
What Scope Is There for Adopting Evidence-Informed Teaching in SE?

David Budgen & Sarah Drummond
School of Engineering & Computing Sciences

Durham University
Durham DH1 3LE, U.K.

{david.budgen;sarah.drummond}@durham.ac.uk

Pearl Brereton & Nikki Holland
School of Computing & Maths

Keele University
Staffordshire ST5 5BG, U.K.

{o.p.brereton;n.k.holland}@cs.keele.ac.uk

Abstract—Context: In teaching about software engineering
we currently make little use of any empirical knowledge. Aim:
To examine the outcomes available from the use of Evidence-
Based Software Engineering (EBSE) practices, so as to identify
where these can provide support for, and inform, teaching activ-
ities. Method: We have examined all known secondary studies
published up to the end of 2009, together with those published
in major journals to mid-2011, and identified where these
provide practical results that are relevant to student needs.
Results: Starting with 145 candidate systematic literature
reviews (SLRs), we were able to identify and classify potentially
useful teaching material from 43 of them. Conclusions: EBSE
can potentially lend authority to our teaching, although the
coverage of key topics is uneven. Additionally, mapping studies
can provide support for research-led teaching.

Keywords-empirical; education; evidence-based

I. INTRODUCTION

During a history that now spans more than 40 years, the
teaching of software engineering has been largely structured
around descriptions and models of procedures (methods) and
technical products. To some extent, that emphasis reflects
our research culture. As Glass et al. have observed from
their study of the research literature, software engineer-
ing research is dominated by the use of descriptive and
formulative approaches, with a much lower proportion of
evaluative studies [1]. Methodologically, our research is also
overwhelmingly based upon the use of concept analysis
and concept implementation as research methods. Where
‘real’ data is employed (for example, in the formulation
of COCOMO), the details of this are often abstracted out
when presented to the user (student). Our textbooks like-
wise present largely descriptive formulations for (mostly
idealised) models of the topics that characterise software
engineering.

Since it is unrealistic to expect that any teacher should
have extensive experience of all aspects of software en-
gineering, one question this leaves is how both teachers
and students can be informed about what actually works
in practice, and under what conditions? Indeed, even where
a teacher may have experience related to particular topics
(e.g. testing), they may not have any means of knowing how
representative their experience and knowledge actually is.

The models we use in teaching are largely derived from
expert knowledge, and while we have argued elsewhere that
software engineering practices are excessively dependent
upon expert judgement [2], we do also recognise that there
are good reasons for using this in teaching. In particular:

• the very wide range of software applications often
makes it difficult to identify ‘representative’ examples
of the use of a method or technique;

• the (possibly excessive) concern of companies about
proprietary information makes it difficult for the teacher
to obtain unbiased exemplars from real life;

• empirical research in software engineering has only
recently begun to make a significant impact, and even
now, empirical data about major topics may be hard to
find or non-existent—and in addition, what is available
may be difficult to interpret in a teaching context.

However, while these still remain true, in the case of the third
point, there is one development that is likely to influence
the way that we teach our subject. The emergence of the
evidence-based paradigm has significantly changed the way
that clinical medicine is taught and practised. Its adoption
(and adaptation) for use in software engineering through
Evidence-Based Software Engineering (EBSE) [3], [4] has
potential to make an impact upon our own teaching too.

The core objective of EBSE (and of evidence-based stud-
ies in general) is to find all relevant data related to a topic in a
systematic, unbiased and objective manner, to aggregate this
data, and then to combine it with experience and context to
provide the best possible evidence about the given topic. We
describe some further details about EBSE and its practices in
the next section, for the moment, this description is sufficient
for us to identify our research question as being:

“What is available to enable evidence-informed
teaching for software engineering?”

Note that we have preferred to use the term ‘evidence-
informed’ rather than ‘evidence-based’ here, as we recognise
that the range of factors involved in empirical software engi-
neering make it difficult, if not impossible, to provide strong
and authoritative evidence on most topics, and also that the
use of evidence is likely to be context-specific. Underpinning
this question there is also, of course, the assumption that



providing them with evidence will create a better and more
satisfying experience for our students, and also prepare them
more effectively for their future careers, whatever form
these might take. For the moment this has to remain an
assumption, since we lack suitable longitudinal studies that
would allow a more objective assessment. However, given
its impact elsewhere, not least in the teaching of evidence-
based medicine (EBM) [5], it is not unreasonable to expect
that the impact of EBSE is likely to be beneficial, even if at
present we cannot effectively estimate the extent of this.

To address our research question we examine the nature
of EBSE and the extent of its adoption by the empirical
research community over the past eight years. We describe
the research method underpinning our paper; present the
outcomes; and then interpret these outcomes in the light
of our own experiences as teachers. Finally, we return to
consider our original research question.

II. EVIDENCE-BASED SOFTWARE ENGINEERING

In interpreting the evidence-based paradigm for the soft-
ware engineering domain, Kitchenham et al. defined the goal
of evidence-based software engineering (EBSE) as being:

To provide the means by which current best evi-
dence from research can be integrated with prac-
tical experience and human values in the decision
making process regarding the development and
maintenance of software. [3]

This section examines the procedures for doing this, identi-
fies some limitations upon their effectiveness, and describes
current progress with realising EBSE.

