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ABSTRACT

We extend the marked point process models that have been used for object extraction from images to arbitrarily
shaped objects, without greatly increasing the computational complexity of sampling and estimation. The
approach can be viewed as an extension of the active contour methodology to an a priori unknown number
of objects. Sampling and estimation are based on a stochastic birth-and-death process defined in a space of
multiple, arbitrarily shaped objects, where the objects are defined by the image data and prior information. The
performance of the approach is demonstrated via experimental results on synthetic and real data.
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1. INTRODUCTION

The resolution of optical satellite and aerial images is continually increasing, with resolutions now ranging from
several decimetres down to several centimetres. At these resolutions, the geometry of objects at human scale is
clearly visible, and needs to be taken into account in analysing the images. Stochastic point process models of
multiple objects and their configurations are more easily able to include this type of geometrical information than
classical approaches such as Markov random fields. A probability density is defined on the space of configurations
of multiple objects that depends on the objects’ relation to the data, and the individual and joint configuration of
the objects. The optimal configuration of objects is then estimated, usually using Maximum A Posteriori (MAP)
estimation. In previous work, the objects involved have been represented using simple geometrical shapes, e.g.
discs, ellipses, or rectangles. The resulting models have been applied to the extraction of different types of
object from remote sensing images, e.g. road networks,9 buildings,11 and trees,13 but the simplified nature of
the individual objects limits the geometrical precision that can be achieved.

The aim of this paper is to lift this restriction without increasing the dimension of the single-object space
(e.g. 1 for discs, 3 for ellipses and rectangles), since this would greatly increase the computational complexity
of sampling and estimation. The single-object space considered is thus still of small dimension, but the possible
individual objects are determined not a priori, but by the image data and a single-object version of the model.
As a result, they can be arbitrary closed curves. Once the single-object space is defined, a Gibbs energy, and
hence a probability distribution, are defined on the configuration space of an arbitrary number of single objects.
The energy includes single-object terms that relate each object to the image and control boundary smoothness,
and which were used in the definition of the single-object space, and an interaction term that penalizes object
overlap. To find the MAP estimate using the full energy, we sample using a multiple birth-and-death process
embedded in an annealing scheme.4

The use of a birth-and-death process allows the number of objects to be unknown a priori. Our work can
thus be thought of as an extension of the active contour methodology7 to an a priori unknown number of objects.
A great deal of work has been done within the active contour framework using the distance-function level set
representation.1, 3, 10, 12, 14 This representation allows arbitrary topology, i.e. an arbitrary number of contours, at
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least in principle. However, it is a representation of a region with arbitrary topology, not an arbitrary number of
distinct objects: overlapping objects, for example, cannot be represented. Second, the algorithms used are forms
of deterministic gradient descent, meaning that the result may be very dependent on the initial configuration,
particularly since arbitrary topology changes are not possible during the algorithm. Cremers et al. 2 treat
the case in which there is a number of distinct classes of object in the image by segmenting the image into
connected components each of which corresponds to one class. The representation is by distance-function level
sets, however, so that overlapping objects are not allowed, while the way in which prior information is included
means that only one object can be found in each connected component. There are many tracking methods
that use stochastic algorithms, e.g. ,5, 8, 16 but those that deal with multiple objects mostly do so by using the
distance-function level set representation. Storvik15 uses an MCMC algorithm to minimize an active contour
energy, but considers only simply-connected objects; the algorithm makes only local changes to the contour at
each iteration. Juan et al. 6 use stochastic PDE techniques for optimization, but again the stochastic element is
limited to small changes to the contour. In contrast, in this paper, although the possible forms of single-object
are limited by adaptation to the data, multiple objects can be created and destroyed at each iteration.

In section 2, we describe the single-object space and the single-object terms in the energy. In section 3,
we describe the multiple-object space and the full energy, as well as the sampling algorithm. In section 4, we
describe experimental results validating the algorithm, and in section 5, we conclude.

2. SINGLE OBJECTS

We take as the single-object space a subset of the space of all possible arbitrarily-shaped objects. An object is
represented by its boundary, a closed planar curve γ : [0, 2π] → V ⊂ R

2 lying in the image domain V . Given an
energy functional Ed defined on a space Γ of such curves, and an initial curve γ ∈ Γ, we can perform gradient
descent to obtain a curve, γ̂ ∈ Γ given by a local minimum of Ed; this defines the map ·̂ : Γ → Γ. Now
denote by C the set of parameterized circles lying in the image domain, with radii in [rmin, rmax] and arc-length
parameterization. The single-object space we consider is Γo = Ĉ. The objects thus obtained from the circles
are locally adapted to the data, since the energy functional depends on the image as well as curve geometry.
The dimension of the single-object space is still small, however: if we fix the centre of the circle, it is at most
one-dimensional; in practice, it is very likely to be a discrete set.

