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ABSTRACT: 
 
Satellite image classification has been a major research field for many years with its varied applications in the field of Geography, 
Geology, Archaeology, Environmental Sciences and Military purposes. Many different techniques have been proposed to classify 
satellite images with color, shape and texture features. Complex indices like Vegetation index (NDVI), Brightness index (BI) or 
Urban index (ISU) are used for multi-spectral or hyper-spectral satellite images. In this paper we will show the efficiency of 
structural features describing man-made objects in mid-resolution satellite images to describe image content. We will then show the 
state-of-the-art to classify large satellite images with structural features computed from road networks and urban regions extracted 
on small image patches cut in the large image. Fisher Linear Discriminant (FLD) analysis is used for feature selection and a one-vs-
rest probabilistic Gaussian kernel Support Vector Machines (SVM) classification method is used to classify the images. The 
classification probabilities associated with each subimage of the large image provide an estimate of the geographical class coverage. 
 
 

1. INTRODUCTION 

The growth of large image databases during the last few 
decades with the advancement in image acquisition 
technologies have attracted researchers from different fields to 
work in the domain of image information mining systems. 
These images coming from various sources must be 
systematically analyzed to render important information which 
are often less relevant to human perception. The technologically 
advanced satellite sensors and the new storage systems have 
made image data too vast and complex. The manual annotation 
to describe a complex image completely is not feasible. 
Indexing and retrieval from remote sensing image databases 
relies on the extraction of appropriate information from the data 
about the entity of interest (Daschiel and Datcu, 2005). 
Indexing satellite images (Maitre, 2007) depends on the choice 
of features which in turn are dependent on the type and 
resolution of the sensors. For instance SIFT descriptors are 
widely used in the domain of multimedia (Lowe, 2004). 
Complex indices like Vegetation index (NDVI), Brightness 
index (BI) or Urban index (ISU) are used for multi-spectral or 
hyper-spectral images. Texture features are known to be highly 
discriminative for low resolution panchromatic images 
(Schroeder et al., 1998). Structural features describing man-
made objects in mid-resolution images are most efficient to 
describe image content (Bhattacharya et al., 2007). The road 
network contained in an image is one example. The properties 
of road networks vary considerably from one geographical 
environment to another. The structural features computed from 
them can therefore be used to classify and retrieve such 
environments (Bhattacharya et al., 2007). In order to compute 
the structural features of the road network, we first need to 
extract the road network from the image and then convert the 
output to an appropriate representation. This representation 
must be absolutely independent of any extraction method. The 

road extraction methods are in general resolution dependent. An 
optimal road network extraction algorithm to accurately 
delineate road structures for all practical purposes is very hard 
to achieve. The methods used in our study are robust on many 
such road characteristics but they often failed to extract the 
narrow and finely structured road networks which are almost 
hidden in small urban areas. This failure of the extraction 
methods and hence the features computed from road networks 
poorly classify images containing such areas. In order to obtain 
some meaningful information from these regions, we need to 
segment such areas occurring in the images. A new set of 
structural features computed on segmented urban areas 
combined with the existing road network features provided an 
improved classification of the geographical environments. 
 
In images, pixels provide the most basic level of information. 
The pixel values are the measurements of the satellite sensors of 
a region on the Earth surface. The information from these pixels 
are at a level far below the semantic meaning of the desired 
object or region. The classification of images based on the pixel 
values is tedious and expensive and hence is not an efficient 
strategy. In this paper we present a novel methodology to 
classify large satellite images with patches of images extracted 
from them. This is a novel idea in the sense that the patches 
considered contain a significant coverage of a particular type of 
geographical class. A one-vs-rest probabilistic Gaussian kernel 
Support Vector Machines (SVM) classification method is used 
to classify the images. In the work presented in this paper we 
have defined 7 such classes. These classes can be categorized as 
follows: 2 urban classes consisting of “Urban USA” and “Urban 
Europe”; 3 rural classes consisting of “Villages”, “Mountains” 
and Fields; an “Airports” class and a “Common” class (this can 
be considered as a rejection class indicating in particular images 
from seas). 
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2. STRUCTURAL ATTRIBUTES 

In this section we present four road network extraction methods, 
two of which were used in this work. A method is proposed to 
represent the extracted road networks as graphs. A 
morphological segmentation method is proposed to segment the 
urban areas in an image. Finally we describe the road network 
and urban region structural features used for the classification 
and indexing of satellite images. 
 