A. The EBSE Process

Drawing upon the experiences from other domains that
have adopted the evidence-based paradigm for research, in-
cluding clinical medicine, education, and various healthcare
specialisations, the same group of researchers identified the
following five-step process for EBSE [6].

1) Convert a relevant problem or information need into
an answerable question.

2) Search the literature for the best available evidence to
answer the question.

3) Critically appraise the evidence for its validity, impact
and applicability.

4) Integrate the appraised evidence with practical experi-
ence and the values and circumstances of the customer
to make decisions about practice.

5) Evaluate software development performance and seek
ways to improve it.

The first three steps in this sequence of activities are encap-
sulated in the procedures used for a Systematic Literature
Review (SLR), which has been widely adopted as the main
tool for evidence-based research across many disciplines,
including education and social sciences [7]. Recommenda-
tions for conducting an SLR in the context of software

engineering have subsequently been incorporated into the
Guidelines document, updated in 2007 [4]1.

What particularly distinguishes a systematic review from
a conventional (expert) review is the use of a defined
methodology that ensures that the review is both fair and
objective, and that it can also be seen to be so. In particular,
the conduct of a systematic review should be:

• Open in that all the procedures are defined beforehand
in the research protocol and reported with the findings.

• Unbiased in that as far as possible, all relevant studies
are included and fairly aggregated by the most appro-
priate forms.

• Repeatable by other researchers (although we should
note that the changes that occur in digital libraries
from time to time might mean that searches are not
completely repeatable).

Of course, one consequence of taking such a thoroughly
systematic approach is that conducting an SLR may be time-
consuming. However, evidence-based researchers generally
consider this to be a worth-while price to pay in order to
ensure much greater rigour for their research procedures.

B. Some Limitations of EBSE

While conceptually at least, EBSE has a sound scientific
basis and the potential to deliver rigorous, unbiased appraisal
of software engineering processes and products, we need
to recognise that there are several factors that limit this
potential. These include:

• The role of the participant in empirical studies (and
especially experiments). Since this role usually involves
performing skill-based tasks, it is impossible to apply
techniques such as double-blinding (of participants and
experimenters), considered essential for medical trials.

• The extensive use of laboratory experiments and quasi-
experiments in SE, rather than field trials. Many also
use students as participants—so taken together, deter-
mining how far the resulting outcomes can be gener-
alised can be a difficult issue, as can their aggregation.

• For medicine, the outcomes (evidence) from an SLR
is information that is clearly intended for use by clini-
cians, who will use this to aid diagnosis and treatment.
For education, it is usually the policy-makers at national
or possibly regional levels who are the end users. The
end users for EBSE may be a much more varied group,
since in a software engineering context, decisions about
practice may be made at many different levels.

• More pragmatically, the digital libraries available for
software engineering researchers do not provide par-
ticularly good (or consistent) searching facilities when
seeking papers on a particular topic. In particular,
they tend to have quite different interface structures,
making it necessary to translate the chosen search

1This is available from www.ebse.org.uk.



strings for use with each engine, inevitably adding to
the researcher’s work.

There are also related issues about the quality and quantity
of many of the ‘primary’ empirical studies used as inputs to
secondary studies such as SLRs. Our own early experiences
with some of these issues are described in [8].

C. Recent Progress with EBSE

Researchers such as Basili have performed pioneering
work in generating recognition of the need for empirical
software engineering [9], [10]. There are now established
specialised conferences (such as Empirical Software Engi-
neering & Metrics (ESEM) and Evaluation & Assessment in
Software Engineering (EASE)) as well as a dedicated journal
(Empirical Software Engineering). However, methodological
issues such as research practice and reporting standards
remain active topics for research [11], [12], [13], [14].

In terms of EBSE itself, there has been considerable
activity (mainly in Europe). This is demonstrated by three
‘tertiary studies’ of published SLRs [15], [16], [17], and in
the rest of this paper, we will refer to these as TS1, TS2 and
TS3 respectively. Two other relevant developments are:

• The provision of a separate section for systematic
literature reviews in the journal Information & Software
Technology, recognising both that this type of study
may need to be treated a little differently from the
standard journal paper, and also the need to build up
an evidence-based body of knowledge.

• The creation of a web site2, supported by our own
research projects, intended to act as an international
resource for planning and reporting evidence-based
studies (and also primary studies to some degree).

Around 150 SLRs have been published in the period between
2004 and mid-2011, representing a very rapid expansion of
interest in EBSE. There is now a need to draw the outcomes
from these together in forms that are appropriate to the needs
of different communities: researchers; developers; educators;
students; and policy-makers.

D. Background Knowledge Needed by Students

If students are to be presented with evidence that has been
derived from empirical studies and synthesised through the
use of an SLR, then in order for them to be able to make
some assessment of its value and significance, they require
at least a basic understanding of the relevant processes.
Empirical studies are complex, hence a key question is how
much of that complexity needs to be understood by a student,
and in what detail. Drawing upon our own experience,
and upon model curricula such as the IEEE/ACM SE2004
curriculum guidelines3, we list our ‘expert’ assessment of the
material that is needed in Table I, and suggest the minimum

2www.ebse.org.uk
3sites.computer.org/ccse

Table I
SUGGESTED ELEMENTS FOR STUDENT SKILL-SET

Skill Element Description Hours
Measurement
Theory

Basic measurement scales and their
use in SE. Internal and external mea-
sures. Combining different measure-
ments. Precision and Error.

