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ABSTRACT

Although subband histograms of the wavelet coefficients of
natural images possess a characteristic leptokurtotic form,
this is no longer true for wavelet packet bases adapted to
a given texture. Instead, three types of subband statistics
are observed: Gaussian, leptokurtotic, and interestingly, in
some subbands, multimodal histograms. These subbands
are closely linked to the structure of the texture, and guar-
antee that the most probable image is not flat. Motivated by
these observations, we propose a probabilistic model that
takes them into account. Adaptive wavelet packet subbands
are modelled as Gaussian, generalized Gaussian, or a con-
strained Gaussian mixture. We use a Bayesian methodol-
ogy, finding MAP estimates for the adaptive basis, for sub-
band model selection, and for subband model parameters.
Results confirm the effectiveness of the proposed approach,
and highlight the importance of multimodal subbands for
texture discrimination and modelling.

1. INTRODUCTION

Texture is important in many image processing applications,
and wavelet packets have played an important role in its de-
scription and analysis [1]. In addition to the use of fixed
bases, several methods have been proposed for selecting the
‘best’ wavelet packet basis for a texture, but these have been
ad hocboth in the criterion used to define ‘best’, and in the
‘distance’ used to distinguish textures. In particular, no un-
derlying texture model has been used. Bradyet al. [2] ad-
dress this problem within a Bayesian framework. For each
texture class, they assume a Gaussian distribution for im-
ages of that class, with inverse covariance lying in the large
set of operators diagonal in some wavelet packet basis. An
exact MAP estimate of the covariance is then found, which
has the side effect of specifying a preferred wavelet packet
basis for each class, in which the covariance is diagonal.
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The Gaussian ansatz appears to go against the observa-
tion that in standard wavelet bases, the subband histograms
assume a leptokurtotic form [3, 4]. However, the latter can
no longer be assumed to hold for coherent textures as op-
posed to natural images, or for different bases. In this sit-
uation, a Gaussian is a useful minimal assumption. The
failure of leptokurtosis for adaptive bases and coherent tex-
tures was confirmed in [5]. Although many of the adaptive
subbands are leptokurtotic, many of the remainder appear
Gaussian. Most interestingly, in some subbands a com-
pletely different behaviour is observed: the subband his-
tograms are bimodal. (Examples are shown in figure 2.)
These subbands are usually narrow in frequency content;
the presence in the subband histograms of maxima at non-
zero coefficient values thus indicates the likely presence of
approximate periodicities running throughout images of that
texture class, with frequencies in the support of these sub-
bands. The importance of this fact for texture modelling is
clear. In the absence of such phenomena,i.e. if all histogram
modes are at zero, the most probably image of that texture
class is flat, and thus ‘untextured’. This conflicts strongly
with our prior knowledge: the most probably images of raf-
fia, or of forest in a remote sensing image for example, are
not flat.

Motivated by this empirical evidence, we extend the ap-
proach proposed in [2] by relaxing the Gaussian assumption
to consider three possible models for each adaptive sub-
band: Gaussian, generalized Gaussian, and a constrained
mixture of three Gaussians. A Bayesian methodology is
used to compute MAP estimates for the adaptive basis, for
the subband models, and for the subband model parame-
ters. Results confirm the existence of multimodal subbands,
demonstrate the accuracy of the modelling, and highlight
the importance of the new multimodal statistics and models
for texture analysis and description.

The paper is organized as follows. Section 2 describes
the models and how we estimate their parameters. Section 3
describes how we select the model for each subband. The
MAP estimate of the adaptive basis is addressed in sec-



tion 4. Experimental results are reported in section 5. In
section 6 we discuss the results, and draw conclusions.

2. MODELS FOR DESCRIBING SUBBAND
DISTRIBUTIONS

While the adaptive wavelet packet bases in [5] were inti-
mately connected to the Gaussian assumption, it is clear
that the usefulness of the adaptive wavelet packet decom-
position extends further. It allows the analysis to focus on
important regions of the Fourier domain, while maintaining
spatial localization; and adaptivity means that it is reason-
able to assume that the different subbands so identified are
somewhat independent. In any case, that is the assumption
we will make here. (Note that this does not mean that the
standard wavelet coefficients are independent. Indeed one
interpretation of the adaptive wavelet packet models is as a
way of encoding long-range dependencies between standard
wavelet coefficients.)