2.1 Road Network and Urban Region Extraction 

In order to compute the structural features of the road network, 
we first need to extract the road network from the image, and 
then convert the output to an appropriate representation. This 
representation should be independent of the output of the 
extraction algorithm, since we do not want to be committed to 
any single such method. In the preliminary studies reported in 
(Bhattacharya et al., 2006) we considered two network 
extraction methods (Rochery et al., 2003, Lacoste et al., 2005). 
The method of (Rochery et al., 2003) is based on Higher-Order 
Active Contours (HOACs) which are a generalization of 
standard active contours. The method of (Lacoste et al., 2005) 
models the line network as an object process, where the objects 
are interacting line segments. The output is a set of line 
segments of varying lengths, orientations, and positions. In spite 
of producing good extraction results, these methods were not 
used in this work due to the fact that they were not adapted for 
an optimization on large image databases, since manual 
expertise is needed to set the parameters in the algorithms 
according to image complexities.  
 
In the work reported in this paper we considered the two 
network extraction methods reported in (Fischler et al., 1981, 
Desolneux et al., 2000). These methods were rather easier to 
handle and could easily be adapted to large image database. The 
parameters once set in the algorithms works well with images 
of certain resolution. The output of the method described in 
(Fischler et al., 1981) is a binary image, which after a distance 
function computation can serve directly as an input to our 
method. Figure 1(b) shows examples of the extracted network. 
The output of the method described in (Desolneux et al., 2000) 
is a list of multiply aligned segments.  In order to have a 
suitable input for our method, we convert the output of this 
method into a binary image, and use some image processing 
techniques to obtain single connected segments. Figure 1(d) 
shows examples of the extracted network. We then compute a 
distance function which then acts as an input to our method. 
The distance function resulting from these methods is converted 
to a graph representation of the road network for feature 
computation purposes. The graph itself captures the network 
topology, while the network geometry is encoded by decorating 
the vertices and edges with geometrical information. The 
conversion is performed by computing the shock locus of the 
distance function using the method of (Dimitrov et al., 2000, 
Siddiqi et al., 2002), extended to deal with multiple and 
multiply connected components with the depth-first search 
(DFS) algorithm (Cormen et al., 2001). The method identifies 
the shock points by finding out the limiting behavior of the 
average outward flux of the distance function as the region 
enclosing the shock point shrinks to zero. A suitable 
thresholding on this flux yields an approximation to the shock 
locus. The graph is constructed by taking triple (or, 
exceptionally, higher degree) points and end points as vertices, 
corresponding to junctions and terminals, while the edges are 
composed of all other points, and correspond to road segments 

between junctions and terminals. Figure 2 shows an example of 
the representation graph. The road network, Figure 2(b) is first 
extracted from the input image Figure 2(a).  
 

   
   (a) Original image © CNES             (b) Extraction results     

   
   (c) Original image © CNES             (d) Extraction results 
 
Figure 1: Extraction results with 2 methods. Example (b) is with 
the method of (Fischler et al., 1981) and example (d) is with 
themethod of (Desolneux et al., 2000) 
 

   
   (a) Original image © CNES        (b) Extracted road network 

   
(c) Shock locus of road network      (d) Graph representation 
 

Figure 2: An example of the graph representation. 
 
The methods cited in our study are robust on many such road 
characteristics but they often failed to extract the narrow and 
finely structured road networks which are almost hidden in 
small urban areas. This failure of the extraction methods and 
hence the features computed from road networks poorly classify 
images containing such areas. In order to obtain some 
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meaningful information from these regions, we need to segment 
such areas occurring in the images. 
 