1

Statistics Mainly conceptual issues about distri-
butions and measures such as mean,
median and mode (and their use in
SE). Many SLRs present box plots and
teaching about these provides a useful
illustration of many statistical ideas.

2

The Nature of
Evidence

Forms of evidence, weighting of evi-
dence, probability and expectation

1

Experimental
Practice

Outline knowledge about different em-
pirical forms, confounding factors and
threats to validity. Effects of these
upon outcomes of experimental studies

2

time that needs to be allocated to each topic—noting that
little of this is currently addressed within SE2004. The
emphasis in this is very much upon concepts, as we see
this material as being foundational, with more detail being
taught in advanced courses if appropriate.

III. METHOD

In order to answer our research question we have per-
formed a structured analysis of the majority of the SLRs
that have been published up to mid-2011, to identify how far
these provide material that could be used to support teaching,
and what aspects of the curriculum this addresses. In the rest
of this section we describe how this was organised.

Not all published SLRs are directly relevant to education.
Some are concerned with research trends, and others are in
the form of mapping studies (also termed ‘scoping reviews’),
concerned largely with identifying the profile of primary
studies addressing a given topic, with the aim of being able
to recognise the ‘gaps’ where more studies are needed and
the ‘clusters’ where a fuller SLR could be performed. The
aim of our analysis process was to eliminate these from
consideration, and to concentrate on SLRs that aggregate
and report results for software engineering topics.

The following subsections are taken from the research
protocol that we produced in order to analyse the data
available to us from the published SLRs.

1) Search Strategy: For the period up to end 2009, we
used the SLRs identified in the three tertiary studies (TS1–
TS3). Since all three used rigorous and exhaustive searches,
this should represent almost all studies published over that
period. For the period from start of 2010 to mid-2011, we
used a list generated by reading the index pages of five
major software engineering journals (Empirical Software
Engineering, IEEE Transactions on Software Engineering,
Software Practice & Experience, Information & Software
Technology, Journal of Systems & Software). While less
exhaustive, the availability of the special journal section



mentioned above should ensure that this covers a substantial
proportion of the studies published in this period. We also
included one paper missed by the tertiary studies.

2) Inclusion/Exclusion Criteria: We excluded:
• SLRs that addressed research trends
• Mapping studies with no analysis of collected data
• SLRs on topics that were not deemed to be relevant to

teaching (based on the content of four major textbooks)
Our inclusion criterion was that the SLR covered a topic ad-
dressed in the IEEE/ACM curriculum guidelines (SE2004).

3) Data Extraction: We sought information about:
• Any recommendations for practice that are relevant to

how we teach about it, produced by the original authors.
• Any similar recommendations that we felt were justified

by the outcomes (not all authors of SLRs provide
explicit recommendations).

• Where the topic of the SLR was positioned against the
categories used for the SEEK (Software Engineering
Education Knowledge) from SE2004.

4) Organisation: The tasks of inclusion/exclusion and
data extraction were undertaken by all four authors, working
as pairs, using different pairings to reduce possible bias.

IV. RESULTS

We first describe the process of conducting the analysis,
together with any divergences from our plan, and then
present the outcomes.

A. Process of Inclusion/Exclusion and Data Extraction

Our search process identified 145 candidate SLRs, cov-
ering the period from 2004 to mid-2011. In two cases, two
of the papers were identified as using the same data set,
reducing the effective number to 143.

For the inclusion/exclusion process, the papers were as-
signed randomly to pairs of reviewers drawn from the four
authors. Each paper was reviewed to determine whether
or not it met our inclusion criteria (i.e. contained usable
material or guidelines and addressed a relevant topic). Where
two reviewers had different opinions they discussed these in
order to come to a shared position (33 were discussed).

For data extraction from the 48 papers that remained,
we used a ‘extractor-checker’ model. Each paper was as-
signed to one person (usually someone who had reviewed it
for inclusion/exclusion) who extracted the core information
about the study, and then this was checked by a second per-
son. Again, any differences of interpretation were resolved
between them. We prototyped our data extraction template
on one of the papers, and then used it for all papers. Our
template required us to extract:

1) Paper number
2) Name of first author
3) Brief description of the review topic
4) Suggested assignment to a SEEK Knowledge Area

(KA) and Knowledge Unit (KU)

Table II
PAPERS INCLUDED FROM EACH SOURCE

No of papers included . . .
Source Initial After inclusion/exclusion After data extraction
TS1 20 8 8
TS2 32 10 9
TS3 66 19 17
Journals 24 10 8
Other 1 1 1
Totals 143 48 43

5) Summary of what the authors were seeking to obtain
from the outcomes

6) Summary of what might be useful for teaching
7) Identification of any explicit guidelines provided

The process of reading the papers in more detail led to five
(5) additional exclusions. Table II summarises the outcomes
from these two stages.

