools were merged and then manually verified.
This verification process is currently still subjective but
the rejection of clones has been based on their
unsuitability to assist the preventative maintenance
process. Below is a description of the attributes
considered during verification.
GraphTool was originally developed by a single
postgraduate. As a result GraphTool's source code is not
overly large with consistent naming conventions and
formating. This consistency allowed familiarity with the
code to develop fairly quickly and spotting replication
easier and thus helped verification

Similar / Identical control flow and layout Series of
of repeated layout blocks could often to point to a copy
of another piece of code elsewhere in the system. For
example if two functions both contained the same
number of if-statements testing similar conditions.

Similar / Identical method names These usually took
the form of a verb-noun combination with the verb
remaining constant and the noun being changed. (for
example saveGraph and saveGINGraph)

Similar / Identical variables Clusters of indentical
variables and assignments were often a good indication
that the code originated somewhere else.

Similar / Identical comments Occasionally the same or
ver similar comment blocks were interspersed in the
code. This is quite obviously a legacy of cloning within
the source.

4. Results

In total the GraphTool case study identified 1463 initial
clones. Not all clones were found by each tool, in fact
no single tool identified all clones. The initial clone

numbers identified by each tool are shown within Table
2 below.

CCFinder CloneDr Covet JPlag Moss

Identified
clones by
tool 1128 84 278 131 120
Table 2: Total clone numbers identified by each tool

From Table 2 it can be seen that CCFinder identified the
largest number of clones, a total of 1128, whereas
CloneDr identified the smallest number only 84.

In order to examine the differences between the output
of the two tools the difference between the sets of
clones identified has been established. These are
represented within Table 3.

CCFinder CloneDr Covet JPlag Moss

CCFinder 1090 1089 989 1025

CloneDr 43 265 120 111

Covet 251 70 120 109

JPlag 44 73 273 67

Moss 19 76 268 81
Table 3: The difference between the set of clones
output between each tool

Thus Table 3 shows that CCFinder identified 1090
clones that were not identified by CloneDr, however
CloneDr identified a further 43 that were not identified
by CCFinder.

In addition the intersection between each of the tools
has also been established. The intersections, i.e. those
clones that were identified by more than one tool, are
shown in Table 4. Thus, CCFinder and CloneDr
identified 38 clones in common.

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

CloneDr Covet JPlag Moss

CCFinder 38 27 87 101

CloneDr 13 11 9

Covet 15 10

JPlag 50
Table 4: The intersection of identified clones from
each tool

Due to the different domains of the detection tools that
have been analyzed it is interesting to investigate for the
set of all clones what proportion are identified within a
single file and the proportion of clones that are
identified across files within the GraphTool application.
Due to the nature of their implementation, plagiarism
detectors do not investigate clones within files, since
this is not plagiarism. It is therefore of interest to see
what potential disadvantages to clone identification for
maintenance such restrictions would bring. The results
of this analysis are represented within Table 5.

Within files Across files

CCFinder 44 66

CloneDr 79 21

Covet 31 69

JPlag N/A 100

Moss N/A 100
Table 5: The percentage of identified clones
identified within / across files

The results show that CCFinder identifies the greatest
proportion of its clones across files; that is CCFinder
implies that most clones appears to be copied between a
number of application files. However, the results of
CloneDr seems to show the opposite in that the clones
that it identifies are mostly copied within files. These
results show that the plagorism detection software, due
to only investigating replication across files, failed to
identify over 500 clones.

What conducting the analysis process on only the total
numbers of clones identified may obscure, is the overall
proportion of the code that is cloned. For instance, the

large numbers gained could be due to the relatively
small size of the clones found. Therefore to gain an
indication of the proportion of clones, mean size of the
clone set has been analyzed for each tool. The results of
this analysis process are shown within Table 6.

 Largest identified

clone (LOC)
Mean size of
clone (LOC)

CCFinder

94 17

CloneDr

100 16

Covet

123 21

JPlag

78 23

Moss

57 15

Table 6: The Lines of Code (LOC) of clones
identified

Table 6 shows some interesting results. Is is surprising
that the mean size of the clones that are identified do not
significantly vary for each tool, with the exception of
Moss where both the maximum and mean sizes are
slightly smaller than the others.

A further interesting aspect of the clone identification
process is the number of times each clone is replicated
within the code. The data presented so far identifies the
numbers of total clones; that is all duplicate instances of
the code. Table 7 shows the frequencies of replication
identified for each unique clone identified by each tool.