2.1 Single-object energy

The energy Ed used to construct the space Γo is a weighted sum of three terms:

Ed(γ) =
λ

2

∫

[0,2π]

dt |γ̇(t)|2 + λi

∫

[0,2π]

dt n(t) · ∇I(γ(t)) + α

∫

R(γ)

d2x (G(x) − Ḡ(x)) ,

where ·̇ denotes a derivative; n is the (unnormalized) outward normal to the curve; I is the image; G(x) =
(I(x)−µ)2

2σ2 ; Ḡ(x) = (I(x)−µ̄)2

2σ̄2 ; and R(γ) is the region corresponding to the boundary γ. The first term favours
smooth boundaries and uniform parameterization. The second term favours object boundaries orthogonal to the
image gradient. The third term arises from a Gaussian image model with means µ, µ̄ and variances σ, σ̄ for the
interior and exterior of the objects respectively. These parameters are learned from pieces of the image.

The algorithm makes uses of the functional derivative of Ed:

δEd

δγ(t)
= −

λ

2
γ̈(t)− n(t)

[

λi∇
2I(γ(t)) + (G(γ(t))− Ḡ(γ(t)))

]

. (1)

Figures 1 and 2 show examples of gradient descent from initial circles using the energy Ed, showing how the
points of Γo, generated as they are by the map ·̂, are locally adapted to the image.



Figure 1: Synthetic image example: gradient descent driven by Ed. Left: binary image with added noise. The
other three images show the contour evolution. The background has been blurred for display purposes.

Figure 2: Real image example: gradient descent driven by Ed. Only one band of the colour image was used.

3. MULTIPLE OBJECTS: MODEL AND ALGORITHM

The multiple-object space is the set of configurations of zero or more objects:

ΩΓo
=

∞
⋃

n=0

[

Γn
o/Sn

]

, (2)

where Sn indicates the symmetric group of n elements acting on the components of the product. Note that set
union and difference are defined for appropriate pairs of elements of ΩΓo

. The map ·̂ extends to a map from ΩC

(the space of configurations of circles from C) to ΩΓo
. We denote by ω and ω̂ elements of ΩC and ΩΓo

respectively.

3.1 Energy

Denote by H a real function on ΩC that is bounded below. We then define the Gibbs distribution µβ in terms

of a density p(ω) =
dµβ

dλ
(ω) with respect to Lebesgue-Poisson measure λ on ΩC :

p(ω) =
z|ω|

Zβ

exp{−βH(ω)} , (3)

with parameters β > 0, z > 0 and a normalizing factor Zβ:

Zβ =

∫

ΩC

dλ(ω) z|ω| exp{−βH(ω)} .

The energy H is a sum of two terms:

H(ω) = c0
∑

i

H1(ωi) +
∑

i6=j

H2(ωi, ωj) ,



where c0 ∈ R and the {ωi} are the elements of ω ∈ ΩC . The term H1 is

H1(ωi) = Ed(ω̂i) .

The term H2 introduces an interaction between objects that penalizes overlaps:

H2(ωi, ωj) =
A(R(ω̂i) ∩R(ω̂j))

min(A(R(ω̂i)), A(R(ω̂j)))
+ δǫ(ωi, ωj) ,

where A is the area functional and δǫ is a hard-core repulsion between two components of ω, thereby eliminating
some small region around the diagonal in ΩC . This prevents the “condensation” of an infinite number of objects
in the lowest energy single-object configuration. Note that this is not guaranteed to eliminate the diagonal in
ΩΓo

. To achieve that, the interaction term must be sufficiently strong with respect to the single-object terms.

Apart from the hard-core repulsion, the energy H is constant on the equivalence classes defined by the map
·̂, i.e. it is the same for all ω ∈ ΩC that project to the same ω̂ ∈ ΩΓo

. However, since the hard-core repulsion is
equivalent to eliminating some elements close to the diagonal in ΩC , it is equivalent to the elimination of some
elements of ΩΓo

. Thus the relevant multiple-object space is not quite given by (2), but rather by this space
minus the eliminated elements. We will use the same symbol ΩΓo

for both. (Algorithmically, we will work in ΩC ,
so the difference will be transparent.) With this redefinition, the energy H is well-defined as an energy on ΩΓo

.∗

3.2 Sampling and estimation

To obtain a MAP estimate of the configuration of the objects in the image, we sample from the probability
distribution µβ using a Markov chain in ΩC in conjunction with an annealing scheme. The chain has a discrete-
time multiple birth-and-death dynamics that converges to a continuous process as the time-step tends to zero.
The reader may refer to4 for details of the convergence properties.