B. The Outcomes

Tables III to X provide more detail about the contents
of the papers themselves as well as their relationship to
the major SEEK headings (knowledge areas and knowledge
units). Space constraints preclude our being able to provide
this in much detail, and we have used the paper identifier
from the first three tertiary studies to limit the total number
of direct references. As a result, only the papers from the
journals in the period 2010-11 are referenced directly.

V. DISCUSSION

We first consider the main threats to validity arising from
our approach, and then examine how far we can currently
identify useful and authoritative support for teaching.

A. Threats to Validity

Since much of our study is interpretive in nature, this issue
needs to be considered with care.

• Internal validity: is mainly concerned with how well
we performed the study, and to what extent any bias
might arise from this process. We suggest that there
are two key factors here. The first was the way that we
selected studies for inclusion. We are all experienced
teachers of SE, and we followed a well-defined process
that ensured that each paper was assessed by at least
two of us. On that basis we would argue that we are
unlikely to have omitted any material of significance.
The second factor is that of categorising the papers
against the SEEK, and determining what guidelines
they provide for a given SEEK topic. While categorisa-
tion was relatively straightforward for most papers, the
extraction of guidelines was certainly not so, and even
though we followed a well-defined process, there could
still be some element of error in our interpretation of
the results for any given SLR. (It was often difficult to
decide upon the most suitable KU from the SEEK.)



Table III
CATEGORISATION OF AVAILABLE EVIDENCE FOR PROFESSIONAL PRACTICE (PRF)

SEEK KA.KU Title Paper Evidence/Guidelines provided
PRF.psy Group dynamics/psychology TS2-25 Topic: Challenges faced by teams in collaborative creation of graph-

ical models for systems. Results: Major challenges/trade-offs are:
involving stakeholders can improve correctness, buy-in and complete-
ness, but lead to conflict; including a skilled modeller can improve
quality but reduce stakeholder acceptance; providing an initial model
can speed up the process but cause detachment; producing sub-models
in parallel can lead to problems with integration.

PRF.com Communications skills
PRF.pr Professionalism [18] Topic: Reasons why IT professionals change their jobs. Results:

Provides recommendations on how to retain staff and also which
groups of staff are more likely to remain in a job for a long time.

• External validity: this can be interpreted as being
concerned with how widely the results are likely to
be useful for SE teaching in general. Inevitably our
interpretation has largely been made in the context of
the UK’s education structures. So, although the SEEK
is intended to be relatively independent of culture or
context, we cannot easily demonstrate that our conclu-
sions are equally valid in all educational frameworks.

B. The Evidence and Guidelines

Tables III to X demonstrate that material to support
teaching is available for all of the major topics (Knowledge
Areas), although it is not particularly evenly spread and its
main role is likely to be to augment and interpret more
‘classical’ textbook material. Many of the outcomes are
inconclusive—probably reflecting the breadth and variety
of the subject matter as much as any empirical limitations.
Indeed, the absence of clear-cut results is itself an important
pedagogical element—countering the situation where the use
of relatively simplified models can give the impression to the
student of greater certainty than is actually the case.

From a teaching perspective, the relatively large propor-
tion of studies listed under Software Quality and Software
Management can be considered valuable, since these are
topics where it is particularly valuable to be able to draw
upon wider experiences.

Perhaps the most disappointing aspect is that few of the
SLRs really provide clear guidelines or interpretation of
what they found. Authors of SLRs are apt to be critical
of the reporting found in the primary studies they seek to
aggregate, but we might suggest that a little of the medicine
often suggested for others (better reporting standards) might
also be taken by systematic reviewers!

C. The Gaps

For some Knowledge Units the lack of SLRs is hardly
surprising (particularly those labelled as ‘fundamentals’ or
‘foundations’). Allowing for this, the most significant gap is
in the table for Software Design. Even allowing that design
is a challenging topic for empirical studies (although not

necessarily for case studies), its central importance for any
engineering discipline should make this an area of concern
for both teachers and for the empirical community.

Perhaps inevitably, the available SLRs and primary studies
also tend to focus on aspects of a Knowledge Area that
researchers consider to be topical—such as agile methods,
global software development, software product lines etc.
However, here the needs of teachers and researchers tend to
diverge—since teachers need evidence that will consolidate
our knowledge about ‘core’ topics (object-orientation, test-
ing, design techniques,. . . ). Perhaps not surprisingly, these
are less likely to have been scrutinised by empirical studies.

D. The SEEK as Our Framework
At a time when the SE2004 curriculum guidelines, for

which the SEEK plays a central part, have been under
review, it seems useful to identify where we found it difficult
to categorise studies during data extraction (regardless of
whether or not these were finally included). Some examples
of topics which do not seem to have a clear ‘home’ in the
current version of the SEEK include:

• Reuse other than of code, especially in design (DES)
• Open Source Software (OSS), both in terms of effect

upon design (DES) and management (MGT)
• Software Product Lines (DES)
• Global software development (MGT)
• Personnel issues such as motivation (MGT)

E. The Role of Mapping Studies
While we excluded mapping studies from this analysis,

which is primarily concerned with teaching about core
software engineering concepts, we should observe that from
our own experiences, these do potentially have some roles
to play in teaching, and particularly for more advanced
research-led forms of teaching about software engineering.
Examples of some of these roles include:

• Providing the teacher with an overview of current
research on a given topic.