The heterogeneity and the geometrical complexity of urban 
structures in low radiometric and mid-resolution (2m or 5m) 
images show textural effects for objects with few pixel width. 
In our study we use the work of (Roux, 1992) developed to 
extract the urban regions from SPOT images. In SPOT images, 
the urban zones appear to be strongly textured and the problem 
of extraction of the regions is essentially a problem of 
differentiation of textures. The method used here is inspired 
from the works of (Serendero, 1989) and (Khatir, 1989). The 
principle idea is to extract the zone of high density of light and 
dark peaks. The techniques used are of mathematical 
morphology operations of opening and closing. The segmented 
compact urban regions in the images are shown in Figure 3(b) 
and Figure 3(d). 
 

   
   (a) Original image © CNES            (b) Segmented region 

   
   (c) Original image © CNES           (d) Segmented region 
 

Figure 3: Images containing small urban areas and their 
segmentations. 

 
2.2 Road Network Features 

In this section we focus on 16 features summarized in table 1. 
These features can be categorized into six groups: six measures 
of ‘density’, four measures of ‘curviness’, two measures of 
‘homogeneity’, one measure of ‘length’, two measures of 
‘distribution’ and one measure of ‘entropy’. We will now define 
the road network features. 
 
Let v be a vertex and e be an edge. Let le be the length of the 
road segment corresponding to e, and let de  be the length of e, 
that is the Euclidean distance between its two vertices. Let mv 
be the number of edges at a vertex. Then  is the 

number of junction vertices and is the number 

of junction edges. Let Ω be the area of the image in pixels. We 
define the ‘junction density’ to be and ‘density of 

junction edges’ to be E

∑ >
=

2,
1

vmvJN

>2vm vm

JN1−Ω

∑=JE

JN~ =

JE1
J

~ −Ω= . These are intuitively a 

useful measure to separate urban and rural areas: we expect 
urban areas to have a higher value of ÑJ and ẼJ than rural areas. 
Similarly, we define the ‘network length’ and the 

‘length density’ to be

∑= e elL

LL 1~ −Ω= . Again, we expect urban areas 
to have a higher value of L~  than rural areas. Note than one can 
have a high value of L~ and a low value of ÑJ if junctions are 
complex and the road segments are ‘space-filling’. We also 
compute the network area ΩL as the number of pixels 
corresponding to the network from the extracted binary image 
and define the ‘network area density’ as   Ã = Ω-1 ΩL. As can be 
seen in figure 2, many junction points are clustered around a 
small area in the network. To obtain a local characteristic of the 
junction density, we define a measure called ‘local 
junction’: ∑ >

−Ω=
2, Ω∈ ,

1
,

,
1~

v
jjrN

rj mvr . This is the density of 

junction points falling in a circular region of radius r centered at 
junction point j. We then compute the mean and the variance of 
these junction densities over all junction points, mean(Ñr,j) and 
var(Ñr,j). A high var(Ñr,j), indicates the sparse structure of road 
junctions. Rural network structures will show such a 
characteristic. A low value indicates that junction points are 
clustered close to many other junction points, which is a 
prominent measure of urban network structure. The mean(Ñr,j) 
is also used as a measure of density. 
 

Let pe = le / de, and dsscurv
e∫

1le
−=ke )( , i.e., the absolute 

curvature per unit length of the road segment corresponding to 
the edge e. Although it may seem natural to characterize the 
network using the average values per edge of these quantities, 
in practice we have found that the variances of these quantities 
are equally useful. We thus define the ‘ratio of lengths 
variance’ and the ‘ratio of lengths mean’ to be the variance and 
mean of  pe over edges, var(p) and mean(p), and the ‘average 
curvature variance’ and ‘average curvature mean’ to be the 
variance and mean of ke over edges, var(k) and mean(k). Note 
that it is quite possible to have a large value of pe for an edge 
while having a small value of ke if the road segment is 
composed of long straight segments, and vice-versa, if the road 
‘wiggles’ rapidly around the straight line joining the two 
vertices in the edge. We expect rural areas to have high values 
of one of these two quantities, while urban areas will probably 
have low values, although this is less obvious than for the 
density measures. 
 
