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Abstract

We propose a new form of energy functional for the seg-
mentation of regions in images, and an efficient method for
finding its global optima. The energy can have contribu-
tions from both the region and its boundary, thus combin-
ing the best features of region- and boundary-based ap-
proaches to segmentation. By transforming the region en-
ergy into a boundary energy, we can treat both contribu-
tions on an equal footing, and solve theglobal optimiza-
tion problem as a minimum mean weight cycle problem on
a directed graph. The simple, polynomial-time algorithm
requires no initialization and is highly parallelizable.

1. Introduction

Image segmentation methods generally fall into two
classes, being either region-based or boundary-based. The
former class uses properties of areas of the image to choose
among possible segmentations, while the latter looks at the
properties of the image only on the boundary of the pro-
posed segmented regions.

Both methods have their advantages and drawbacks.
Region-based methods tend to be global, optimizing a func-
tional of the image segmentation. On the other hand,
they often ignore important boundary properties such as
smoothness. Boundary-based approaches can treat such
properties very naturally, but suffer from their own diffi-
culties. First, most algorithms find only local minima, and
thus have no measure of the significance of the extracted
boundary for the image as a whole. Second, although there
do exist algorithms guaranteed to find global minima, us-
ing graph techniques such as dynamic programming and
Dijkstra’s algorithm, these do not adapt easily to closed
contours. Unfortunately, open contours do not segment re-
gions in the image, so that further processing is needed to
group the contours into proto-surfaces. Third, boundary-
based methods cannot incorporate region information such
as texture easily. In addition, many of the extant algorithms

require initialization by the user in some way, by specify-
ing the end-points of the contour, or by defining an initial
contour that then evolves to a solution.

In this paper we propose a new form of energy func-
tional for the segmentation of regions in images, and an
efficient method for finding its global optima in energy or-
der. The energy is of a very general form (equation (1)),
being the modulus of the integral over the region of any
integrable function, divided by a measure of the length of
the boundary of the region. The solution to the optimiza-
tion problem is the global maximum of this energy over all
regions. The region integral can be transformed to a bound-
ary integral, and then combined with boundary-dependent
terms. In this way the energy can have contributions from
both the region and its boundary, allowing region informa-
tion such as texture and homogeneity to be combined with
boundary information such as intensity gradients. Once
expressed as a boundary integral, we can cast the global
optimization problem into the form of a minimum mean
weight cycle problem in a digraph. This problem has a
simple, polynomial-time algorithm that requires no initial-
ization, and is highly parallelizable, with each pixel able to
perform its computations independently, reading from, but
never writing to, its neighbours.

The paper is laid out as follows. In the next section, we
discuss related work. In section 3, we describe the general
form of the energy functional and its properties, and give
some examples of possible uses. We discuss the algorithm
that globally optimizes such energies and its relation to our
problem in section 4. In section 5 we describe some spe-
cific models of regions, and show the results of experiments
with these models.

2. Related work

Image segmentation has a huge literature, and here we
only touch on some of the work more closely related to
ours.

Contour-based grouping methods include Parent and
Zucker’s [20] work using relaxation methods, Sha’ashua
and Ullman’s [21] work on saliency networks, and Guy
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and Medioni’s [10] work using voting schemes. There is
also the work of Cox et al. on a Bayesian sequential track-
ing scheme [4]. Elder and Zucker [8] have developed a
method for finding closed contours using chains of tan-
gent vectors. Williams and Thornber [25, 23] and Williams
and Jacobs [24] discuss contour closure using stochastic
completion fields. Closest to our work however, because it
starts from an energy optimization criterion, is the work on
active contours. The seminal works in this area are Kass et
al. [14] and Blake and Zisserman [2], and much subsequent
work follows this both in the form of the energy functionals
used, and in algorithmic techniques. Another body of work
applies dynamic programming techniques to minimize the
contour energy. Amini et al. [1] use dynamic programming
as part of a gradient descent procedure. Montanari [19]
uses dynamic programming to find the minimum energy
path between given end-points. Geiger et al. [9] use ini-
tialization with a series of points, and a choice of window
around those points, to delineate the space of contours con-
sidered. Much of this work uses initialization and restricted
regions of the image to limit the space of contours over
which the optimization proceeds, and most algorithms find
local minima, or approximations to global minima over a
limited set of contours. Globally minimum closed contours
are not found.

