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Abstract

The segmentation of networks is important in sev-
eral imaging domains, and models incorporating prior
shape knowledge are often essential for the automatic
performance of this task. Higher-order active contours
provide a way to include such knowledge, but their be-
haviour can vary significantly with parameter values:
e.g. the same energy can model networks or a ‘gas of
circles’. In this paper, we present a stability analysis
of a HOAC energy leading to the phase diagram of a
long bar. The results, which are confirmed by numerical
experiments, enable the selection of parameter values
for the modelling of network shapes using the energy.
We apply the resulting model to the problem of hydro-
graphic network extraction from VHR satellite images.

1. Introduction

Water is a critical resource, and likely to become
more so in the future. Consequently, the ability to mon-
itor water resources is of great importance. One way to
perform such monitoring is through the use of remote
sensing imagery, and in particular, very high resolution
(VHR) satellite images. Many organizations that deal
with such images are therefore interested in automatic
processing that allows water resources to be measured
and evaluated. In this paper, we focus on the segmenta-
tion of hydrographic networks from VHR satellite im-
ages. This is a difficult problem, because such networks
are frequently not distinguishable from the background
by local image measurements alone. Rather, it is the
‘shape’ of the region in the image domain occupied
by the network that distinguishes them: networks oc-
cupy regions in the image domain composed of a set of
‘arms’ that join together at junctions. There has been a

Figure 1. Gradient descent evolutions
(from left to right) for different parameter
values in the HOAC model of [5].

significant amount of work on shape modelling for seg-
mentation, but most of this work models shape by com-
paring the region sought to a reference regions or re-
gions [1, 7]. This works well for many applications, but
is not appropriate when the region sought can have an
arbitrary topology, as is the case for networks. To model
such regions, ‘higher-order active contours’ (HOACs)
were introduced [5]. Unlike the original active con-
tours [4] and their successors, this new generation of
active contours incorporates non-trivial shape informa-
tion about the region being modelled via long-range in-
teractions between region boundary points.

The HOAC prior energy defined in [5] was used to
model network-shaped regions. However, it was soon
discovered that it could be used to model other fami-
lies of regions too, notably a ‘gas of circles’ (regions
composed of an arbitrary number of approximate cir-
cles [3]), simply by varying the model parameters. Fig-
ure 1 illustrates these different behaviours. Thus, in or-
der to use the model for network segmentation, for ex-
ample, it is important to know which parameter ranges
lead to stable network regions, as opposed, for example,
to stable ‘gas of circles’ regions.

This paper addresses this issue by performing a sta-
bility analysis of the prior HOAC energy introduced



in [5].1 Ideally, the stability of an arbitrary network
shape should be analysed, but this is an extremely com-
plex problem. However, network shapes are essentially
composed of basic components: ‘arms’, which are rela-
tively long and have low curvature on the scale of their
width, and ‘junctions’. The most important type of sta-
bility concerns the arms, since without arms there can
be no network. A tractable and reasonable approxima-
tion therefore seems to be to analyse the stability of a
long, straight bar, which is the subject of this paper.

We first Taylor-expand the HOAC energy around a
long bar configuration to second order. We then im-
pose stability conditions: the first functional deriva-
tive should be zero (a long bar is an energy extremum)
and the second functional derivative should be positive
definite (the extremum is a minimum). These condi-
tions constrain the values of the parameters. The results
can be summarized in a ‘phase diagram’ illustrating the
zone in parameter space leading to stable bars.

Such stability analyses will become more important
as region models become more sophisticated, which is
inevitable if automatic solutions to segmentation prob-
lems are to be found. The interest of the calculation is
thus not limited to the current model, or even to HOAC
models in general.

In Section 2, we perform the Taylor expansion and
stability analysis. In Section 3, we confirm the results of
the stability analysis via numerical experiments; then,
adding a likelihood energy, we describe an experiment
on a satellite image. We conclude in Section 4.