The distributions that we will consider as models for
a given texture class are defined by the following data: a
dyadic partition of one quadrant of the Fourier domain,T ,
which, given a mother wavelet, defines a wavelet packet ba-
sis; for each subband inT , one of three models: Gaussian
(G), generalized Gaussian (GG), or a constrained mixture of
three Gaussians (MoG) to model the multimodal statistics;
and for each subband, the appropriate model parameters.
Below we describe the estimation procedures for GG and
MoG, the case of G being familiar.

2.1. Generalized Gaussian Model

The generalized Gaussian distribution for a subband is

Pr(wα|fα, sα) = Z−1
α e−fα

∑
i∈α |wα,i|sα , (1)

whereα is the index of the subband, andi indexes the co-
efficients within that subband;wα,i is a wavelet packet co-
efficient, andwα is the set of all coefficients in subbandα;
sα is called the shape factor, whilefα controls the width
of the distribution; andZα is a normalization constant that
depends onfα, sα, and the size of the subband. To estimate
the parameters of the generalized Gaussian model, we use
invariant MAP estimation [6] with Jeffreys’ prior, which is
equivalent to maximum likelihood. This gives the equations

Nα − sαfα
∑

i∈α
|wα,i|sα = 0 (2)

Nα ln fα −NαΨ
(

1 +
1
sα

)

+ s2
αfα

∑

i∈α
|wα,i|sα ln |wα,i| = 0 , (3)

whereΨ is the digamma function. We solve equations (2)
and (3) numerically forfα andsα using the algorithm in [4].

2.2. Constrained Mixture of Gaussians

We model subbands showing multimodal behaviour with a
constrained mixture of three Gaussians. One of the compo-
nents has meanµα,0 = 0, varianceσ2

α,0, and prior proba-
bility pα,0 in the mixture. The other two components have
meansµα,1 = −µα,2, variancesσ2

α,1 = σ2
α,2, and prior

probabilitiespα,1 = pα,2. The constraints ensure that the
mean of the distribution is zero. The mixture of Gaussians
is given by

Pr(wα|pα,j , µα,j , σα,j) =

∏

i∈α




2∑

j=0

pα,j(2πσ2
α,j)
−1/2 e

− 1
2

(
wα,j−µα,j

σα,j

)2]
.

The invariant MAP estimates of the model parameters are
computed using the EM algorithm [7].

3. MODEL SELECTION

To perform model selection for a given subbandα in decom-
positionT , we again use MAP estimation. Letθα denote the
set of parameters for the modelMα ∈ {G,GG,MoG} for
subbandα. The probability ofMα andθα is given by

Pr(θα,Mα|wα) ∝ Pr(wα|θα)Pr(θα|Mα)Pr(Mα) . (4)

We use Jeffreys’ prior for theθα. Under suitable assump-
tions about the range of each parameter, invariant MAP es-
timation is equivalent to setting Pr(θα|Mα) = e−dm lnA in
equation (4), wheredm is the dimensionality of the model.
That is, it is as if the parameter distributions were all uni-
form on some (large) intervalA. Note that this term penal-
izes model complexity.A is not determined automatically,
but the result of model selection is not very sensitive toA
once an order of magnitude has been set. We suppose that
Pr(Mα) = 1/3, i.e. that all models are equally likelya pri-
ori. The probability is maximized by first maximizing over
θα for each modelMα, as already described, and then pick-
ing the model with the highest value of the above probabil-
ity.

4. TREE DECOMPOSITION

Dyadic partitions are in bijective correspondence with quad-
trees, so to estimate the adaptive wavelet packet basis we
use a depth-first search optimal subtree algorithm, a form
of which was also used in [8]. This is optimal for weighted
trees for which the optimal weight of a subtree is indepen-
dent of the rest of the tree. The probability of the adaptive



basis, the model, and its parameters is

Pr(Θ, T |w) ∝ Pr(w|Θ, T )Pr(Θ|T )Pr(T )

= Pr(T )
∏

α∈T
Pr(wα|Θα, T )Pr(Θα|T ) , (5)

wherew is the training data,i.e. all wavelet packet coeffi-
cients;Θ denotes the set of models and parameters for all
subbands; andΘα denotes those for subbandα. We choose
the prior probability of a basis to be

Pr(T ) = B−1e−β|T | = B−1
∏

α∈T
e−β ,

where|T | is the number of subbands in the basis, andB is
a normalization constant. This prior penalizes bases with
many subbands, and effectively regularizes the functionsθα
viewed as functions of frequency. With this choice, the log-
arithm of equation (5) satisfies the criterion for the optimal
subtree algorithm, where the weight of a leaf vertex is given
by equation (4) evaluated at the MAP estimates. We thus
find exact MAP estimates forΘ andT .