The paper by Cox, Rao, and Zhong [3] is particularly
related to our work. They use a graph algorithm known as
the pinned ratio algorithm to find closed contours in an im-
age. The method can be made initialization-free, and finds
a global minimum under some weak constraints. Their
method is not as general as ours however, as they cannot
combine region and boundary information, and the region
information they use must be positive everywhere in the
image.

Related work in the area of region-based segmentation
is that of Shi and Malik [22]. They use a generalized eigen-
value method to find normalized cuts. The denominator in
our equation (1) plays a similar role to the cut normaliza-
tion. Leung and Malik [17] extend their work by incorpo-
rating weak contour continuity information into the region-
based model.

Psychological work has emphasized the importance of
closure in perception since the Gestalt movement. Work
in illusory contours has also shown the importance of the
Gestalt concept of closure to the perceptual organization
involved in these phenomena [11, 12]. More recent work
by Kovács and Julesz, and Elder and Zucker has demon-
strated that closure is a very important determinant of con-
tour saliency [15, 6, 7].

3. Theoretical framework

An image is a real-valued functionI on a domain inR2 .
A simple region is denotedR and its boundary@R. A

Gaussian is denotedG, and convolution�.

3.1. Combining regions and boundaries

The form of energy functional with which we deal is

E(I;R) =

��R
R f dx dy

��R
@R g ds

(1)

wheres is the arc length parameter,f is any real-valued
function onR2 , andg is any positive real-valued function
on @R. We define the solution to the optimization prob-
lem as the global maximum ofE over all regionsR. For
reasons that will become clear, we note that by assigning
two energies to each region,�E(I;R), and then minimiz-
ing over all such energies, we achieve the same solution.
This can be viewed as an assignment of two orientations to
each region, and then a minimization over all oriented re-
gions. The denominator is a (possibly weighted) measure
of the length of the boundary, and has the effect of damping
the scaling behaviour of the energy, which would otherwise
have a strong preference for large regions. It also functions
as a boundary smoothing term, as follows. Iff andg were
unity we would be maximizing the area over the length,
and fixing the length of the boundary would produce a disc
as the solution to the optimization problem. This is also
the solution to an active contour model with a fixed length
and a smoothing term that is the square of the curvature.
In general, the effect of the dependence on area divided by
that on length will be to produce smoother boundaries.

The numerator of equation (1) can always be rewritten
as an integral over the boundary@R of the regionR:

E(I; @R) =

���R@R n̂ � ~Ads
���R

@R g ds
(2)

where n̂ is the normal vector to the boundary, and~A is
defined by the equation~r� ~A = f . Such an~A always exists.
It can for instance be given by the following integrals:

~Ax(x; y) =
1

2

Z x

0

f(x0; y)dx0

~Ay(x; y) =
1

2

Z y

0

f(x; y0)dy0

There is a choice of constant functions that can be added
to this vector field, but the choice does not affect the value
of the boundary integral in equation (2). Indeed, we can
add any divergence-free vector field and still have the same
boundary integral.

Similarly to equation (1), we can view the boundary
as having two possible orientations corresponding to the
bounding curve running in the two possible directions. Re-
moving the modulus signs and minimizing over all oriented
boundaries is then equivalent to the original maximization
problem over un-oriented regions.
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Remarks

� As advertized, the form of equation (2) allows us ele-
gantly to include boundary as well as region informa-
tion in our model. Indeed the present work shows that
they are essentially the same, although one descrip-
tion may be more appropriate than the other. We can
add to~A any other vector field~B and still compute the
global optimum.

� Averaging the weight of the boundary over a measure
of its length has at least two important advantages
over unaveraged contour models. First, it removes
the uncontrollable dependence on contour length that
such models inevitably exhibit. This is most notice-
able if the energy has a gradient term and a length
term for example. The length term is normally pos-
itive, while the gradient term is negative. Depending
on the parameters, the global solution could be triv-
ial in one of two ways: infinitely long or infinitely
short.These are extreme examples, but the implicit de-
pendence on length is always present. Second, a sim-
ple polynomial-time algorithm exists for the minimum
mean weight cycle problem, whereas the minimum
weight cycle problem is NP-hard.

