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ABSTRACT

The segmentation of networks is important in several imag-
ing domains, and models incorporating prior shape knowl-
edge are often essential for the automatic performance of this
task. We incorporate such knowledge via phase fields and
higher-order active contours (HOACs). In this paper: we in-
troduce an improved prior model, the phase field HOAC ‘in-
flection point’ model of a network; we present an improved
data term for the segmentation of road networks; we confirm
the robustness of the resulting model to choice of gradient
descent initialization; and we illustrate these points via road
network extraction results on VHR satellite images.

1. INTRODUCTION

Remote sensing imagery plays an important role in many ar-
eas, including cartography, and the study and maintenance of
the environment. This is particularly true of very high reso-
lution (VHR) satellite images, which offer an enormous rich-
ness of information, if only it could be extracted. In this pa-
per, we focus on road network extraction in rural areas from
VHR multi-spectral satellite images.

The core contribution of the present paper is to refine the
phase field higher-order active contour (HOAC) model in-
troduced by [6] using the stability analysis described in [3]:
we insist that a branch of the road network be an inflection
point of the energy rather than a local minimum. This has
two effects: it reduces to one the number of free parameters
in the prior model, and it eliminates ‘phantom roads’ in the
background region.

In addition, we test two models for multi-spectral im-
age data in both background and foreground: a multivari-
ate Gaussian model, and a mixture of two multivariate Gaus-
sians. While the former behaves better as a maximum like-
lihood estimator, the latter invariably outperforms it when
coupled with the phase field HOAC prior. We also test the
initialization sensitivity of the model, always an important
issue when dealing with gradient descent optimization meth-
ods as we do here. We find that due to the large amount of
prior information contained in the model, many potential lo-
cal minima are eliminated, and the result is very insensitive
to the initialization except for one extreme worst case.

1.1 Background

Road network extraction is a difficult problem, because such
networks are frequently not distinguishable from the back-
ground by local image measurements alone. Rather, it is
the ‘shape’ of the region R in the image domain occupied
by the network that distinguishes them: networks occupy re-

gions in the image domain composed of a set of branches that
join together at junctions. We adopt a probabilistic approach
and MAP estimation to formulate the problem: we estimate
the region R by maximizing a posterior probability, P(R|I,K)
where I is the original image and K represents prior knowl-
edge about R and the relation between R and I. As usual, this
can be written up to an irrelevant normalization as the prod-
uct of a likelihood P(I|R,K) and a prior P(R|K). In practice,
we deal with negative log probabilities: we minimize a total
energy E(R, I) that is the sum of a likelihood term EI(I,R)
and a prior term EP(R).

There has been a significant amount of work on shape
modelling for segmentation, but most of this work uses pri-
ors that model shape by comparing the region sought to ref-
erence regions [1, 8]. This works well for many applications,
but is not appropriate when the region sought can have an ar-
bitrary topology, as in the case of networks. To model such
regions, ‘higher-order active contours’ (HOACs) were intro-
duced [7]. Unlike the original active contours [5] and their
successors, this new generation of active contours incorpo-
rates non-trivial shape information about a region via long-
range interactions between region boundary points.

The HOAC prior energy defined in [7] was used to model
network-shaped regions. However, the same energy can be
used to model other families of regions too, notably a ‘gas of
circles’ [4]), simply by varying the model parameters. Thus,
in order to use the model for network segmentation, one has
to know which parameter ranges lead to stable networks, as
opposed, for example, to stable circles. In [3], the stability
to small perturbations of a network branch, abstracted as a
long bar, was analysed via a Taylor series expansion up to
second order. The result is a phase diagram that shows which
parameter values give rise to stable networks.

The contour representation suffers from a number of
drawbacks, both for classical active contours in general, and
for HOACs in particular. To overcome these drawbacks,
in [6] HOACs were reformulated as nonlocal ‘phase field’
models. This formulation facilitates model analysis and im-
plementation, allows a ‘neutral’ initialization and complete
topological freedom, and results in reduced execution times,
sometimes by an order of magnitude.