2 Theory

The prior HOAC energy introduced in [5] is

EG(R) = λCL(R) + αCA(R)

−
βC

2

∫∫

dt dt′ γ̇(t) · γ̇(t′) Φ(σ(t, t′)/d) , (1)

whereR is a region in the image domain;L is region
boundary length;A is region area;γ is an embedding
representing the region boundary, parameterized byt; γ̇
is its derivative,i.e. the tangent vector field;Φ defines
the interaction between two boundary points separated
by a distanceσ(t, t′) = |γ(t)−γ(t′)|; andλC , αC , βC ,
andd are real parameters. In particular,d controls the
interaction range. The long-range interaction is respon-
sible for the prior shape information.

Our aim is to find the ranges ofαC andβC (without
loss of generality we can putλC = d = 1) for which a
long bar is stable,i.e. is a local minimum of this energy.
To begin, we Taylor expand the energy around a long
bar.

1A preliminary version of this work was published in French [2].

2.1 Taylor expansion around a long bar

The second-order Taylor expansion ofEG is
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where〈·|·〉 is a metric defined over the space of embed-
dings, andδγ is a small perturbation ofγ0. The config-
urationγ0 is stable if and only ifδEG

δγ
|γ0

= 0, i.e. if γ0

is an extremum ofEG, and the Hessian matrixδ
2EG

δγ2 |γ0

is positive definite,i.e. the extremum is a minimum.
A bar,γ0, of lengthl and widthw0, is given by

γ0,µ(tµ) =

{

x0,µ(tµ) = ±µltµ tµ ∈ [− 1
2 ,

1
2 ]

y0,µ(tµ) = ±µ
w0

2 .
(3)

The bar can be viewed as periodic inx with period l,
and has two boundary components, indicated byµ = 1
or 2. The symbol±µ = 1 if µ = 1 and−1 if µ = 2.

Perturbations of the barδγ are defined by tangen-
tial and normal changes in the boundary components:
δγµ(tµ) = (δxµ(tµ), δyµ(tµ)). Tangential changes do
not change the bar’s shape and hence do not change the
energy; we can therefore setδxµ = 0. The Hessian
matrix is diagonal in the Fourier basis of the tangent
space atγ0 [2], so it is useful to expressδγ in this basis:
δyµ(tµ) =

∑

kµ
aµ,kµ

eikµltµ , wherekµ =
2πmµ

l
for

mµ ∈ Z.
After some calculation, we find [2]
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2

∑

k

a†k e2 ak , (4)

whereak = (a∗1,k, a2,k); † and∗ indicate respectively
Hermitian and complex conjugates; and theG(w0, k)
depend onΦ. e0(w0) is the energy per unit length of a
long bar of widthw0, while e1(w0) = ∂e0(w0)/∂w0 is
the change in energy due to a change in width (to first
order, non-zero Fourier frequencies do not contribute).
e2(w0, k) is, for each frequencyk, a symmetric2 × 2
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Figure 2. Top: left, example of a+; right,
example of a−. Bottom: left, bar energy
against w0, with minimum at w∗

0 = 1.2;
right, λ+ (blue) and λ− (red) against fre-
quency. Parameters: αC = 0.8, βC = 0.53.
Note λ± > 0 ∀k.

matrix whose diagonal and off-diagonal terms,e20 and
e21, express the self-energy of perturbations of one side,
and the interaction between perturbations of opposite
sides of the bar respectively.

2.2 Stability analysis of a long bar

The condition thatδEG/δγ = 0, i.e. that e1 = 0,
determinesβC in terms ofαC andw0:

βC(αC , w0) =
αC

G10(w0)
. (5)

The condition that the Hessian be positive definite,i.e.
that the eigenvalues ofe2 be strictly positive for all fre-
quencies, allows us to find lower and upper bounds on
αC [2]. The eigenvectors ofe2 arev± = (1,±1), with
eigenvaluesλ±,k = e20(k)±e21(k) respectively. Equa-
tion (4) can be written in terms ofλ±:

e
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G = e0+e1(a1,0−a2,0)+
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+
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−
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wherea±k = a1,k ± a∗2,k. These eigenmodes are illus-
trated in Figure 2:a+ describes in-phase perturbations
of the two sides, whilea− describes out-of-phase per-
turbations. For low frequencies, the former cost less
energy, as locally the sides of the shape are still paral-
lel. For higher frequencies, the difference is negligible.
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Figure 3. Phase diagram: zone in the
(α, β) plane allowing a stable bar. Blue:
e
(2)
G > 0; yellow: e

(2)
G < 0.