To measure network homogeneity, we divide each image into 
four quadrants, labelled a. Subscript a indicates quantities 
evaluated for quadrant a rather than the whole image. Let 

∑ >∈ 2,mav
m

aJM ,
1

=,aJM

aJM ,

v  be the number of edges emanating from 

junctions in quadrant a. This is very nearly twice the number of 
edges in a, but it is convenient to restrict ourselves to junctions 
to avoid spurious termini at the boundary of the image. Let 

~ −Ω

a

=

JM ,

 be the density of such edges in quadrant a. 
Then we define the ‘network inhomogeneity’ to be the variance 
of ~  over quadrants, var( ). We also include 

mean( ) as a feature. 
JM~

JM~

 
In order to distinguish between the two urban classes (USA and 
Europe), the entropy of the histogram of angles at junctions, Hβ, 
where βj is the vector of angles between road segments at 
junction j, is a good measure. As is evident from the physical 
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characteristics of these road network structures, roads in USA 
tend to be parallel and cross each other orthogonally forming T-
junctions or crossroads, whereas European roads tend to wiggle 
and meet or cross each other at roundabouts. Thus it seems 
natural that Hβ ≤ 2 bits are necessary to encode information 
about road segments at junctions for road networks in the USA, 
whereas for road networks in Europe, Hβ ≥ 2 bits are necessary. 
The same measure can also be used to distinguish between 
Mountains and Fields, while the ‘density’ features distinguish 
rural networks from urban networks. 
 
A ‘distribution’ measure of edges at a vertex provides us with 
information as to how the edges at a vertex are distributed in the 
network. Let ED,i be the proportion of junction points with i 
edges at them. We use mean(ED,i) and var(ED,i) as features. The 
variance of the edge distribution is lower in the case of 
networks in urban areas as opposed to rural, and it is lower also 
in the case of urban networks in the USA as opposed to in 
Europe. 
 
Notation Description 
ÑJ Junction density 
L Network length 
L~  Length density 
Ã Network area density 
pe Ratio of length 
var(p) Ratio of lengths variance 
mean(p) Ratio of lengths mean 
ke Average curvature  
var(k) Average curvature variance 
mean(k) Average curvature mean 
ED,i Number of junction with mv=i 
var(ED,i) Edge distribution variance 
mean(ED,i) Edge distribution mean 
EJ Number of junction edges 

JE~  Junction edges density 

aJM ,
~  Density of junction edges per quadrant 

var( ) JM~ Junction edges density variance 

mean( ) JM~ Junction edges density mean 

Ñr,j Local junction density 
var(Ñr,j) Variance of the local junction densities  
mean(Ñr,j) Mean of the local junction densities 
βj Vectors of angles between segments at junction 

j 
Hβ Entropy of road segment orientation 
 
Table 1: Summary of the features computed from road networks 
 
2.3 Urban Region Features 

We focus on the last four features in Table 2. These features 
enable us to distinguish between rural classes (Villages and 
Fields) and urban class (Europe), which otherwise were 
misclassified due to the lack of extracted network information 
from the small compact urban regions in the images, shown in 
Figure 3(a) and Figure 3(c). Let Ω and ΩR be the area of the 
image and the area of the extracted regions respectively and Lψ 
and ΓR be the network length in Ψ = Ω - ΩR  and perimeter of 
the extracted regions respectively.  
We define two descriptors, RA, the extracted region density and 
CfA = ΩR

-1ΓR
2 the extracted region compactness factor. These 

two features help us to distinguish the Villages class from the 

rest of the classes: for example, RA ≈ 1 for Urban classes and RA 
≈ 0 for Mountains and Fields classes. 
 
The number of urban regions in an image, the feature Rv, is used 
to distinguish between complete Urban, Villages, Fields and 
Mountains. A complete Urban (USA and Europe) will have Rv 
= 1, whereas, a Villages will have Rv >1, and Fields and 
Mountains will  have Rv = 0. Another feature ΔΩ = ΩR / Lψ, the 
inverse fractional length density, is also computed to separate 
the Village class from Urban and Mountains and Fields. For 
complete Urban classes (USA and Europe), Lψ = 0, and for 
Mountains and Field classes Ψ = Ω. Hence for Mountains and 
Fields classes, ΔΩ = 0, while for complete Urban classes, ΔΩ = ∞, 
and for the Village class 0 < ΔΩ  < ∞.We augment these urban 
region features with the features computed from the graph 
representation of the road network as described earlier to 
improve the classification of the geographical environments 
which otherwise were misclassified due to the loss of 
information from small dense urban regions. 
 