In section 2, we briefly recall the HOAC model for net-
works, and the stability analysis. We then explain, in section
2.2, the rationale and implementation of the main contribu-
tion of the present paper: the ‘inflection point model’. In
section 2.3, we briefly recall the phase field formulation of
HOACs, and then show how to construct a phase field ver-
sion of the inflection point model. In section 3, we describe
the two data models we will test. In section 4, we describe
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Figure 1: 1(a) and 1(b) plot e0 against bar width w0, with
(αC,βC) = (0.8,0.53) and (0.7,0.363) respectively, giving a
minimum at w∗

0 = 1.2 and an inflection point at w∗
0 = 0.88.

experiments that test the data models, confirm the theoretical
rationale for and practical improvements obtained from the
inflection point model, and that demonstrate the robustness
of the results to the initialization. We conclude in section 5.

2. INFLECTION POINT MODELS OF NETWORKS

The prior HOAC energy introduced in [7] is

EC,G(R) = λCL(R)+ αCA(R)

−
βC

2

∫∫

(S1)2
dt dt ′ γ̇(t) · γ̇(t ′)Ψ(

|γ(t)− γ(t ′)|

d
) , (1)

where R is a region in the image domain; L is region bound-
ary length; A is region area; γ is an embedding representing

the region boundary, parameterized by t ∈ S1; γ̇ is its deriva-
tive, i.e. the tangent vector field; Ψ(z) defines the interaction
between two boundary points separated by a distance zd; and
λC, αC, βC, and d are real parameters. The long-range inter-
action is responsible for the prior shape information.

This HOAC prior energy was used in [7] to model net-
works. However, it was soon discovered that it could be used
to model other families of regions too, notably a ‘gas of cir-
cles’ [4], simply by varying the model parameters. Thus, in
order to use the model for network segmentation, it is impor-
tant to know which parameter ranges lead to stable networks.

2.1 Stable networks

In [3], a stability analysis of a network branch, abstracted as
a long bar, was described. The energy EC,G was expanded
about a long bar configuration to second order in a small per-
turbation δγ (expressed in the Fourier basis for simplicity):

e
(2)
G (γ) = e0 + e1 (a1,0 −a2,0)+

1

2
∑
k

a
†
k e2 ak , (2)

where ak = (a∗1,k,a2,k) and ai,k is the Fourier coefficient of

frequency k corresponding to the side of the bar labelled by
i ∈ {1,2}; † and ∗ indicate respectively Hermitian and com-
plex conjugates. e0(w0) is the energy per length unit of a long
bar of width w0, while e1(w0) = ∂e0(w0)/∂w0. e2(w0,k)
is, for each frequency k, a symmetric 2 × 2 matrix whose
diagonal and off-diagonal terms, e20 and e21, express the
self-energy of perturbations of one side, and the interaction
between perturbations of opposite sides of the bar respec-
tively. For future use, we define dimensionless parameters

ŵ0 = w0/d, α̂ = αCd/λC and β̂ = βCd/λC, and without loss

Figure 2: Phase diagram. Maroon, red, yellow, green, white,
blue, pink, grey, magenta correspond respectively to B+, C+,
B+ C+, B+ C-, UB UC, B- C+, B- C-, C- and B-; B, C,
U, + and - refer respectively to bar, circle, unstable, positive
energy and negative energy.

of generality, we put λC = d = 1. Thus the problem is re-
duced to finding the ranges of αC and βC allowing a stable
bar. The bar is stable (i.e. an energy minimum) if and only
if: e1(αC,w0,βC) = 0, which determines βC in terms of αC

and w0; and e2(αC,w0,βC,k) is positive definite for all k, i.e.
its eigenvalues λ±,k = e20(k)± e21(k), are positive for all k.
These conditions give upper and lower bounds on the param-
eter values. The result of the analysis, when combined with
a similar analysis for the ‘gas of circles’ model, is illustrated
in the phase diagram shown in figure 2. The phase diagram
enables parameter values to be chosen to model a particular
situation. The sign of e0 is important: if e0 < 0 then the bar
lengthens to minimize the total energy, while if e0 > 0 then
the bar shrinks until it disappears. The first situation is un-
desirable because gradient descent tends to create arbitrary
network branches to minimize the total energy. Suitable pa-
rameter values therefore lie in the maroon region of the phase
diagram, which gives a stable bar with positive energy per
unit length and no stable circles.