A minimum in the energy exists only forw0 ∈
(0.88, 2) due to the form ofΦ [2]. Using equation (5),
we can plotβC againstαC for w0 ∈ (0.88, 2), between
the upper and lower bounds onαC . The result is a 2D
zone in the(α, β) plane, illustrated in Figure 3, in which
the parameter values permit a stable bar. Since the total
energy isE(2)

G (γ) = le
(2)
G (γ), the behaviour of a long

bar depends on the sign ofe(2)G (γ). If e(2)G > 0, the bar
will shorten and either form a stable circle or disappear.
If e

(2)
G < 0, the bar will elongate, without limit if the

domain is unbounded. The blue and yellow zones in
Figure 3 correspond toe(2)G > 0 ande(2)G < 0 respec-
tively. Below the coloured zone, the dominant instabil-
ity is change inw0: in gradient descent, the bar should
get thinner and disappear. Above the coloured zone, the
dominant instability is at non-zero frequencies: the bar
should develop oscillations and break up. These results
will be confirmed numerically in Section 3.1.

3 Experiment

We first present gradient descent evolution experi-
ments usingEG (notE(2)

G ) to confirm the results of the
analysis in Section 2. We then add a likelihood term,
and test the energy on a real image.

3.1 Geometric evolution

Figure 4 shows five gradient descent evolutions
starting from a long bar. The parameter values
for the rows of Figure 4 were(w0, αC , βC , d)
= (0, 0.052, 0.02, 10), (10, 0.067, 0.053, 7.75),
(30, 8.48, 6.28, 23.8), (20, 8.02, 6.56, 15.26), and
(25, 0.319, 2.4, 11.36). The following points corre-
spond to these rows: 1) parameters chosen from below



Figure 4. Gradient descent evolutions
starting from a bar for parameter values
from different zones in figure 3.

the coloured zone; the bar is unstable to changes in its
width, and so it thins and disappears; 2) parameters
chosen from the blue zone; the bar is stable, but has
positive energy per unit length, so it shortens and
disappears; 3) parameters again chosen from the blue
zone; the bar shortens, but rather than disappear, it
evolves to a stable circle [3]; 4) parameters chosen
from the yellow zone; the bar has negative energy per
unit length, so it elongates, and then buckles due to the
finite size of the domain; 5) parameters chosen from
above the coloured zone; the bar is unstable to non-zero
frequencies, so it develops oscillations and then breaks
up; note that the oscillations are in-phase, since these
cost less energy and are therefore the first to become
unstable; their frequency corresponds quantitatively
with the prediction of the stability analysis.

3.2 Results on images

In this Section, we show the results of river net-
work extraction from a piece of a four-band colour in-
frared Quickbird image (60cm resolution) usingEG.
We add toEG a likelihood termEI(I, R) consisting
of multivariate Gaussian models of the image in the
region interior and exterior, with parameters learned
by example. For implementation, we use the implicit
‘phase field’ framework [6]. This simplifies and speeds
up the algorithm. We select HOAC parameter values
from the phase diagram and then compute the corre-
sponding phase field parameters [6]. Figure 5 shows
a segmentation result. The parameter values were
(w0, d, λC , αC , βC) = (5, 5.67, 80, 16.91, 8.77).

4 Conclusion

We have calculated the phase diagram of a bar under
a higher-order active contour energy via a stability anal-
ysis, and we have confirmed the relevance of the analy-
sis via experiments. Aside from its intrinsic interest, the
calculation enables the determination of model param-
eter values for hydrographic network extraction from

Figure 5. Image c©Spot Image; result.

VHR remote sensing images. This leads to the suc-
cessful extraction of hydrographic networks, although
further work remains to be done on closing gaps.
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