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ABSTRACT

Three dimensional analyses including geometric and material non–linearity require robust, efficient
constitutive models able to simulate engineering materials. However, many existing constitutive mod-
els have not gained widespread use due to their computational burden and lack of guidance on choosing
appropriate material constants. Here we offer a simple cone-type elasto-plastic formulation with a new
deviatoric yielding criterion based on a modified Reuleaux triangle. The perfect plasticity model may be
thought of as a hybrid between Drucker-Prager (D-P) and Mohr-Coulomb (M-C) that provides control
over the internal friction angle independent of the shape of the deviatoric section. This surface allows an
analytical backward Euler stress integration on the curved surface and exact integration in the regions
where singularities appear. The attraction of the proposed algorithm is the improved fit to deviatoric
yielding and the one–step integration scheme, plus a fully defined consistent tangent. The constitutive
model is implemented within a lean 3D geometrically non-linear finite-element program. By using an
updated Lagrangian logarithmic strain–Kirchhoff stress implementation, existing infinitesimal consti-
tutive models can be incorporated without modification.

1 MODIFIED REULEUAX

Frictional isotropic yield surfaces may be defined using Haigh-Westergaard cylindrical coordinates ξ, ρ
and θ, utilising the normalised deviatoric radius, ρ̄ = ρ/ρc; where ρc is the radius on the compression
meridian (θ = π/6) and ρ is a function of the Lode angle
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3. From geometric
considerations, the modified Reuleaux (MR) Lode angle dependency may be obtained as
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, ā = r̄ − ρ̄e and ρ̄e = ρe/ρc. (3)

ρ̄e ∈ [0.5, 1] gives the relative size of the radius under triaxial extension (σ1 = σ2 < σ3) with respect
to that under triaxial compression (σ1 < σ2 = σ3). The arc angle, see Figure 1(i), is defined as

φ = π/6 + θ − arcsin (ā sin(5π/6− θ)/r̄). (4)



If the arc centres1 coincide with the singularities on the compression meridians (that is, if r̄ = 1+ ρ̄e so
that ā = 1) then the shape of the deviatoric section is a Reuleaux triangle. Allowing the location of the
arc centres to vary along projections of the compression meridians gives rise to the modified Reuleaux
triangle, see Figure 1(i). 2 The MR cone can be defined as

f = ρ− αρ̄(ξ − ξc) = 0 (5)

where α is the opening angle of the cone. α = − tan(ψMC), given the M-C internal friction angle
ψMC under triaxial compression. ξc locates the intersection of the yield surface with the hydrostatic
axis. Thus (5) defines a cone with a MR deviatoric section and linear meridians, pinned at ξc with the
space diagonal (σ1 = σ2 = σ3) as the cone’s axis, see Figure 1(ii) (in this case with ξc = 0). The MR
cone can be seen as a hybrid surface, lying between the D-P and M-C envelopes, allowing some control
over the shape of the deviatoric section, independent of the cone opening angle.

Figure 1: (i) Modified Reuleaux deviatoric section (ii) Modified Reuleaux cone stress return regions.

1.1 Analytical backward Euler stress return

Simo and Hughes [2] showed that for associated flow the backward Euler integration corresponds to the
minimisation of {{σr} − {σt}

}T [
Ce]{{σr} − {σt}

}
, (6)

with respect to the return stress {σr} (where
[
Ce

]
is the elastic compliance matrix), which represents a

Closest Point Projection (CPP). The minimisation is subject to the following constraints: f ≤ 0, γ̇ ≥ 0
and fγ̇ = 0. (·)t and (·)r denote quantities associated with the trial state and the return state respectively,
where f is the yield function and γ̇ is the plastic multiplier. The return stress is not generally the closest
point geometrically in standard stress space, but rather the stress that minimises the energy square norm
(6). When returning to the MR cone we make use of energy-mapped space, allowing us to find the
closest point geometrically (see [1] or [3] for more details).

Consider the trial elastic stress lying outside the yield surface (f > 0). For this state there are three
distinct stress return regions associated with the MR cone, as shown in Figure 1 (ii), namely: A stress
origin (point), B compression meridian (line) or C non-planar surface. The CPP and consistent tangent
are considered for each region in [1]. The approach, when returning to the compression meridian or
tensile apex, follows Clausen et al.’s method [4]. When returning elsewhere, finding the closest point
to the surface in energy-mapped space [3] requires the solution of a quartic. Errors associated with the
integration scheme have been shown to be less than 3%, whilst providing a 2.5-5.0 times speed up over
the conventional iterative backward Euler stress return method [1].