We restrict C to be the set of circles centred at the image pixels, with radii in the range [rmin, rmax]. All curves
are represented in the algorithm by points in R

2 defined to correspond to discrete parameter values tn = 2πn/N
for n ∈ {0, . . . , (N − 1)}. The circles in C are arc-length parameterized, and when discretized are represented by
equally spaced points.

At each birth step, circles sampled from a uniform Lebesgue-Poisson process with an intensity z that is
dependent on the discrete-time step δ, but that is independent of the current temperature and the energy of the
current configuration, are added to the current configuration. At each death step, each object is removed from
the current configuration with a probability that is a function of

dβ(ωi, ω) = e−βH(ωi,ω) , (4)

where β is the current (inverse) temperature, and H(ωi, ω) = H(ω−ωi)−H(ω) is the energy difference between
the configurations with and without the object. In more detail:

1. Initialization

Discrete time-step δ = δ0; inverse temperature β = β0; Poisson intensity z0; radius range [rmin, rmax];
parameters in Ed;

2. Birth

(a) Sample a configuration of circles (with radii uniformly sampled from [rmin, rmax]) from the Lebesgue-
Poisson distribution with intensity z = δz0, with the addition of a hard core repulsion δǫ with ǫ equal
to one pixel, and add them to the existing configuration, producing configuration ω ∈ ΩC ;

∗Note, however, that this is not the same as pushing forward µβ from ΩC to ΩΓo and then taking a MAP estimate,
since there is no reason to believe that the entropy factor that would be generated by this procedure would be constant
on ΩΓo .



(b) Evolve every circle in ω using gradient descent, with gradient field given by equation (1), until con-
vergence, producing configuration ω̂ ∈ ΩΓo

;

3. Death

(a) For computational efficiency, sort the components of the current configuration with respect to their
energy H1(ωi) = Ed(ω̂i);

(b) Remove each object ωi from the current configuration with probability

pd(ωi, ω) =
δdβ(ωi, ω)

1 + δdβ(ωi, ω)
;

4. Termination

If all the components added in the birth step and only these, are removed in the following death step, then
stop; if not, then decrease the temperature T = 1

β
and time-step δ, and go to the birth step.

Note that this process finds an energy minimizing ω ∈ ΩC , which then projects to ω̂ ∈ ΩΓo
. The algorithm

terminates despite the degeneracy of the energy on ΩC (see the discussion at the end of section 3.1) because the
birth step always moves the configuration out of its current equivalence class under ·̂.

4. EXPERIMENTAL RESULTS

Figures 3 and 4 show the results of experiments on a synthetic binary image with added white Gaussian noise,
and on one band of a Colour Infrared (CIR) very high resolution aerial image showing tree crowns from vertically
above. Note that the initial configuration contains no curves. The first birth step creates a certain number of
curves, but the final number is determined automatically by the annealed birth-and-death process.

Figure 3: Left: synthetic binary image with added noise. Right: final object configuration. The numbers in the
interiors of the curves show the value of H2 (black background), demonstrating that there is no degeneracy in
the solution, and the value of H1.



Figure 4: Left: CIR image of tree crowns, c©CBA. Right: final object configuration. The numbers in the interiors
of the curves show the value ofH2 (black background), demonstrating that there is no degeneracy in the solution,
and the value of H1.

5. CONCLUSIONS AND PERSPECTIVES

The marked point process models that have been used in the past for object extraction from images have used
only simple geometric objects. We have proposed a method for the incorporation of arbitrarily complex shapes,
without significantly increasing the computational complexity of sampling and estimation. The work can also
be seen as an extension of the active contour methodology to an a priori unknown number of objects. The set
of potential objects is defined using an energy that incorporates prior information as well as information coming
from the data. The model could therefore be extended by including more specific prior information about object
shape without significantly increasing the computational load. The birth-and-death algorithm used has the
advantage that at every iteration, the current configuration is updated by adding multiple objects independently
of the current energy and temperature. This increases computational efficiency.

As the experimental results show, the model allows the accurate delineation of objects with complex shapes.
However, this very precision can lead to inaccuracy in the number of extracted objects: two overlapping crowns
are detected by a single object in the lower part of figure 4, for example. In order to correct this, one could
increase the weight of the smoothing term. This would further penalize object boundary length, and would
thereby tend to prevent the extraction of a group of tree crowns by a single object. The drawback is that the
resulting single object space would contain only highly smoothed curves, thereby simplifying the shapes of the
extracted objects. The longer-term goal of this work is therefore to incorporate more specific prior information
into the energy Ed, in order to detect overlapping objects, and eventually, simultaneously to extract and classify
several types of objects in scenes of high complexity, e.g. tree species in aerial images of dense forest.
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