3.2. Forms of region function

The functionf in equation (1) can be any integrable
function. In particular, it can be the convolution of the
image with any filterF : f(p) = I � F (p). In this case,
equation (2) also takes the form of a convolution:

E(I;R) =

R
R(I � F ) dx dyR

@R
g ds

E(I; @R) =

R
@R n̂ � (I � ~v) dsR

@R g ds

where~r � ~v = F .
The functionf need not be a linear filter however. Some

choices off and their meaning in our model are given be-
low. Throughout we include the possibility of a Gaussian
smoothing of the image, or in other words the possibility of
examining the image at various scales. The examples are
intended to include the case of zero variance, when G is a
delta function.

I �G. In this case the model is looking for globally max-
imum intensity regions. It will find bright spots such
as specular reflections, as well as large regions of high
intensity.

I � ~r2G. Viewed as a region integral, this function finds
the region with the largest absolute value of the in-
tegrated Laplacian of the smoothed intensity. Such

regions correspond to “lumps” or “dips” in the inten-
sity function, since regions with undulations in the in-
tensity will make both positive and negative contribu-
tions to the region integral, reducing its absolute value.
Converted to the form of equation (2),~A = I � ~rG. ~A
is thus the vector field of wavelet coefficients. Viewed
in this way, the model finds regions whose boundaries
pass through points with high smoothed intensity gra-
dient, in a direction perpendicular to the gradient. The
model averages over length, thus removing the depen-
dence on scale, and our algorithm finds the globally
optimal region and boundary. We investigate such a
model in section 5.

jI � ~r2Gj. The previous function does not deal well with
the case of contrast-reversing boundaries, which in-
troduce both positive and negative contributions to the
region integral. We can deal with the case of gen-
eral boundaries (including contrast-reversing) using
the absolute value of the Laplacian, at the expense of
losing a simple boundary interpretation. This region
function is a better way to deal with contrast-reversing
boundaries than the normal method of taking the mag-
nitude of the gradient, since it preserves the notion that
intensity change should be normal to the boundary.

jI � ~rGj�1. f is a positive, monotonically decreasing
function of the magnitude of the wavelet coefficients
jI � ~rGj, such as1=jI � ~rGj orM � jI � ~rGj (M is
an upper bound on the magnitude of the wavelet coef-
ficients in the image). The integral of such a term over
a region will be large if the gradient has small magni-
tude everywhere. It will thus seek out the region with
globally most homogeneous intensity.

I � T . A filter T (or linear combination of filters) that re-
sponds strongly to a particular class of textures can be
used to segment globally optimal regions of that tex-
ture.

Most interestingly, the function can be a combination of
these examples, so that we could search for the region with
the best response to a given texture and that had a high in-
tensity gradient boundary for example, or that had a homo-
geneous intensity surrounded by a high intensity gradient
boundary.

Before passing to a description of the algorithm that we
use to solve the global optimization problem, we make two
observations about the form of energy functional.

As mentioned, equation (2) has an interesting invari-
ance. If we add to~A any vector field with zero divergence,
we can see by transforming to the form of equation (1) that
the energy will not change. Whenf = I � ~r2G, this cor-
responds to adding a harmonic function to the intensity.

Equation (1) is the most general form of energy that we
can optimize globally at present (although see section 6). In
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the experiments we use a slightly restricted form, in which
the functiong is unity and the length is approximated by
an edge count. The algorithms to find the global maximum
of the more general case [16, 5, 18] are more complex than
the one we describe in section 4. For the sake of clarity, we
restrict ourselves to this case.

4. Algorithmic solution

To find the global maximum of the energy in equa-
tion (2) (or equivalently equation (1)) we use a graph al-
gorithm due to Richard Karp [13]. This algorithm finds the
minimum mean weight cycle in a directed graph.