1There are three arc centres in a principal stress space deviatoric plane; isotropy requires only one to be considered.
2As ρ̄e → 0.5 both r̄ and ā tend to ∞ and the deviatoric section becomes an equilateral triangle. If ρ̄e = 1 then ρ̄ = 1

and we recover a circular deviatoric section centred on the hydrostatic axis (as found in the D-P model).



2 NON-LINEAR FINITE-ELEMENT ANALYSIS

Finite-Element (FE) programs offering the capability to include three dimensional finite deformation in-
elastic continuum analysis are typically expressed in thousands of lines. A number of open source codes
encourage researchers to extend or modify the basic algorithms, however due to size of these codes, this
requires a significant time investment from potential new developers. Researchers are faced with writ-
ing their own algorithms from scratch or mastering lengthy codes which are typically understandable
only by those close to the original development. However, high level computational environments, such
as MATLAB, allow engineers, scientists and mathematicians to produce powerful numerical analysis
scripts rapidly. By using lean, efficient algorithms and subfunctions, it is possible to write the main
routine of an elasto-plastic finite deformation FE program within a single page. Once a program spills
onto multiple pages the ability to easily visualise the program structure is lost and the opportunity for
error detection is reduced. Transparent programs facilitate re-analysis, adjustment, improvement and
experimentation, resulting in polished robust algorithms.

A three dimensional MATLAB finite deformation updated Lafrangian FE code has been developed by
the first author at Durham University, with the intention of analysing geotechnical problems subject to
large deformations and strains. The constitutive model described in Section 1 was implemented within
the FE code.

Unlike infinitesimal theory, within a finite deformation framework there exists a choice for the stress
and strain measures. However, certain combinations provide advantages when moving between in-
finitesimal and large strain theories. The implemented FE code uses a logarithmic strain–Kirchhoff
stress relationship along with an exponential map for the plastic flow equation to allow the implemen-
tation of standard small strain constitutive algorithms within a finite deformation framework without
modification.

3 NUMERICAL ANALYSIS

In this section we present the analysis of the expansion of a thick-walled soil cylinder under internal

Figure 2: Internal expansion of a thick walled soil cylinder.



pressure. This is a one-dimensional axi-symmetric problem but here we use a 2D version of our 3D
code to make comparisons with an analytical solution. 3◦ of a cylinder with initial internal radius (a0)
of 1m and an external radius (b0) of 500m was discretised using 100 4-noded quadrilateral elements3.
The following material parameters were used: Young’s modulus of 100MPa, Poisson’s ratio of 0.3,
cohesion c of 70kPa, friction angle of 20◦ and ρ̄e = 0.8 (to coincide with ρ̄e for M-C). The internal
radius was expanded to 5m via 400 equal displacement-controlled increments. Figure 2 presents the
pressure-internal expansion plots for the four constitutive models: D-P, M-C4, Willam-Warnke (W-W)
[6] cone and MR. a/a0 is the ratio of the current to the original internal radius. The M-C numerical
solution displays excellent agreement with the analytical solution [7]. Results for the MR cone using
ρ̄e = 0.5001 and ρ̄e = 0.9999 demonstrate the model’s ability to provide solutions spanning between
those provided by the M-C and D-P cones. With ρ̄e = 0.8 the W-W and MR cones produced a stiffer
response when compared against the M-C solution.

Figure 2 also gives run time comparisons between the different constitutive models.
∑

(NRit) is the
total number of global Newton-Raphson (N-R) iterations, max(NRit) is the maximum number of N-R
iterations for any loadstep, t/tM−C is the run time normalised with respect to the M-C run time and the
ratio (tNRit)/(tM-CNRM-C

it ) gives the time per iteration normalised with respect to the M-C iteration
time. The W-W formulation, which produced similar results to the MR cone, required a 58.9% increase
in the run-time, with MR having a run time only 7.7% greater than M-C.

4 CONCLUSION

This paper presents a simple cone-type elasto-plastic formulation with a deviatoric yielding criterion
based on a modified Reuleaux triangle and its implementation within a finite deformation FE code. The
perfect plasticity model allows an analytical backward Euler stress integration on the curved surface
and exact integration in the regions where singularities appear [1].

By utilising lean efficient algorithms and subfunctions, MATLAB has allowed the main file of the
implemented FE program to fit comfortably on one page, being only 70 lines in length5. Through
the use of an updated Lagrangian logarithmic strain–Kirchhoff stress formulation (with an exponential
map for the plastic flow equation) the code allows for the incorporation of existing isotropic small strain
constitutive models without modification.

The numerical analysis of the internal expansion of a thick walled cylinder has been presented. Results
obtained with the MR cone are compared with results from M-C, D-P and W-W cones. It has been
shown that the computational advantages over a Willam-Warnke cone model are significant and that the
proposed model provides an attractive alternative to the Drucker-Prager and Mohr-Coulomb models.
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