• Forming the basis for comparative (and other) studies
of topics by students, who can use the mapping study
to identify papers that address specific issues.



Table IV
CATEGORISATION OF AVAILABLE EVIDENCE FOR SOFTWARE MODELING & ANALYSIS (MAA)

SEEK KA.KU Title Paper Evidence/Guidelines provided
MAA.md Modeling foundations
MAA.tm Types of models TS2-17 Topic: Should cross-company or within-company data be used

to build and apply management models. Results: Local (within-
company) models are considered preferable, but results were tentative.

TS2-22 Topic: Industry experience with using model-driven engineering
(MDE). Results: Although widely used, “MDE is far from mature”
with regard to key elements such as support tools. There is some
evidence for productivity gains, but mainly from small-scale studies.

[19] Topic: Whether the TAM (Technology Acceptance Model) is a
good predictor of actual use of a technology. Results: Behavioural
intention to use (BI) is the best predictor, and all TAM variables are
worse predictors of objective usage than subjective usage.

MAA.af Analysis fundamentals [20] Topic: How tools can be used to manage the inter-related artefacts
that need to be managed for domain analysis. Results: Discusses
domain analysis issues and identifies the scope of existing tools,
which tend to address specific processes rather than complete needs.

MAA.rfd Requirements fundamentals
MAA.er Eliciting requirements TS3-SE49 Topic: Challenges that face RE because of increasing use of global

software development (GSD) and where the risks differ from co-
located RE and development. Results: Identifies how GSD changes
the elicitation process and provide examples of the risk categories.

[21] Topic: Investigates elicitation methods and their effectiveness. Re-
sults: Provides 5 guidelines: interviews are as good as or more effec-
tive than introspective techniques and sorting techniques; interviews
produce more complete information than introspective techniques,
sorting or laddering; unstructured interviews are less efficient than
sorting techniques and laddering but as efficient as introspective
techniques; introspective techniques are the worst of all techniques
tested; and laddering is preferable to sorting.

MAA.rsd Requirements specification & docu-
mentation

TS3-SE55 Topic: The use of software engineering models as a starting point for
creating textual requirements specifications. Results: Use of literature
modelling enables better links to be seen between SE models and
requirements specifications. Their use helps to ensure that all factors
have been considered at the requirements stage.

MAA.rv Requirements validation

• Forming the start point for an extended systematic
literature review, whereby a student can extend the SLR
using the same search strings, in order to identify how
a topic has developed.

One illustration is the study of the UML described in [27].
As a mapping study, it offers a range of opportunities for
more advanced teaching and study on a topic that will be
reasonably familiar to students. Another good example is the
study of agile methods reported in [28].

VI. CONCLUSIONS

Our analysis of the available SLRs indicates a strong
emphasis upon studying research trends and patterns (map-
ping studies), which is perhaps to be expected at a time
when the use of the evidence-based paradigm for SE has
been developing. However, as we have observed, many can
usefully contribute to more advanced research-led teaching.

When it comes to the models and frameworks that un-
derpin much of core software engineering teaching, and
especially software design, coverage is at best rather patchy.
In part this reflects a lack of primary studies addressing these
issues (perhaps because no-one has thought it necessary), but

there is also a dearth of secondary studies in a number of
core areas. That said however, there is much material that
can be used, especially in areas such as QUA and MGT
where ‘front-line’ data is likely to be particularly useful to
the teacher. If some of this is inconclusive, this is perhaps
more realistic than the ‘certainties’ that can easily be implied
when we present students with ‘textbook’ models that we
know are abstractions and simplifications.

Regarding what is available—from the results provided
in our tables we can clearly see that while the coverage of
the major SEEK headings is uneven, there is a variety of
valuable material emerging that also relates to the way that
software engineering itself is evolving. By cataloguing this,
our paper provides a useful first contribution to the develop-
ment of evidence-informed teaching in software engineering.
This ‘map’ may also be of use to practitioners too of course,
and might usefully be employed by researchers to identify
where new studies might contribute by addressing some of
the more obvious omissions in its coverage.

Finally, we would also encourage those reporting sec-
ondary studies to provide reasoned interpretations of their
outcomes for use by teachers and practitioners.



Table V
CATEGORISATION OF AVAILABLE EVIDENCE FOR SOFTWARE DESIGN (DES)

SEEK KA.KU Title Paper Evidence/Guidelines provided
DES.con Design concepts
DES.str Design strategies [22] Topic: Identifying strengths and weaknesses of aspect-oriented pro-

gramming, compared to other approaches. Results: Identified a range
of generally positive effects, particularly for performance, memory
consumption, modularity etc. Some studies report negative effects
and many included studies were rated as ‘poor’ for the credibility of
any evidence provided.

DES.ar Architectural design
DES.hci Human-computer interface design
DES.dd Detailed design
DES.ste Design support tools & evaluation

Table VI
CATEGORISATION OF AVAILABLE EVIDENCE FOR SOFTWARE V & V(VAV)

SEEK KA.KU Title Paper Evidence/Guidelines provided
VAV.fnd V&V terminology & foundations
VAV.rev Reviews TS1-S15 Topic: Use of capture-recapture to estimate the number of faults

not found by an inspection. Results: The review found that this can
extend the rigour of the inspection process by providing a ‘control’,
identified the best estimator model to use, and described how it can
be employed.

