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Abstract. The boundary element method (BEM) is a popular tool for wave scattering prob-
lems. To reduce the number of degrees of freedom required, the partition of unity BEM (PU-
BEM) was developed in which the approximation space is enriched with a linear combination
of plane-waves. Recent work has shown that the element ends are more susceptible to errors
in the approximation than the mid-element regions. In this paper we propose that this is due to
the reduced order of continuity in the Lagrangian shape function component of the basis func-
tions. It will demonstrated that choosing trigonometric shapes functions, rather than classical
quadratic shape functions, provides accuracy benefits.
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1. INTRODUCTION

The boundary element method (BEM) was first used to solve the Helmholtz equation
by Banaugh and Goldsmith [1]. Since then, the BEM has become awell-established technique
for wide range of problems. In particular, the BEM’s formulation is useful for problems with
infinite domains as it automatically satisfies boundary conditions at infinity and no domain
truncation is required.

Babuŝka and Melenk developed the partition of unity method[2] in which, for acous-
tics, the approximation domain may be enriched by a linear combination of plane waves. This
was developed for the FEM by Laghroucheet al. [3], for the collocation BEM by Perrey-
Debainet al. [4], and for the Galerkin BEM by Bériotet al. [5]. The partition of unity
boundary element method (PU-BEM) significantly reduces thenumber of degrees of freedom
per wavelength,τ , required for a prescribed error.

Trevelyan and Coates [6] presented an adaptive basis for thecollocation PU-BEM. They
noted that residual errors were largest at the ends of elements. It was suggested that this was
due to the lack of continuity in the quadratic shape functions used. This paper will introduce a
novel set of shape functions that provide greater continuity between elements and, thus, reduce
these residual errors.



2. PARTITION OF UNITY BOUNDARY ELEMENT METHOD

LetΩ ⊂ R2 be a domain, with no exterior boundary and with a smooth internal scatterer
of boundary∂Ω = Γ. In the frequency domain, propagation of sound waves is governed by the
Helmholtz equation,

∇2φ(q) + k2φ(q) = 0, q ∈ Ω, (1)

where∇2 is the Laplacian operator,φ ∈ C is a wave potential, andk is the wavenumber.
The derivation of the classical, polynomial basis BEM for (1) is well known [7]. Using

this method, the wave potential on the boundary of a scatterer is written as

φe(q) =

J
∑

j=1

Nj(ξ)φ
e
j, (2)

whereφe is the potential atq, described by the local coordinateξ on elemente, J is the number
of shape functions,Nj is thejth shape function andφj is its associated potential. In the PU-
BEM, the approximation space is enriched by a linear combination of plane waves at each
element node, thus the potential on the boundary of a scatterer is expressed as

φe(q) =
J

∑

j=1

Nj(ξ)
M
∑

m=1

Ae
jm exp

(

ik de
jm · q

)

,
∣

∣de
jm

∣

∣ = 1, (3)

whereM is the number of plane wave basis functions per node on the element,de
jm ∈ R2 are

the prescribed directions of the plane waves in the basis, and Ae
jm ∈ C are their amplitudes

which are sought as the solution to the BEM system.
M may be chosen such that a prescribedτ is satisfied, locally and globally. For FEM

and BEM approximations,τ ≥ 10 is, generally, required; however, it has been shown that, for
the PU-BEM,τ ≃ 3 is sufficient for an accuracy∼ 1% [4].

3. TRIGONOMETRIC SHAPE FUNCTIONS

Quadratic shape functions are commonly used in the both the FEM and BEM; however,
no study of shape functions has been carried out for the PU-BEM.

Quadratic shape functions only provideC0 continuity. Here, we propose a novel set of
shape functions, using trigonometric functions, which provideC1 continuity; in some cases, it
is possible to obtainC∞. For a 3-noded, continuous element, these shape functions are:

N1(ξ) = −1

4
cos(πξ)− 1

2
sin

(π

2
ξ
)

+
1

4
, (4)

N2(ξ) =
1

2
cos(πξ) +

1

2
, (5)

N3(ξ) = −1

4
cos(πξ) +

1

2
sin

(π

2
ξ
)

+
1

4
. (6)

These shape functions can be seen in Figure 1a alongside the traditional quadratic shape
functions (Figure 1b). The added continuity of these new shape functions can be observed at
the element ends where they have zero gradient, givingC1 continuity. If adjoined elements are
the same length,C∞ continuity is obtained.
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(a) Trigonometric shape functions
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(b) Quadratic shape functions

Figure 1. Shape functions for 3-noded element with local coordinateξ ∈ [−1, 1]

4. NUMERICAL RESULTS

4.1. Scattering by a circular cylinder

Consider a cylindrical scatterer, of unit radius, impingedby a unit-amplitude, incident
plane wave propagating in the directiondI. The boundary condition,∂φ/∂n = 0, is chosen,
wheren is the outward pointing, unit normal; this is known as the sound-hard condition. The
analytical solution for the total field is known [8]. Errors of simulations,E , are calculated using
L2 norms:

E =
‖Φ− Φex‖L2

‖Φex‖L2

, (7)

whereΦ are potentials calculated from the PU-BEM, andΦex are potentials calculated analyt-
ically.