Notation Description 
Ω Area of image 
ΩR Area of extracted regions 
LΨ Network length in Ψ =  Ω - ΩR  
ΓR Perimeter of extracted regions 
RA Region area density : ΩR / Ω 
CfA Region compactness factor  ГR

2 / ΩR
 

Rv Number of regions : # R 
ΔΩ Inverse fractional length density :  ΩR / LΨ 

 
Table 2: Summary of features computed for urban areas.  
 

3. CLASSIFICATION 

The 32 features (16 features for each network extraction 
method) described in section 2.2 were computed for a database 
of 497 SPOT5, 5m resolution images. To provide ground truth, 
these images were manually classified into the 7 classes 
described in section 1 representing various kinds of urban and 
rural environments. Machine classification was done with a 
five-fold cross validation on the data set, with 80% of data for 
training and the remaining 20% for testing in each fold. We 
performed feature selection using a Fisher Linear Discriminant 
(FLD) analysis (Duda et al., 2000), followed by a SVM linear 
kernel classification on the selected feature set. The result of the 
classification is shown in Table 3. The SVM linear kernel 
classification on the 30-dimensional feature space selected by 
the FLD shows a mean error of 24.5% with a standard deviation 
of 2.92%. As can be clearly seen in the confusion matrix Table 
3, the Villages class is confused with the Fields class and also 
there is a slight confusion between the Urban USA and Urban 
Europe classes. These confusions arise because, as stated above, 
the road extraction methods fail to detect the fine and densely 
structured roads present in some images. Table 4 shows the 
results of classification of the same set of images with 20 
selected feature out of 36 features (32 road network features 
plus the 4 features computed from the segmented urban areas). 
As can be seen, there is an improvement in the confusion matrix. 
The Villages class is less confused with the Fields class than 
before. The SVM linear kernel classification error is drastically 
reduced from 24.5%, with only road network features to 12.9%, 
with the combined feature set with a standard deviation of 
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3.29%. This is due to the fact, that the loss of information from 
the urban areas is well captured with the structural features 
described in section 2.3. 
 

 
Table 3: Confusion matrix of a SVM linear kernel classification 
on 497 images with 7 classes with 30 out of 32 features selected 
by FLD. 
 

 
Table 4: Confusion matrix of a SVM linear kernel classification 
on 497 images with 7 classes with 20 out of 36 features selected 
by FLD. 
 
 

4. INDEXING OF LARGE SPOT5 IMAGES 

An image is indexed by a set of keywords representing the 
content of an image. These keywords are usually limited in 
numbers and are dependent on application scenarios. 
Classification is often used as a pre-processing step for indexing. 
A careful indexing of an image database assists efficient 
retrieval of image content. The workflow of our indexing 
method is divided into three steps as follows. 
 
4.1 Step 1: The Database 

The image database can be viewed as two sets disjointly 
partitioned to contain images or segmented images in one set 
and features extracted from images in another set. We will 
indicate the image set as SI, and the feature set as SF. A pointer 
is used between SI and SF to address a image to its associated 
feature set. The information extracted in terms of structural 
features from the large image archive of 497 images, each of 
size 512x512 pixels, categorized into 7 classes are kept in a data 
file. The off-line process of this data file creation is done only 
once, and in case of a new entry, the information extracted from 
this image is augmented with the existing data file. The pointer 
is appropriately assigned the address of this new entry. This 
will be used as the “training” set later in the classification task. 
 
4.2 Step 2: The Feature File 

 
The off-line process for the user given a large image is as 
follows: the large image of size 5120x5120 pixels is 
automatically divided into non-overlapping image patches each 
of size 512x512 pixels. During this process an association 

pointer is asserted from the image patches, defining its spatial 
position in the large image. The road network extraction, its 
graph representation and the urban area segmentation methods 
are applied in parallel on the image set (100 images). The 
structural features from the graph representation and the urban 
areas are stored in a file. The images are a priori randomly 
labelled with classes from 1 to 7. This will be later used as a 
“testing” test against the above defined “training” set in the 
classification task. 
 