[23] Topic: Identify progress with software inspection research. Results:
Profiles what is known about inspections, based on 153 articles from
both technical and management aspects.

VAV.tst Testing TS1-S10 Topic: Assist with selection of unit testing techniques. Results:
Creates a framework and recommendations for test-case generation,
test set evaluation and test case selection.

TS3-SE08 Topic: Forms of automated acceptance testing, with particular focus
upon its use in agile development. Results: Discusses eight effects
and the benefits of writing these in terms of making developers reflect
on design and system behaviour.

TS3-SE18 Topic: Use of meta-heuristic search techniques to generate software
tests that address non-functional properties. Results: Mostly used
for execution-time testing, and violation of timing constraints in
particular. Other properties addressed include quality of service,
safety, security and usability.

TS3-SE35 Topic: Techniques for performing regression test selection. Results:
Shows evolution and groupings/classification of techniques. No one
technique is superior to others although the information provided may
make it possible to identify the most applicable techniques for a given
situation. Most techniques are not evaluated sufficiently well to enable
a user to make decisions about use.

VAV.hct Human-computer UI testing & evaluation
VAV.par Problem analysis & reporting TS1-S17 Topic: Investigates techniques that can be used for defect detection at

different stages of software development. Results: For requirements,
inspection is clearly better than testing; for design, inspections are
more effective and efficient than testing; for code there is no clear
answer as to which is better.

ACKNOWLEDGMENT

The authors would like to thank Barbara Kitchenham,
both for her major contribution to the concept and realisation
of EBSE, and also for many valuable discussions.

REFERENCES

[1] R. Glass, V. Ramesh, and I. Vessey, “An Analysis of Research
in Computing Disciplines,” Communications of the ACM,
vol. 47, pp. 89–94, Jun. 2004.

[2] B. Kitchenham, D. Budgen, P. Brereton, M. Turner, S. Char-
ters, and S. Linkman, “Large-Scale Software Engineering
Questions–Expert Opinion or Empirical Evidence?” IET Soft-
ware, vol. 1, no. 5, pp. 161–171, 2007.

[3] B. Kitchenham, T. Dybå, and M. Jørgensen, “Evidence-based
software engineering,” in Proceedings of ICSE 2004. IEEE
Computer Society Press, 2004, pp. 273–281.

[4] B. Kitchenham and S. Charters, “Guidelines for perform-
ing Systematic Literature Reviews in Software Engineering,”
Keele University and Durham University Joint Report, Tech.
Rep. EBSE 2007-001, 2007.



Table VII
CATEGORISATION OF AVAILABLE EVIDENCE FOR SOFTWARE EVOLUTION (EVO)

SEEK KA.KU Title Paper Evidence/Guidelines provided
EVO.pro Evolution processes
EVO.ac Evolution activities TS3-SE39 Topic: Determining whether duplication of code affects changeability

of systems. Results It was not possible to demonstrate or reject
the existence of any direct link between duplication of code and
changeability. Identifies the extent of the evidence for different
relationships as well as the lack of evidence about the effectiveness
of mitigation strategies.

[24] Topic: To identify the architectural characteristics that link changes
in software to the resulting effects in a system. Results: Creates
a software architecture change characterisation scheme (SACCS)
mapping high-level changes to lower-level characteristics, together
with an assessment of likely impact. SACCS provides a tool for
assessing the potential effects of proposed changes to a system.

Table VIII
CATEGORISATION OF AVAILABLE EVIDENCE FOR SOFTWARE PROCESS (PRO)

SEEK KA.KU Title Paper Evidence/Guidelines provided
PRO.con Process concepts
PRO.imp Process implementation TS2-19 Topic: Tailoring of the Rational Unified Process (RUP) to meet the

needs of individual development organisations. Results: The 5 studies
available indicate that the RUP is “too complex to be used without
any tailoring” but that doing so requires detailed knowledge of the
RUP. They conclude that the RUP is too complex and that more agile
approaches are needed.

TS2-20 Topic: Quality, productivity and economic benefits of software reuse.
Results: Reuse has a positive and significant effect upon software
quality and productivity.

TS3-SE37 Topic: Effectiveness of pair programming. Results: There is a high
level of variance between studies, but two key conclusions are to
employ PP either when task complexity is low and time is important,
or when task complexity is high and correctness is important.

TS3-SE40 Topic: Use of Scrum in global software development (GSD) projects.
Results: Scrum practices may be constrained by GSD contextual
factors affecting communication, coordination and collaboration.

TS3-SE43 Topic: Challenges facing distributed software development teams
and strategies for addressing them. Results: Identifies and classifies
processes with a strong focus on organisational issues and presents a
set of success factors. Note: This paper is orthogonal to the SEEK
model and spans several KAs.

[5] A. Coomarasamy and K. S. Khan, “What is the evidence that
postgraduate teaching in evidence-based medicine changes
anything? A systematic review,” British Medical Journal, vol.
329, pp. 1017–1021, Oct. 2004.