2.2 HOAC inflection point network model

Figure 1(a) shows the energy per unit length e0(w0) plotted
against bar width w0 for a particular parameter setting from
the maroon region with a stable width ŵ∗

0 = 1.2. Parameter
settings that produce energy curves like figure 1(a) have a
disadvantage when minimized using gradient descent. Imag-
ine an area of background in the image, and a network branch
formed there by the vagaries of gradient descent. Because it
lies in the background, and assuming the data model is rea-
sonable, there will be a force inwards on the branch, tending
to make it shrink and disappear. This is as it should be. How-
ever, if the width of the branch lies in the basin of attraction
of the stable width, there is a threshold that the force has to
surmount if it is to push the branch over the maximum shown
in figure 1(a), and down to zero width. the result is the forma-
tion of ‘phantom roads’, false positives that cannot disappear
due to the stability of the network branch.

Global optimization algorithms are one way to avoid lo-
cal minima, but unfortunately our problem is NP-hard. We
choose a slightly less ambitious approach: we change the en-
ergy functional to avoid the creation of these local minima
while preserving as much prior knowledge as possible. This
problem can be solved by constraining the parameters so that
the energy function has an inflection point at a desired width



w0 (i.e. λ−(w0,0) = 0) rather than a minimum. Figure 1(b)
shows a plot of energy per unit length versus width for a pa-
rameter setting that gives an inflection point. Such inflection
points lie on the lower edge of the coloured area of the phase
diagram, with α̂ values in the range [0,0.9083]. The value of
ŵ0 = 0.88 all along this line, and this is the only value that
allows an inflection point. We test this potential solution to
the ‘phantom road’ problem in section 4.

2.3 Phase fields

A phase field φ is a real-valued function on the image domain
Ω. A phase field determines a region by the map ζz(φ) =
{x ∈ Ω : φ(x) > z} where z is a given threshold. The basic
phase field energy is [6]

E0(φ) =
∫

Ω
dx

{

D

2
∂φ ·∂φ

+ λ (
φ4

4
−

φ2

2
)+ α(φ −

φ3

3
)

}

. (3)

The ultralocal terms define the stable phases: they have two
minima, at −1 and +1, which correspond to the background
and the network respectively. The derivative term ensures
the smoothness of φ , giving it an interface of finite width, w,
around the boundary ∂R. To introduce prior shape informa-
tion, a nonlocal term is then added, as with HOACs, to give
a total energy EG = E0 + ENL, where

ENL(φ) = −
β

2

∫∫

Ω2
dx dx′ ∂φ(x) ·∂φ(x′)Ψ(

|x− x′|

d
) . (4)

Let φR = argminφ :ζz(φ)=R EG(φ). Then it can be shown that

EG(φR) ≃ EC,G(R), thus enabling the use of phase fields in-
stead of HOACs. The parameters of the phase field model
can be expressed in terms of those of the contour model:
α = 0.75αC, β = 0.25βC, D = 0.25wλC and λ = 15λC(1 +
√

1−4w2(αC/λC)2/5)/(8w).

2.4 Phase field inflection point network model

To model networks with the phase field model, we first select
parameter values for the contour using the phase diagram.
In practice, this means fixing w0 (which is an application-
determined physical parameter), and then selecting values of

α̂ and β̂ from the maroon region of the phase diagram. These
give ŵ0, which gives the required d, and hence αC/λC, which
is upper-bounded so that λ is real. A choice of λC then gives
the actual values of the parameters in EC,G. These are then
converted using the equations at the end of the last section
(we choose w = 3).