5. EXPERIMENTAL ANALYSIS

We applied the above modelling framework to a number of
textures in the Brodatz album [9]. The results reported here
are for Raffia and Herring, shown in figure 1, but similar
results were obtained for other textures.

The optimal decompositions in figure 1(b) and (d) were
obtained withA = 5, β = 300, which produced reasonable
results for all the textures that we analysed. As expected,
the multimodal subbands focus on frequencies related to the
structure in the texture. Figure 2 plots the wavelet packet
coefficient histograms and the fitted models for some sub-
bands, showing that the model selection and parameter es-
timation procedures work well. The interested reader can
find further results on Brodatz textures, as well as results on
texture classes taken from remote sensing images, in [10].

5.1. Multimodal subbands and texture discrimination

For all unimodal subbands, the most probable value of the
wavelet packet coefficients is zero,i.e. the most probable
image composed of these subbands is untextured. In con-
trast, even though the multimodal subbands have zero mean,
the most probable value for the coefficients is non-zero, and
therefore textured. Since the multimodal subbands typically
have narrow frequency support, we can think of them as
capturing the principal periodicities in the texture, in a man-
ner analogous to the Wold decomposition [11]. This is made
clear by the positions of the MoG subbands in the decom-
position in figure 1(b). Because of their close relation to
structure, multimodal subbands provide a powerful tool for
texture discrimination as well as description.

(a) (b)

(c) (d)

Fig. 1. a) Raffia; b) its decomposition; (c) Herring; (d) its
decomposition. Colour denotes the model for each subband:
black, GG; grey, G; white, MoG.

Consider again the Raffia (R) and Herring (H) textures.
LetSi : i ∈ {R,H} denote the set of multimodal subbands
for each texture. LetWi,j denote the set of|Si|-dimensional
vectors of undecimated wavelet packet coefficients from the
subbandsSi, computed from texturej. For fixedi, Wi,R

andWi,H can be plotted as differently coloured points in
|Si| dimensions. The first row of figure 3 shows projec-
tions from such a plot onto two pairs of subbands from
SR. Red/dark patterns correspond to coefficients from Raf-
fia; green/light patterns correspond to coefficients from Her-
ring. As can be seen, the two textures are well separated in
this space, with the coefficients of Raffia forming a ‘ring’
around the coefficients of Herring. For the sake of compar-
ison, the second row of figure 3 shows similar plots of the
wavelet packet coefficients from unimodal subbands. The
figure shows clearly that for these subbands, the two tex-
tures are much less easily separable.

6. DISCUSSION AND CONCLUSION

The model developed herein can be seen in a number of dif-
ferent ways. Viewed as a modelling tool, adaptive wavelet
packet bases allow the description of long-range dependen-
cies amongst standard wavelet coefficients in a given sub-
band, while maintaining the advantages of independent sub-
bands. In this sense, they are complimentary to, for exam-
ple, hidden Markov tree models, which capture well depen-
dencies across scale. The modelling of the multimodal sub-
bands means that the distributions no longer have the pe-
culiar property that the most probable image is untextured.
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Fig. 2. Subband histograms (solid blue) and fitted models
(dashed red) for four subbands from figure 1(b).

Because they are better models, it seems likely that their use
will enable performance improvements in applications such
as classification and denoising.

Viewed as an analysis tool, the models developed here
can be seen as part of a process of separating mixture dis-
tributions into components that are closer to physical quan-
tities. The models do this in two ways. First, they focus
on classes of image that can be regarded as coherent tex-
tures. Second, they separate the multimodal distributions of
certain wavelet packet subbands from the generic leptokur-
tic distributions of standard wavelet subbands. The benefits
of performing this type of ‘microscopy’ have already been
demonstrated by the fact that the Gaussian models of [2] led
to the identification of the multimodal subbands. The de-
gree of structure that can be observed in figure 3 indicates
that the new models described here may well lead to other
novel insights.
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