Frequency CCFinder CloneDr Covet JPlag Moss

1 569 66 40 95 104

2 98 6 34 10 8

3 33 2 13 4 0

4 14 0 6 1 0

5 16 0 5 0 0

6 19 0 5 0 0

7 2 0 1 0 0

8 0 0 1 0 0

9 0 0 0 0 0

10 0 0 0 0 0

11 0 0 0 0 0

12 0 0 2 0 0

13 0 0 1 0 0

Table 7: Total occurrences of each clone per tool

Table 7 shows that it is Covet that recognizes the largest
number of replications within the application. The table
shows that Covet identified 3 cases where a clone has

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

been replicated 12 or more times within the source
code, the other tools recognize no more than 7
instances.

CCFinder CloneDr Covet JPlag Moss

Recall 72 9 19 12 10

Precision 72 100 63 82 73
Table 8: Precision and recall

The results up to now have been based on all the clones
identified by the tools. However, not all automatically
identified clones are likely to be actual clones. Thus, a
subjective assessment was then made of the clones that
were identified by the tools which could be considered
actual clones for the purpose of preventative
maintenance. From a total of 1463, from the initial
removal criteria 563 clones were rejected as being false
matches clones. Thus, based on this analysis the values
of recall and precision could then be calculated. Recall
is the percentage of true clones actually identified by
each tool. This is shown within Table 8. CCFinder has
by far the greatest recall identifying a total of 72% of
the true clone base.

A measure of precision has also been made. The table
shows that Covet identified the greatest percentage of
false clones and therefore had the worst precision with
37% of the clones being identified not actually being
clones. Conversely, CloneDr had the best precision with
none of the clones later being identified as false
matches.

5. Evaluation

The aim of this paper has been to identify which of the
evaluated tools are best suited to support the process of
software maintenance. In order to address this issues it
needs to be considered what requirements are required
of such a support tool. The requirements such a tool to
support maintenance are considered to be the:

output of a high proportion or all of the clones present
within the code
output of a low proportion or no incorrectly identified
clones
matching and output of clones that have high
frequencies of replication
output of clones that are large in terms of lines of code
output of clones that can be modified or removed with
minimum impact to the application
ease of usability of the tool

These points are now considered in relation to the
results obtained.

5.1 Output of a high proportion of the clones

The identification of a high proportion of the clones is
important for maintenance so that the severity of the
modification problem can be addressed prior to
maintenance and that proper consideration can be given
to the selection and attributing of a priority for the
removal of the clones. Within this paper this
requirement have been investigated in a number of
ways. CCFinder identified more clones than the other
tools but the greater proportion of these clones
identified was across files. Proportionally CloneDr
identified more clones that were internally replicated
within a file. However, the most predictive assessment
of this requirement is the metric of recall being to
percentage of the clones identified from the total known
set. CCFinder identified the greatest total number of
clones, thus resulting in the highest level of recall 72%.

Overall each tool identified some clones that were not
identified by any other tool and that each tool
overlapped those that it identified with other tools. In all
instances these overlaps were different. Only through
using all the tools would it have been possible to
identify the total set of clones.

Output of a low proportion of incorrectly identified
clones
The output of a low proportion of incorrectly identified
clones is important to ensure that the maintenance
process is efficient. In most instances false positives will
have to be verified manually. This provides a cost in
terms of the maintainer’s time. For this reason good
precision is required of the tools. CloneDr was the only
tool who provided perfect precision, thereby identifying
no false positive matches, and therefore not resulting in
the incurring of wasted maintenance effort. This is due
to the automation process for clone removal; if it can’t
be automatically removed then its not identified as a
clone. Thus in this instance a tradeoff has been applied
to forsake high recall for perfect precision.

All other tools outputs were found contain at least 1 in 5
clones to be false positives. Of course the greater the
number of clones that each tool identifies so the total
number of false positives rises and thereby the potential
for wasted effort.

In some uses of clone detection for maintenance the
identification of false-positives will not be an issue. For
instance, consider a scenario when a change is required
to a specific portion of code, a search for clones could
then be made that match, and only match, the

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

specifically identified portion of the code to be changed.
Since modification are only considered for the matched
code it is unlikely that false positives will be identified
in this instance.

5.3 Matching and output of clones with a high
frequencies of replication

Clones represent the potential for wasted maintenance
effort. One way in which preventative maintenance can
assist is through the removal of these clones. Therefore,
the clones that are replicated most frequently within the
code potentially offer the greatest payback for
conducting preventative maintenance. Tools that are
able to match the largest sets of duplicate functionality
potentially offer the greatest payback to maintainers.
The results of the analysis process showed that Covet
followed by CCFinder best satisfied this requirement.
However, the benefits CloneDr’s ability to
automatically conduct an automated clone replacement
process should be not underestimated.

