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1 Introduction

In the years 1994–95 twelve countries participated in the International
Adult Literacy Survey (IALS). Literacy is defined as using printed and writ-

ten information to function in society, to achieve one’s goals and to develop

one’s knowledge and potential. The IALS developed a rigorous framework,
building on work done in the 1985 Young Adult Literacy Survey (YALS)
which consisted of three scales: prose, document and quantitative. It was
felt that these three scales were the most significant for measuring literacy
and sufficiently practical, with speaking and listening being too costly to
measure. We concentrate on the measurement of prose in this paper. The
data were reported by giving the percentage of individuals achieving prose
level 1, 2, . . . , 5, with level 1 being worst. One way of analyzing these data
is to dichotomize the data around the lowest cutpoint (i.e., the threshold
between level 1 and level 2) to give percentages of adults in each country
who could/could not reach a basic level of literacy. This is of particular in-
terest to educationalists and policy makers concerned with social inclusion
and its educational and economic implications. For the prose measure, the
data can then be summarized in the form of Table 1.

2 Methodology for league table construction

2.1 Effective sample sizes

The IALS used complex sample designs that varied with each country and
which involved both stratification by factors such as region or school size,
and clustering of pupils within schools. This complicates the issue of the
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TABLE 1. Percentage of adults not reaching at least Level 2 for 12 countries
(Switzerland was split into two parts according to language and is treated as
if it were two separate countries. Canada was treated as English-speaking and
Belgium (Flanders) as Dutch). SE denotes the standard error of this percentage
and n the sample size.

Male Female
Country n % Level 1 SE n % Level 1 SE

Sweden 1289 7.31 0.80 1355 7.18 1.03
Netherlands 1358 10.39 1.08 1479 10.49 0.98
Germany 938 14.31 1.89 1124 13.31 1.85
Australia 3767 18.33 0.85 4437 15.69 0.78
Canada 1979 18.76 2.03 2521 14.44 2.04
New Zealand 1821 19.94 1.28 2402 16.52 1.46
Belgium (Flanders) 1066 15.55 1.69 1180 21.61 2.29
Switzerland (French) 682 17.46 1.88 751 19.44 1.70
Switzerland (German) 659 18.30 1.51 733 20.66 1.66
United Kingdom 1730 21.38 1.26 2081 21.60 1.82
Ireland 1050 24.21 2.91 1319 20.93 1.32
United States 1416 23.00 1.65 1577 18.76 1.45
Poland 1431 43.72 0.91 1569 41.74 1.74

denominator to be used in mixed binomial models as the effective sample
sizes will tend be considerably less than the actual number of students in
each country, due to the intra-cluster correlations.
Cochran (1977) states that under simple random sampling the sample pro-
portion p = a/n is an unbiased estimate of the population proportion
P = A/N and that an unbiased estimate of the variance of p obtained
from the sample is

v(p) = s2

p =
N − n

(n − 1)N
pq

which simplifies even further assuming large N, and hence a negligible finite
population correction, to

v(p) =
pq

n − 1
.

By rearranging these expressions one can obtain the corresponding sample
size n under simple random sampling, e.g.,

n =
N(pq + v(p))

pq + Nv(p)

for the former expression. Thus, it is possible to use the summary infor-
mation in Table 1, consisting of percentages and their standard errors, to
calculate an effective sample size corresponding to the number of inde-
pendent observations in a theoretical simple random sample. This allows
the use of standard mixed binomial modelling software with the effective
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sample size as the binomial denominator, reflecting the uncertainty in the
percentages of the original table.

2.2 Random effect models

Probabilities are commonly either modelled through a binomial logit or a
Poisson log model, with the latter one being less adequate in this example
as we have relatively large probabilities and small sample sizes involved.
The variability of the upper-level units, here countries i, can be taken into
account by adding a random intercept zi with unspecified distribution g(·)
to the linear predictor, so that the the binomial random effect model takes
the form

log
pij

1 − pij

= β′xij + γ′si + zi (1)

where xij contains the lower-level covariates (here only gender), si contains
the upper-level covariates (here only the factor for language is considered),
γ is a non-random parameter and β is a fixed or random parameter. Such
variance component models with unspecified random effect distribution
can be conveniently fitted using the method of nonparametric maximum
likelihood (Aitkin, Hinde & Francis, 2005, p. 440ff), which is implemented
in the R package npmlreg (Einbeck, Hinde & Darnell, 2007). In short,
the density g(·) is approximated by a discrete distribution with K mass
points, the locations zk and masses πk, k = 1, . . . , K, of which are estimated
through the EM algorithm. Thereby, the E-step corresponds to updating
of the probabilities wik = P (unit i comes from mass point k), and the M-
step to a weighted generalized linear model fit with weights wik. From
the set of weights after the final EM iteration, one computes posterior
intercepts zi =

∑
k wikzk which represent the cluster-level contribution to

the response, adjusted by the covariates. As this posterior intercept “sticks”
to the cluster for all its lower-level units, it forms a characteristic of the
cluster (country). Sofroniou, Einbeck & Hinde (2006) used the posterior
intercept for the construction of league tables in the absence of upper-level
covariates.

3 Results and conclusions for the literacy survey

We considered several additive logistic random effect models of type (1).
To keep the model parsimonious (with only 26 observations available), the
models considered exclude a language.gender interaction term and ran-
dom coefficients. Fitting gender as a covariate and no language factor re-
quires 5 masspoints for the random intercept distribution and has a dispar-
ity of −2 logL = 229.0 with df = 16. Table 2 gives posterior probabilities
of the membership of each country to a given component. It suggests that
there are two main groups of countries, two countries who performed con-
siderably better (Sweden and the Netherlands), and one low scoring outlier
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TABLE 2. Posterior probabilities for the IALS data.Posteriorinterept MasspointsInterept �2.602 �2.156 �1.599 �1.379 �0.330Proportion 0.077 0.093 0.434 0.319 0.077Sweden �2.60 1.00Netherlands �2.16 1.00Germany �1.72 0.21 0.79Australia �1.60 1.00Canada �1.59 0.97 0.03New Zealand �1.58 0.92 0.08Belgium (Flanders) �1.58 0.89 0.11Switzerland (Frenh) �1.54 0.72 0.28Switzerland (German) �1.45 0.34 0.66Ireland �1.38 1.00United Kingdom �1.38 1.00United States �1.38 0.01 0.99Poland �0.33 1.00Posterior probabilities: p � 0:95, 0:90 � p < 0:95, p < 0:90.
(Poland). Adding language dichotomized into English/non-English speak-
ing required 5-masspoints and reduced the disparity to 223.3 with df = 15.
This was further improved by using all 6 levels of language, with a dis-
parity of 210.3, df = 15, and 3 masspoints. However, several categories
are based on only a single country and so their performance levels be-
come confounded with language spoken. Therefore, we experimented with
adding the fitted upper-level contribution to the posterior intercept, yield-
ing a similar league table to the one presented above, but further research
on issues such as representing the uncertainty corresponding to each value
is required. These last two models provide some evidence in favour of the
suggestion that one contribution to the observed differences in performance
may be that of the language of testing.
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