[6] T. Dybå, B. Kitchenham, and M. Jørgensen, “Evidence-
based software engineering for practitioners,” IEEE Software,
vol. 22, no. 1, pp. 58–65, 2005.

[7] M. Petticrew and H. Roberts, Systematic Reviews in the Social
Sciences: A Practical Guide. Blackwell Publishing, 2006.

[8] O. Brereton, B. Kitchenham, D. Budgen, M. Turner, and
M. Khalil, “Lessons from applying the Systematic Literature
Review process within the Software Engineering domain,”
Journal of Systems & Software, vol. 80, no. 4, pp. 571–583,
2007.

[9] V. Basili and R. Reiter, “A controlled experiment quantita-
tively comparing software development approaches,” IEEE
Transactions on Software Engineering, vol. 7, no. 3, pp. 299–
320, 1981.

[10] S. Vegas, N. Juristo, and V. Basili, “Maturing software
engineering knowledge through classifications: A case study
on unit testing techniques,” IEEE Transactions on Software
Engineering, vol. 35, no. 4, pp. 551–565, 2009.

[11] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones,
D. Hoaglin, K. E. Emam, and J.Rosenberg, “Preliminary
Guidelines for Empirical Research in Software Engineering,”
IEEE Transactions on Software Engineering, vol. 28, pp. 721–
734, 2002.

[12] A. Jedlitschka, M. Ciolkowski, and D. Pfahl, “Reporting
experiments in software engineering,” in Guide to Advanced
Empirical Software Engineering, F. Shull, J. Singer, and
D. Sjøberg, Eds. London: Springer-Verlag, 2008, ch. 8.

[13] D. Budgen, B. A. Kitchenham, S. Charters, M. Turner, P. Br-
ereton, and S. Linkman, “Presenting software engineering
results using structured abstracts: A randomised experiment,”
Empirical Software Engineering, vol. 13, no. 4, pp. 435–468,
2008.



Table IX
CATEGORISATION OF AVAILABLE EVIDENCE FOR SOFTWARE QUALITY (QUA)

SEEK KA.KU Title Paper Evidence/Guidelines provided
QUA.cc Software quality concepts & culture
QUA.std Software quality standards
QUA.pro Software quality processes TS1-S3 Topic: To identify the value for an organisation in investing in a CMM

program for software process improvement. Results: Provides median
and range values for improvement across seven common performance
metrics and the authors argue that CMM programs can therefore lead
to improved software development and maintenance.

TS2-47 Topic: Use of software process improvement (SPI) in small organisa-
tions. Results: Identifies some success factors and reasons why small
organisations have difficulty coping with the requirements of CMM
and other standards.

TS2-49 Topic: Organisational motivations for adopting CMM-based software
process improvement (SPI). Results: Organisations are more strongly
motivated by product issues such as software quality and development
time/cost than by ‘process’ issues.

QUA.pca Process assurance TS3-SE11 Topic: Analysis of the causes of defects in code to aid product-based
process improvement. Results: Provides support for the ‘traditional’
defect prevention process; recommends which metrics should be
collected; and advises using a taxonomy of defects. Describes a
proposed process improvement process based on the results.

QUA.pda Product assurance TS3-SE24 Topic: Effectiveness of coupling metrics as predictor of maintainabil-
ity for Aspect-Oriented Programming (AOP). Results: Existing static
coupling metrics are not adequate as predictors and specific metrics
need to be created. Dynamic metrics may be more useful for AOP.

TS3-SE59 Topic: Identify techniques and models for predicting the maintain-
ability of software. Results: Provides classification of techniques and
list of successful metrics for predicting maintainability as well as a
review of definitions of maintainability.

[14] P. Runeson and M. Höst, “Guidelines for conducting and
reporting case study research in software engineering,” Em-
pirical Software Engineering, vol. 14, no. 2, pp. 131–164,
2009.

[15] B. Kitchenham, P. Brereton, D. Budgen, M. Turner, J. Bailey,
and S. Linkman, “Systematic literature reviews in software
engineering — a systematic literature review,” Information &
Software Technology, vol. 51, no. 1, pp. 7–15, 2009.

[16] B. Kitchenham, R. Pretorius, D. Budgen, P. Brereton,
M. Turner, M. Niazi, and S. Linkman, “Systematic literature
reviews in software engineering — a tertiary study,” Informa-
tion & Software Technology, vol. 52, pp. 792–805, 2010.

[17] F. Q. da Silva, A. L. Santos, S. Soares, A. C. C. França, C. V.
Monteiro, and F. F. Maciel, “Six years of systematic literature
reviews in software engineering: An updated tertiary study,”
Information and Software Technology, vol. 53, no. 9, pp. 899–
913, 2011.

[18] A. H. Ghapanchi and A. Aurum, “Antecedents to IT per-
sonnel’s intentions to leave: A systematic literature review,”
Journal of Systems & Software, vol. 84, pp. 238–249, 2011.

[19] M. Turner, B. Kitchenham, P. Brereton, S. Charters, and
D. Budgen, “Does the Technology Acceptance Model predict
Actual Use? A Systematic Literature Review,” Information &
Software Technology, vol. 52, no. 5, pp. 463–479, may 2010.