5.4 Output of clones that are large in terms of lines
of code

As for the same reasons as indicated above the more
code that can potentially be removed per change the
greater the potential payback for maintenance. Thus the
size of the clones identified is important. The largest
clone identified was by Covet at 123 LOC, but the tools
generating the largest mean for all clones was JPlag.
Overall, however, all tools showed fairly similar
performance levels.

Output of clones that can be modified or removed
with minimum impact

Impact of change is effectively the maintenance cost for
removing each clone. Due to the costs involved in
conducting this analysis this requirement was not
possible to assess except where the process is known to
have been automated as in CloneDr. However, what was
possible to assess was the change impact to an
application. Where removal of the clone was focused
within a source file the program comprehension costs
are likely to be less when more files are involved. As
indicated above CloneDr identified a very high
percentage of clones that were internally replicated
within a file.

5.6 Ease of usability of the tool

When running an analysis process other factors need to
be taken into account such as ease of use, speed and
language support. No subjective measures of the
usability of these tools have yet been made, but an

indication of factors such as language support was
included in table 1.

6. Conclusions and Further Work

The results have identified that there is no single and
outright winner for clone detection for preventive
maintenance. Each tool had some factors that may
ultimately prove useful to the maintainer. Furthermore
the ultimate choice is most likely to differ under the
circumstances at which the change proposal is made.
For instances, whether precision or recall is the most
highly desirable requirement or any combination
thereof.

What this analysis process has identified is need to be
able to accurately define requirements for the
identification and removal process and this paper has
thus identified a set of criteria upon which this
assessment can be based. Furthermore, it has also
identified areas of strengths and weaknesses in each tool
that may ultimately lead to their improvement.
However, due to the plagiarism tools only considering
across file duplication these are of less use than the
dedicated clone detection tools.

One way in which a more definitive analysis could be
performed may be, based on the clone set identified, to
investigate a priority for those clones which it would be
most beneficial to remove. From this analysis it may be
possible to make a more definitive selection of clone
identification tool.

A further way in which this process could be improved
would be to automate the collation process and to be
able to pool the results of using each tool. This work has
already been started though this project but the removal
of false positives still needs to be addressed.

One way of more effectively dealing with false positives
is to improve the process by which they can be
identified. Currently the output of most clone detection
tools is a simple textual representation. Applying a
graphical representation will allow the user to browse
summaries of each source code file detailing the clones
detected across and within file structures. Plotting such
graphical representation will allow maintenance’s to
more efficiently evaluate and plan the preventative
maintenance process of clone removal.

References

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

[Aik02] Aiken, A., A System for Detecting Software
Plagiarism (Moss Homepage), Last visited
11th April 2002

[Bak95] Baker B. S., On Finding Duplication and
Near-Duplication in Large Software
Systems, 2nd Working Conference on
Reverse Engineering 1995

[Bax98] Baxter I.D., Yahin A., Moura L., Sant’Anna
M., Bier L., Clone Detection Using Abstract
Syntax Trees, International Conference on
Software Maintenance 1998

[Bur97] Burd E.L., Munro M., Investigating the
Maintenance Implications of the Replication
of Code, International Conference on
Software Maintenance 1997

[Duc99] Ducasse S., Rieger M., Demeyer S., A
Language Independent Approach for
Detecting Duplicated Code, International
Conference on Software Maintenance 1999

[Joh94] Johnson J. H., Substring Matching For
Clone Detection and Change Tracking,
International Conference on Software
Maintenance 1994.

[Kam01] Kamiya T., Ohata F., Kondou K., Kusumoto
S., Inoue K., Maintenance Support Tools for
Java Programs: CCFinder and JAAT,
International Conference on Software
Engineering 2001

[Kom01] Komondoor R., Horwitz S., Using Slicing to
Identify Duplication in Source Code,
Symposium on Static Analysis 2001

[Lag97] Lague B., Proulx D., Mayrand J., Merlo E.,
Hudepohl J., Assessing the Benefits of
Incorporating Function Clone Detection in
a Development Process, International
Conference on Software Maintenance 1997

[May96] Mayrand J., Leblanc C., Merlo E., Automatic
Detection of Function Clones in a Software
System Using Metrics, International
Conference on Software Maintenance 1996

[Nie97] Niessink F., van Vliet H., Predicting
Maintenance Effort with Function Points,
International Conference of Software
Maintenance 1997

[Pre00] Prechelt L., Malpohl G., Philippsen M.,
JPlag: Finding plagiarisms among a set of
programs, Technical Report 2000-1

[Tak96] Takang A., Grubb P., Software Maintenance
: Concepts and Practice, Thomson Computer
Press 1996, ISBN 1-85032-192-2

Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’02)
0-7695-1793-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