4.3 Step 3: The Classification 

 Class
1 

Class
2 

Class
3 

Class
4 

Class
5 

Class
6 

Class
7 

Villages 0.55 0.09 0.22 0.05 0.13 0.00 0.00 
Mountains 0.10 0.81 0.00 0.00 0.05 0.00 0.02 
Fields 0.19 0.05 0.64 0.05 0.18 0.00 0.00 
USA 0.06 0.00 0.04 0.82 0.05 0.00 0.02 
Europe 0.09 0.05 0.11 0.07 0.60 0.03 0.05 
Airports 0.00 0.00 0.00 0.01 0.00 0.97 0.00 
Common 0.00 0.00 0.00 0.00 0.00 0.00 0.91 

In many satellite image classification works, the a priori 
information about the class label configuration is available and 
it is very essential and crucial to combine this information into 
the classification process to obtain a reliable answer. Standard 
SVM do not provide any estimation of the classification 
confidence and thus do not allow us to comprehend any a priori 
information. Probabilistic SVM provides us with a solution as 
to construct a classifier to produce a posterior probability 
P(class = c|input) which allows us to take a quantitative 
decision about the classification (Platt, 1999). In this work we 
used a one-vs-rest Gaussian SVM classifier with σ=10. The 
choice of the Gaussian standard deviation, σ, which controls the 
width of the kernel is hard to assert in practical situations. In 
this study we considered the kernel value which gave us the 
least training error.  

 Class
1 

Class
2 

Class
3 

Class
4 

Class
5 

Class
6 

Class
7 

Villages 0.83 0.00 0.15 0.00 0.05 0.02 0.03
Mountai
ns 

0.04 0.83 0.01 0.00 0.00 0.00 0.00

Fields 0.04 0.08 0.82 0.01 0.00 0.00 0.01
USA 0.01 0.00 0.00 0.92 0.12 0.02 0.01
Europe 0.08 0.04 0.02 0.07 0.84 0.02 0.02
Airports 0.00 0.05 0.00 0.00 0.00 0.96 0.00
Common 0.00 0.00 0.00 0.00 0.00 0.00 0.93

 
The results of the probabilistic SVM output can be interpreted 
as follows: the classifier output should be a calibrated posterior 
probability. First the SVM is trained and then the parameters A 
and B of an sigmoid function (see Equation 1) are estimated 
from the training set (fi, yi) to map the output of the SVM into 
probabilities. The predicted label of an image is the one with 
the largest probability value. The large SPOT5, 5m resolution 
image, Figure 4(a) of Los Angeles is well classified with a 
classification accuracy of about 85%. 

)exp(1
1)(

BfA
fcyP

++
==                                           (1) 

The classification image resulting from the probabilistic SVM, 
Figure 4(b), shows that certain areas are classified as Europe 
urban. This can be explained from the fact that either the 
classification probabilities are low or they are comparable with 
the neighbouring classes. The other reason for this is the fact 
that the network structures in these areas are similar to the one 
found in many European urban structures. The superimposed 
image in Figure 4(c) validates the classified regions with 
ground truths from Figure 4(d). 
 

5. CONCLUSION 

Classification of large satellite images with patches of images 
extracted from them is a novel idea in the sense that the patches 
considered contain significant coverage of a particular type of 
geographical environment. Probabilistic SVM provides us with 
a quantitative analysis of the classification. This method 
provides a basis for more complex analysis of large satellite 
images. The effect of overlapping patches on classification is 
not reported. This may be an interesting study, as it can help to 
better classify the images. Moreover, image patches of different 
sizes can also be used to improve the classification performance. 
Our indexing method with the above mentioned perspectives 
can be adapted with existing and future image information 
mining systems for EO archives. 
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          (a) Original image ©CNES                                 (b) Sub-image classification                         (c) Ground truth  ©Google Maps 
 

Figure 4: Large image indexing 
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