Figure 2 shows a comparison of errors from PU-BEM simulations, of this problem,
using trigonometric and quadratic shape functions over a range of wavelengths. CHIEF points
were used to overcome the nonuniqueness problem [9] and the system matrices were solved
using singular value decomposition.
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Figure 2. Errors analysis for the hard, unit-radius, cylindrical scatter problem: incident wave
dI = (1, 0)

Figure 2 shows clearly that trigonometric shape functions provide an accuracy benefit;
however, a plot of the errors over the surface of the cylinderis required to demonstrate where



these accuracy improvements originate. Figure 3 shows a comparison of the errors arising
from each type of shape function;s ∈ [0, 1] is a local coordinate that runs clockwise around the
entire cylinder starting from the cartesian coordinate(1, 0). Using quadratic shape functions,
the error peaks are prominent at the end of the two elements. Using the trigonometric shape
functions has significantly reduced the magnitude of these errors.
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Figure 3. Error,|φ− φex|, over surface of circular cylinder problem,k = 50

4.2. Scattering by five cylinders

Consider a set of sound-hard, cylindrical scatterers of arbitrary radii, centred at arbitrary
coordinates, impinged by a unit-amplitude, incident planewave of directiondI. Linton and
Evans [10] published an analytical solution for this problem, by means of an infinite series.
PU-BEM simulations were run, using quadratic and trigonometric shapes functions, for the
problem of five, sound-hard, unit-radius cylinders equallyspaced atr = 3 from the origin.
This problem is chosen because it contains internal reflections between cylinders; this can be
seen in the real part of the potential solution, plotted in Figure 4.

Figure 4. Illustration of the internal reflections caused bythe five-cylinder geometry:λ = 0.25

Figure 5 shows the errors,E , from using both types of shape function, over a range of
wavelengths. It is clear that the trigonometric shape functions provide an accuracy benefit for
the majority of simulations. This is because of the increased continuity, of the shape functions,
between elements.
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Figure 5. Error analysis for the five-cylinder scatterer problem: incident wavedI =
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4.3. Scattering by a capsule

Scattering by a capsule introduces aC1 geometry (see Figure 6). Regions where lines
and arcs blend together are susceptible to errors. To investigate the ability of trigonometric
shape functions to capture the effect of these this type of boundary, the capsule in Figure 6 was
devised; elements of equal length (i.e. elements ends ats = 0, 1/3, 2/3) were used to maximise
the continuity of the shape functions. As all geometry points are evaluated analytically, this
does not affect the accuracy of evaluation of the integration kernels.
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Figure 6. Capsule discretised by three equal-length elements

Figure 7 shows the errors,E , from using both types of shape function, over a range of
wavelengths; exact solutions,Φex, were evaluated using a converged method of fundamental
solutions (MFS) approach. The trigonometric shape functions produce a clear accuracy benefit
at lower wavenumbers; however, at higher wavenumbers, the benefits are reduced. This is
because, at high wavenumbers, there are a large number of plane waves in the expansion which
become the most dominant part of the basis, i.e. the observable effect of the shape functions is
reduced.

Figure 8 shows the absolute difference, along the surface ofthe scatterer, between the
PU-BEM and converged MFS solution. Significant errors at theelement ends (denoted by the
dashed lines) have been reduced by the trigonometric shape functions. Significant errors at
the blend points between the lines and arcs have also been reduced; however, these errors are



still large in comparison to the errors over the rest of the boundary. The trigonometric shape
functions, though continuous through these points, are notsufficient to describe, ideally, the
effect the geometry has on the wave potential in those areas.
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Figure 7. Error analysis for the hard capsule problem:dI = (0.5,
√
3/2)
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Figure 8. Error,|φ− φex|, over surface of capsule problem,k = 25

5. CONCLUSIONS

Using the PU-BEM for wave scattering simulations, errors are found to be at a maxi-
mum at the element ends. This is due to a lack of continuity, atthe element ends, associated
with Lagrangian shapes functions. Trigonometric shape functions increase the continuity at the
element ends and, thereby, improve the approximation of potential of such problems. It should
be noted that these accuracy gains are not replicable for piecewise quadratic BEM simulations.

For geometries withC1 continuity, the PU-BEM is susceptible to errors at geometry
blend points. Though trigonometric shape functions do provide an accuracy benefit, more con-
tinuity is required. One possible approach is to use non-uniform rational B-splines (NURBS)
which can represent circular arcs analytically.
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