Once we impose the inflection point condition, ŵ0 is

fixed, and α̂ is sufficient to determine β̂ and hence all the
other parameters except λC. However, the inflection point
condition constrains the parameters to a codimension 1 set
in parameter space, so that a generic change in the parame-
ters, however small, will violate the condition. One can then
wonder how well this condition is preserved when the param-
eters are converted from contour to phase field, especially
since this conversion is based on a relatively crude approxi-
mation to φR. In practice, numerical experiments show that
the inflection point condition is well preserved, with configu-
rations at the inflection point remaining stationary to subpixel
accuracy over thousands of iterations of gradient descent.
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Figure 3: Top row, from left to right: the R-G-B bands of a
multispectral satellite image; the G-R-IR bands of the same
image; the corresponding manually extracted road network
mask. Second row: similar, for a second image. Third row,
from, left to right: histograms of the network (red) and back-
ground (blue) regions of the R, G, B, and IR bands of the
image in the top row; Fourth row: similar, for second image.
(Images c©DigitalGlobe, CNES processing, images acquired
via ORFEO Accompaniment Program)

3. LIKELIHOOD ENERGY AND ENERGY
MINIMIZATION

So far we have spoken only of the prior energy, EP = EG. In
this section, we focus on the likelihood energy EI. Figure 3
shows two, 120cm resolution, multi-spectral test images (red,
green, blue and infrared bands), together with manually ex-
tracted road network masks, and the histograms of the net-
work and the background for each band. We now define two
data models: MG and MMG.

3.1 Data energy term

We assume that P(I|R,K) = P(IR|R,θR,K)P(IR̄|R̄,θR̄,K),
where IR and IR̄ are the restrictions of the image to the net-
work R and the background R̄ respectively, and θR and θR̄ are
the corresponding model parameters (which previously were
included in the generic K). We further assume that the image
values at different pixels are independent given these param-
eters. Taking negative logarithms, and using φ± = (1±φ)/2
to restrict integrations to the network or background respec-
tively, gives the following likelihood energy:

EI(φ) = −

∫

Ω
dx

{

ln(πθR
(I(x)))φ+(x)+ ln(πθR̄

(I(x)))φ−(x)

}

= −
∫

Ω
dx

φ(x)

2

{

ln(πθR
(I(x)))− ln(πθR̄

(I(x)))

}

+ k ,

where k is a φ -independent constant, which we drop.



Figure 4: Classification results for the two images in
figure 3, from left to right in each row: ML using
MG, ML using MMG, MAP using MG, and MAP using

MMG. From 3rd to 4th column and from top to bottom:
(w0, α̂ ,λC) = (2,0.7646,15), (2,0.8385,5), (2,0.8385,20),
and (2,0.6169,10).

3.2 Multivariate Gaussian model

After simple calculations, the MG model can be written as

EI(φ) =
1

4

∫

Ω
dx

{

(I(x)− µ)T Σ−1(I(x)− µ)

− (I(x)− µ̄)T Σ̄−1(I(x)− µ̄)+ ln
|Σ|

|Σ̄|

}

φ(x) ,

where µ and µ̄ are the mean vectors of the bands of IR and
IR̄ respectively; Σ and Σ̄ are the covariance matrices of IR and
IR̄ respectively. θ = (µ , µ̄ ,Σ, Σ̄) is learnt from the original
images and their masks using maximum likelihood.

3.3 Multivariate mixture of two Gaussian model

The MMG model is designed to take into account the hetero-
geneity in the appearance of the network produced by occlu-
sions. It takes the form

EI(φ) =

−
1

2

∫

Ω
dx

{

ln
2

∑
i=1

pi|2πΣi|
−1/2e−

1
2 (I(x)−µi)

T Σ−1
i (I(x)−µi))

− ln
2

∑
i=1

p̄i|2π Σ̄i|
−1/2e−

1
2 (I(x)−µ̄i)

T Σ̄−1
i (I(x)−µ̄i))

}

φ(x) .

where pi and p̄i weight the two Gaussian
components for IR and IR̄ respectively. θ =
(p1, p2, p̄1, p̄2,µ1,µ2, µ̄1, µ̄2,Σ1,Σ2, Σ̄1, Σ̄2) is learnt from the
original images and their masks using maximum likelihood
combined with the EM algorithm [2].

4. EXPERIMENTS AND DISCUSSION

The total phase field energy to minimize is E(φ) = EG(φ)+
EI(φ). We use gradient descent to seek minima [6].