The algorithm requires no initialization by the user. It is
also highly parallelizable, with each pixel able to perform
its computations independently, reading from, but never
writing to, its neighbours. In the experiment, we iteratively
apply the algorithm. After each iteration, we remove from
the graph those vertices through which the previous solu-
tion passed. We thus find a series of regions of increasing
energy, which can be viewed as a series of hypotheses about
regions in the image of gradually decreasing probability.

We first describe the algorithm and then clarify its rela-
tion to our problem.

4.1. Algorithm

We begin with a weighted directed graphG, with weight
functionw. We wish to find the minimum mean weight
simple cycle, where the mean weight of an edge pro-
gression composed of edgesfei : i 2 Ig is defined asP

i2I
w(ei)

jIj .

First, define the functionFk(v) taking each vertexv 2
V (V is the vertex set) to the weight of the minimum weight
path of lengthk � 0 to v from an arbitrary start vertexs,
and define it to be1 if no path exists of lengthk. Then it
can be shown (proof is given in [13]) that the weight�� of
the minimum mean weight cycle is given by

�� = min
v2V

max
k2[0::(n�1)]

�
Fn(v)� Fk(v)

n� k

�
(3)

wheren = jV j.
Fk(v) can be computed using the recurrence

Fk(v) = min
(u;v)2E

Fk�1(u) + w((u; v))

F0(s) = 0

F0(v) =1 ; 8v 6= s

whereE is the edge set ofG. With in
The computation ofF for all k 2 [0::(n � 1)] can be

performed using dynamic programming in timeO(njEj).

The minimum weight paths can be computed simultane-
ously. Using a furtherO(n2) time we can compute�� from
Fk(v), leading to an overall computation time ofO(njEj).
The cycle itself can be extracted by selecting the minimiz-
ing v andk in equation (3), and finding a cycle of length
n� k in the minimum weight path froms to v.

4.2. Application

We recall that, as discussed in section 3, if we remove
the modulus signs from equations (1) and (2) and view
the region and boundary as having two possible orienta-
tions, minimizing over all oriented regions or boundaries
is equivalent to maximizing equations (1) and (2) over all
un-oriented regions or boundaries.

To cast our problem in the form of a minimum mean
weight cycle problem, we embed a directed graph in the
image, with the property that for every two vertices,u and
v, if (u; v) is an edge then(v; u) is also. Thus each cycle
can have two possible orientations. The embedding� takes
each vertexv to a point�(v), and each edgee = (s; t) to a
tangent vector�(e) located at the median point of�(s) and
�(t), and directed from�(s) to �(t). The unit normal vec-
torsn̂(e) required by equation (2) can then be defined from
the tangent vectors by a fixed rotation. A region boundary
is then by definition a simple cycle in this graph.

The weight of an edgee = (u; v) is defined as�sfn̂(e)�
~Ag, where the vector field~A is evaluated at the midpoint of
the edge, and so lies in the same tangent space asn̂(e).
�s is the Euclidean distance between�(u) and�(v), and
plays the role of the measureds in equation (2). Note that
becausên(e) is defined using a fixed orientation from the
tangent vectors, the weights of edges between the same
two points but in opposite directions will have the same
absolute value but opposite sign. This ensures that the
weights of cycles that differ only in orientation will have
the same absolute value but opposite sign, as required when
we remove the modulus signs and minimize over oriented
boundaries in equation (2). Summing the edge weights so
defined over a cycle in the graph then gives a discrete ver-
sion of the numerator in equation (2).

We can now apply the minimum mean weight cycle al-
gorithm to find the solution to our problem on this discrete
domain. If the graph is dense enough in the image plane,
we will have a good solution to the continuous problem.

5. Experiments

For the bulk of the experiments, we chosef = I � ~r2G
in equation (1). Thus we are finding regions over which the
absolute value of the integral of the Laplacian is as large
as possible. These correspond to “lumps” or “dips” in the
intensity function, since regions with undulations in the in-
tensity will make both positive and negative contributions
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Gradient vector

(b)(a) (c)

Figure 1. (a) For each pixel we compute the
gradient vector. (b) The graph has a node
for each pixel and eight outgoing edges for
each node (except at the boundary.) (c) The
edge weight is calculated by taking a cross
product of the gradient vector and the edge
vector.