[20] L. B. Lisboa, V. C. Garcia, D. Lucrédio, E. S. de Almeida,
S. R. de Lemos Meira, and R. P. de Mattos Fortes, “A
systematic review of domain analysis tools,” Information and
Software Technology, vol. 52, no. 1, pp. 1 – 13, 2010.

[21] O. Dieste and N. Juristo, “Systematic review and aggregation
of empirical studies on elicitation techniques,” IEEE Trans-
actions on Software Engineering, vol. 37, no. 2, pp. 283–304,
2011.

[22] M. S. Ali, M. A. Babar, L. Chen, and K.-J. Stol, “A systematic
review of comparative evidence of aspect-oriented program-
ming,” Information and Software Technology, vol. 52, no. 9,
pp. 871 – 887, 2010.

[23] S. Kollanus and J. Koskinen, “Survey of software inspection
research,” The Open Software Engineering Journal, vol. 3,
pp. 15–34, 2009.

[24] B. J. Williams and J. C. Carver, “Characterizing software
architecture changes: A systematic review,” Information &
Software Technology, vol. 52, no. 1, pp. 31–51, 2010.

[25] D. Smite, C. Wohlin, T. Gorschek, and R. Feldt, “Empirical
evidence in global software engineering: a systematic review,”
Empirical Software Engineering, vol. 15, pp. 91–118, 2010.

[26] K. Peterson, “Measuring and predicting software productivity:
A systematic map and review,” Information & Software
Technology, vol. 53, pp. 317–343, 2011.

[27] D. Budgen, A. Burn, P. Brereton, B. Kitchenham, and R. Pre-
torius, “Empirical evidence about the UML: A systematic lit-
erature review,” Software — Practice and Experience, vol. 41,
no. 4, pp. 363–392, 2011.

[28] T. Dybå and T. Dingsøyr, “Empirical studies of agile software
development: A systematic review,” Information & Software
Technology, vol. 50, pp. 833–859, 2008.



Table X
CATEGORISATION OF AVAILABLE EVIDENCE FOR SOFTWARE MANAGEMENT (MGT)

SEEK KA.KU Title Paper Evidence/Guidelines provided
MGT.con Management concepts
MGT.pp Project planning TS1-S7 Topic: Effectiveness of cost estimation for software development,

using experts. Results: Provides outcomes from comparisons between
expert estimation and formal estimation models, and provides 12 ‘best
practice’ guidelines for expert effort estimation.

TS1-S8 Topic: Comparison of model-based and expert judgement based
predictions of software development effort. Results: Model-based
prediction failed to systematically out-perform expert-based predic-
tions, and some explanations of why this is so are provided.

TS1-S12 Topic: to look at the internal consistency, and between-studies con-
sistency, of studies that compare regression and analogy-based cost
estimation. Results: Little clear evidence as results are inconsistent—
from 20 studies comparing relative accuracy of the two approaches,
45% offer some support for analogy, 35% for regression, and 20%
are inconclusive.

TS1-S14 Topic: To identify any factors that contribute to the success of
software estimation. Results: Large projects are more prone to under-
estimation; managers mainly rely upon expert estimation; estimations
for in-house projects tend to be more accurate; choice of method is
often based upon previously successful use.

TS2-32 Topic: Impact of clients upon effort estimation accuracy. Results:
Examines factors leading to over-runs, and discusses importance of
requirements elicitation, project management and cost estimation.

TS2-33 Topic: Factors that lead to uncertainty in estimating development
costs. Results: Provides a set of guidelines with subjective classifi-
cation of the strength of supporting evidence.

TS3-SE52 Topic: To compare between the waterfall and iterative/incremental
development approaches for effect upon cost, duration and quality.
Results: Factors such as cost tended to be reported using different
measures. Main findings are presented as a table, and overall there is
no clear evidence in favour of either approach.

TS3-SE56 Topic: Risks and resolution techniques in global/distributed software
projects (GSDPs). Results: Synthesis of potential risks to GDSPs and
resolution techniques to be aware of.

[25] Topic: Progress and best practice regarding global software develop-
ment (GSD). Results: Profiles activities world-wide and the activities
studies, almost all from inter-organisational development. Identifies a
set of best practices for GSD, benefits they provide, and constraints
upon their use.

MGT.per Project personnel & organisation TS3-SE01 Topic: What motivates and de-motivates developers, and what models
exist for this. Results: Of the 21 motivators identified, those most
frequently cited relate to the need to identify with the task. De-
motivators include working conditions and lack of resources. Factors
may also depend upon a developer’s current career stage.

TS3-SE75 Topic: Identifies key motivation factors to create a new model
of motivation. Results: Provides data about motivation, which is
complex, in the form of a number of formal models.

MGT.ctl Project control TS3-SE72 Topic: Identify what makes software productivity vary across differ-
ent contexts. Results: The review examined four groups of factors:
product, personnel, project and process. Concludes that productivity
“still depends on the capabilities of the people and tools involved”
and provides comments on selected factors and what influences them.
Observes that reuse is not the “key to productivity improvements” as
is commonly believed.

[26] Topic: Examines accuracy/usefulness of different approaches to pre-
dicting and measuring software development productivity. Results:
Classifies approaches and presents advantages and limitations of both
measurement and prediction approaches.

MGT.cm Software configuration management


