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ABSTRACT

Classification results obtained using wavelet-based texture analy-
sis techniques vary with the choice of mother wavelet used in the
methodology. We discuss the use of mother wavelet filters as pa-
rameters in a probabilistic approach to texture analysis based on
adaptive biorthogonal wavelet packet bases. The optimal choice
for the mother wavelet filters is estimated from the data, in addi-
tion to the other model parameters. The model is applied to the
classification of single texture images and mosaics of Brodatz tex-
tures, the results showing improvement over the performance of
standard wavelets for a given filter length.

1. INTRODUCTION

Texture analysis plays a major role in image segmentation,
classification, and descriptor extraction for content-based
image retrieval. Due to its importance, texture analysis has
received considerable attention in terms of both method-
ology and application. In one approach to texture analy-
sis, images are first decorrelated using a signal transform,
e.g. Gabor, ring, wedge, steerable pyramids, wavelet pack-
ets [1, 2, 3, 4, 5] or wavelet frames, before features are com-
puted. In [3], a probabilistic texture model was developed in
which the wavelet packet basis, as well as statistical features
of the subbands, were treated as parameters of the model
and estimated from training data. This model was extended
to biorthogonal wavelet packets by considering both analy-
sis (primal) and synthesis (dual) wavelet bases [6]. The
model for biorthogonal wavelet packets reduces to that for
orthogonal wavelets, as in [3], when the primal and dual
bases are the same; thus we can use this model for orthogo-
nal wavelets too.

The models of [3, 6], like most wavelet-based approaches
to texture analysis, employ a single fixed mother wavelet for
all textures. Thus in [3, 6], only the wavelet packet tree of
the optimal subband decomposition and the statistical prop-
erties of the marginal densities for each subband were used
as parameters of the texture model. However [3, 6] noted
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that the optimal tree for a given texture, and classification
performance, both vary according to the mother wavelet
used in the texture model. Previous studies have also shown
that the length, number of vanishing moments, regularity,
orthogonality, and degree of the impulse response shift vari-
ance of the mother wavelet contribute to the results of wavelet
based applications such as image coding [7] and texture
analysis [8]. Therefore, an optimal choice of mother wavelet
for the representation of a given texture can be used in the
feature extraction process. Similarly, in filter based meth-
ods, where a filter and a response energy measure are used
as the feature extractor, optimization of filters has been used
in order to achieve optimized energy separation [9, 10, 11].
All this suggests that the mother wavelet itself should be
treated as a parameter of the texture models proposed in [6],
and estimated, like the other parameters, from training data.

In this paper we implement this idea, treating the mother
wavelet filters as parameters of the adaptive biorthogonal
wavelet packet texture model. In section 2, we present the
new texture model and discuss parameter estimation and
classification. In section 3, we examine the parameter es-
timation and classification performance of the new texture
model using single Brodatz textures and multi-texture Bro-
datz mosaics. We compare the results with those obtained
using a single mother wavelet choice for all textures. We
conclude in section 4.

2. TEXTURE MODEL

The purpose of this section is to review the model described
in [6] and to incorporate the mother wavelet parameters.
The model in [6] starts from a general translation invari-
ant Gaussian distribution. The marginalized Gaussian dis-
tribution on an image region is then derived, and shown to
be tractable if the original covariance lies in a certain class
of operators. This class consists of those operators that are
diagonal in at least one wavelet packet basis. The model
is thus parameterized by a dyadic partition of the Fourier
domain, T , which in conjunction with a mother wavelet de-



fines a wavelet packet basis, and a function f that assigns
to each element of the partition (i.e. each subband), its vari-
ance. In [3], it is shown that exact MAP estimates of these
parameters can be learned from samples of a texture us-
ing an efficient depth-first search algorithm on the space of
dyadic partitions. The result is a model in which the basis
adapts to the structure inherent in the texture according to
a criterion derived from the texture model itself, rather than
introduced on an ad hoc basis.

The model in [6] also implicitly includes the mother
wavelet W = (P,U), where P and U are the filters for
the prediction and update steps in the lifting realization of
wavelets. These lifting steps define the primal and dual
wavelets, respectively. In the new model, these filters are
promoted to parameters. The new model thus takes the form

P(I|f, T,W ) =
∏

α∈T
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where I is the image; α indexes the subbands of T; fα is the
value of f on subband α; i indexes the wavelets within each
subband; wai,α

and wsi,α
are the (α, i) coefficients in the

analysis and synthesis wavelet packet bases derived from
W ; and Nα is the number of pixels in the subband α. We
refer the reader to [6] for the relationship between the lifting
weights P , U and the primal-dual wavelet pair.

2.1. Texture model training

MAP estimates of the parameters for a given texture are
found by examining the probability of the parameters given
a set of images d = {In} of the texture:

P(f, T,W |d) ∝ P(d|f, T,W )P(f |T,W )P(T |W )P(W )

We choose P(f |T,W ) to be Jeffrey’s ignorance prior. We
choose the probability P(T |W ) = Z−1(β)e−β

�
t∈Q(T ) Nt ,

where Q(T ) is the quadtree naturally related to the parti-
tion; t is a vertex in this tree; and Nt ∝ 4−l(t), where l(t) is
the depth of vertex t in the tree, is the size of the region of
the Fourier domain corresponding to vertex t. The parame-
ter β controls how severely the distribution penalizes large
decompositions. We choose the wavelet prior P(W ) to be
uniform. The MAP estimate of f for fixed T and W is of
course given by

f̂α =
Nα

2
∑

i∈α |wai,α
wsi,α

|

A depth-first search through the space of dyadic decomposi-
tions allows us to find the MAP estimate T̂ for T efficiently
for a fixed wavelet choice W . Finally, the MAP estimate for
W is found as follows:

Ŵ = (P̂ , Û) = arg max
(P∈P,U∈U)

P(d|f̂ , T̂ , (P,U)),

where P and U are the sets of choices for the lifting filters
P and U . Note that T̂ is a function of (P,U), and that f̂ is
a function of T̂ (hence (P,U)), and (P,U).