(a) (b) (c)

Figure 2. (a) A synthetic contrast-reversing
boundary. (b) The result of applying the re-
gion energy I�~r2G. (c) The result of applying
the region energy jI � ~r2Gj. The region found
is shown in grey.

to the region integral, reducing its absolute value. With
this choice off , the vector field~A in equation (2) becomes
I � ~rG, the wavelet coefficients of the image at a scale dic-
tated by the width ofG. (We took the width to be small, of
the order of a few pixels, so that we are dealing with a very
slightly blurred estimate of the gradient at pixel scale.) As
a boundary integral, the energy becomes

E(I; @R) =

R
@R

n̂ � (I � ~rG) dsR
@R

ds
(4)

The integrand in equation (4) is minimal when the bound-
ary tangent vector is perpendicular to the intensity gradient.

To apply the algorithm of section 4, we used a directed
graph with an eight-valent node for each pixel (Figure 1).
For each node, we computed the gradient vector at the pixel

by taking a wavelet coefficient:

~A = (I � ~ s)(~x)

~ s(~x) = s�1 ~ (s�1~x)

~ (~x) = ��1e�j~xj
2

~x;

where “�” denotes a convolution and~ is the derivative of a
Gaussian. For an edge going from noden~u to noden~v cor-
responding to pixels~u and~v, the edge weight is computed
as

(~v � ~u)�
~A(~u) + ~A(~v)

2
:

This is the cross product of the tangent vector with length
equal to the Euclidean distance between the nodes with the
wavelet coefficients. This is the same as taking the dot
product of the coefficients with the appropriately oriented
normal vector, and weighting by the Euclidean distance be-
tween the nodes.

We iteratively applied the algorithm explained in sec-
tion 4. After each iteration, we removed from the graph
those vertices through which the previous solution passed.
In this way a series of regions of increasing energy was
extracted. This can be viewed as a series of hypotheses
about regions in the image of gradually decreasing proba-
bility. Results are shown in Figure 3. The numbers indicate
the order in which the regions were found. The finding of
specularities (and their reverse - dark spots) by the method
is to be expected as these are isolated peaks or troughs in
the image. Although potentially interesting, these tiny re-
gions can be eliminated by the addition of a term that favors
larger areas (for example homogeneity).

In order to illustrate that the method can also deal with
the case of contrast-reversing boundaries, we took a syn-
thetic image and used the region functionjI � ~r2Gj. The
results are shown in Figure 2. They illustrate that replacing
the Laplacian by its absolute value finds contrast-reversing
boundaries. The expansion of the region found beyond the
contrast-reversing boundary is a consequence of using an
edge count instead of the geometrical length. It results in
multiple degenerate solutions, one of which is illustrated.
Use of the more sophisticated algorithm mentioned at the
end of section 3.2 would break the degeneracy and pick out
the (correct) solution of minimum length.

We note that the region functions used in the experi-
ments have no parameters. The scale at which we com-
pute the gradient is variable, but we chose a small pixel-size
scale beforehand, and stayed with it throughout the experi-
ments.

6. Conclusion

In this paper we proposed a new form of energy func-
tional for the segmentation of regions in images, and an ef-
ficient method for finding its global optima in energy order.
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Figure 3. (a) A 256 � 256 pixel image. Ten regions are shown. (b) A 200 � 134 pixel image. Shown
are three least energy regions (the left ear, under the right arm, and the gorilla.) (c) A 124 � 166 pixel
image. Three regions are shown. The numbers indicate the order in which the regions were found.
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The energy can have contributions from both the region and
its boundary, thus allowing typical region information such
as texture and homogeneity to be combined with typical
boundary information such as intensity gradients. The two
types of energy are transformable into each other however,
and by transforming the region energy into a boundary en-
ergy we can cast the global optimization problem into the
form of a minimum mean weight cycle problem in a di-
graph. This problem has a simple, polynomial-time algo-
rithm that requires no initialization, and is highly paralleliz-
able. We described experiments using combinations of re-
gion and boundary information that illustrate the strength
of the method. The energy is of a very general form, al-
though always globally optimizable by the same algorithm,
and offers many other possibilities for further modeling.

Acknowledgments.The authors wish to thank the Instituto
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