4.1 MG model vs. MMG model

We compare the segmentation performance of the MG and
MMG data models. We begin by looking at the performance
of the two models using maximum likelihood classification,

Completeness
= TP /
(TP+FN)

Correctness
= TP /
(TP+FP)

Quality
= TP /
(TP+FP+FN)

ML
MG 0.7343 0.4923 0.4179
MGM 0.8152 0.3467 0.3214

MAP
MG 0.5962 0.7955 0.5170
MGM 0.5982 0.8028 0.5216

ML
MG 0.6839 0.3754 0.3199
MGM 0.7370 0.3338 0.2983

MAP
MG 0.3275 0.9405 0.3208
MGM 0.4730 0.9282 0.4563

EMM MMG 0.7591 0.5798 0.4897
EIPM MMG 0.5982 0.8028 0.5216

Table 1: Quantitative evaluations of the experiments. T, F,
P, and N correspond to true, false, positive, and negative re-
spectively.

Figure 5: Left: segmentation result using parameter values
selected from the maroon zone, (w0, α̂,λC) = (4,0.2013,5).
Right: segmentation result using parameter values leading
to an inflection point at the desired bar width, (w0, α̂,λC) =
(2,0.7646,15).

i.e. with EG set to zero. Results on the two images in figure 3
are shown in the first two columns of figure 4. In this case,
the MMG model performs worse than the MG model, since
it allows some parts of the background to be classified as
network. With the addition of the prior, however, the results
using the MMG model are better than those of the MG model
on both images, as shown in the last two columns of figure 4.
See table 1 for quantitative evaluations.

4.2 Inflection point model

We compare the segmentation performance of the previous,
energy minimum model (EMM) and the new energy inflec-
tion point model (EIPM). The first is obtained using parame-
ter values from the maroon region of the phase diagram given
by figure 2, and gives an energy per unit length as a func-
tion of width as shown in figure 1(a), while the second uses
the parameter constraints detailed in section 2.4 to create an
inflection point model, with an energy per unit length as a
function of width as shown in figure 1(b). The idea is to
avoid false positives in the background by rendering a net-
work configuration only marginally stable in the absence of
supporting image data. The results are shown in figure 5: the
false positives are indeed eliminated without creating false
negatives. See table 1 for quantitative evaluations.



4.3 Robustness of the algorithm to initial conditions

Initialization dependence of the final result, i.e. becoming
trapped in a local minimum, is a drawback of determinis-
tic descent algorithms. However, it might be hoped that with
sufficient prior knowledge built into the model, the entropy
of the probability distribution would be reduced enough to
eliminate most, if not all local minima, and thereby reduce
or remove initialization dependence. To test this, we exam-
ine the convergence of the algorithm using different initial-
izations for the phase field φ :

• to the constant value φ0 = α/λ , which corresponds to the
maximum of V , which is the threshold z, and hence to all
of Ω being boundary (the neutral initialization, NI);

• to the constant value −1, corresponding to all of Ω being
background;

• to the constant value +1, corresponding to all of Ω being
foreground;

• when values of φ are sampled independently from a uni-
form distribution on [−1,1] (UR);

• to the ML result;

• to 1− the ML result;

• to the ML result scaled linearly towards φ0.

Figure 6 shows segmentations of the two images in fig-
ure 3, each with two different parameter settings, and using
the above initializations. The converged solutions agreed to
within 0.5% pixel difference, except for the initial condition
+1 for one of the two parameter settings, where the algo-
rithm does not converge to the correct solution.

5. CONCLUSION

We have described a phase field HOAC model for road net-
work extraction from VHR satellite images of rural areas.
The contributions of this model are: the use of inflection
point parameter values, which we show both reduces the
number of free prior parameters and eliminates false posi-
tives; the use of multivariate mixture of two Gaussians mod-
els for foreground and background, which we show outper-
forms the maximum-likelihood-preferred multivariate Gaus-
sian models when coupled with our prior model; and initial-
ization independence despite the use of deterministic gradi-
ent descent, as shown by experiments.
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