2.2. Classification

In order to classify pixels, we use an undecimated wavelet
decomposition, and consider the following approximation
to the exact probability distribution for the texture on an
arbitrary region R:

P(IR|f, T,W ) =

∏

α∈T

∏

x∈R
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where Mα = 4l(α) is the redundancy factor for subband α
in the undecimated transform. The class of a pixel, λ(x), is
then estimated from

λ̂(x) = arg max
l∈L

P(IV (x)|λV (x) = l)

where V (x) is a set of neighbours of pixel x.

3. SIMULATION RESULTS

In this paper, we evaluate the proposed model by focusing
on finding the optimal mother wavelet for a given texture
from a finite set of mother wavelet choices. We show an
example using interpolating wavelets with P and U filters
of length 4. In general, one can define the interpolating filter
template of length 4, denoted Int4, by

Int4 =
(

−v 1
2 + v 1

2 + v −v
)

We choose v = (k − 1)/64 for k ∈ [1, 2, . . . , 17]. The
resulting interpolation functions are shown in table 1. The
choices 1 and 5 correspond to the classical linear and cubic
interpolation functions, respectively. We define a set of in-
terpolating wavelets by choosing the interpolating templates
in the table as P and U filters. We denote such wavelets (k-
l), where k and l are the indices for the chosen P and U
filters, respectively. For example, the well-known biorthog-
onal wavelets (2,2), (4,2), (2,4) and (4,4) (using the vanish-
ing moment pair notation) correspond to the wavelet choices
(1-1), (5-1), (1-5) and (5-5) in the table.

3.1. Parameter Estimation

We compute P(d|f̂ , T̂ , (P,U)) for each of the mother wavelet
choices (k-l) using the 17 interpolating functions shown in
table 1. This yields 289 choices of mother wavelet filters to
be used in parameter estimation experiments. In Fig. 3.1,
we show the logarithms of the probabilities for the different
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Table 1. Different choices for length 4 interpolation func-
tion templates.

(k-l) mother wavelets choices for the textures Raffia, Her-
ring, Wool and Grass (brightness is proportional to the log
probability).

The optimal mother wavelets Ŵ for each of the test tex-
tures were found to be (4-11), (4-12), (6-6) and (4-14), re-
spectively. Interestingly, none of the above choices corre-
sponds to the commonly used wavelet filters. The para-
meters T and f are estimated as described earlier. They
are shown graphically and compared with the correspond-
ing power spectra in Fig. 2. The brightness of each subband
is proportional to 1/fα.

3.2. Classification

We present the classification performance of the texture-
adaptive optimal biorthogonal mother wavelet packet model
using single texture images and texture mosaic images. Fig. 3
shows the classification maps for four textures, classified
using all four trained texture models on each of the single
texture images. The percentages of misclassified pixels are
listed in table 2. Similarly, Fig. 4 shows the classification
performance for test mosaics, M1, M2, M3 and M4, made
of 4 test textures. The percentages of misclassified pixels
are listed in table 3.

As can be seen from the tables, using the optimal mother
wavelet for modelling the textures results in better classi-
fication performance than using fixed mother wavelets in-
volving lifting templates of length 4, i.e. (4,4), (4,2) and
(2,4).
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Fig. 1. Log probabilities for different choices of P and
U lifting weights for different textures. Increasing bright-
ness corresponds to increasing probability. Top row: Raffia
(Ŵ = (4-11)) and Herring (Ŵ = (4-12)); Bottom Row:
Wool (Ŵ = (6-6)) and Grass (Ŵ = (4-14)).

Fig. 2. Parameter estimation. Row 1: textures Raffia, Her-
ring, Wool, and Grass; row 2: their power spectra; row
3: their estimated parameters using the optimal mother
wavelet.

T1 T2 T3 T4 Average
Optimal 0.13 1.41 9.21 9.98 5.18

(2,4) 0.19 1.79 13.11 11.91 6.75
(4,2) 0.01 4.80 7.16 11.97 5.98
(4,4) 0.18 1.89 15.49 10.02 6.90

Table 2. Percentages of misclassified pixels (Single).

4. CONCLUSION

In this paper, we have incorporated the choice of mother
wavelet into an adaptive probabilistic texture model based



Fig. 3. Classification results. Row 1: Raffia, Herring, Wool, and
Grass; row 2: ground truth; rows 3: classification map using the
optimal mother wavelet.

Fig. 4. Classification results. Row 1: mosaics M1, M2, M3, and
M4; row 2: ground truth; rows 3: misclassified pixels (in black)
using the optimal mother wavelet.

on biorthogonal wavelets. The optimal mother wavelet for a
given texture is given by the mother wavelet that maximizes
the MAP probability of the derived biorthogonal wavelet
packet texture model. We have shown examples of the best
choices for prediction and update lifting weights using length
4 lifting templates for four different textures. The optimal
lifting weight choices result in better classification perfor-
mance than the standard (4,4), (2,4) and (4,2) wavelets, all
of which include length 4 prediction and/or update lifting
templates. Future work includes optimization of the mother
wavelet filter coefficients for a range of different wavelet
classes.
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