
Further Results on the Probability Theory of
Capacity Value of Additional Generation

C.J. Dent
School of Engineering and Computing Sciences

Durham University
Durham, UK

chris.dent@durham.ac.uk

S. Zachary
School of Mathematical and Computer Sciences

Heriot-Watt University
Edinburgh, UK

s.zachary@hw.ac.uk

Abstract—New theoretical results regarding the capacity value
of additional generation are presented, the motivation being ex-
planation of results from applied renewables integration studies.
Of particular note are the dependence of calculated values on
underlying risk level for any capacity of additional generation, the
upper limit on capacity value where there is a given probability
of near-zero available capacity, and a closed form result for the
case where the distribution of available existing capacity may be
approximated as an exponential function. Examples of how these
main results may be applied are presented.
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I. INTRODUCTION

CONCEPTS of capacity value are widely used to quantify
the contribution of renewable generation technologies

within generation adequacy assessments. Specific definitions
include Effective Load Carrying Capability (ELCC, the extra
demand which the additional generation can support with-
out increasing the chosen risk metric), and Equivalent Firm
Capacity (EFC, the completely firm capacity which would
give the same risk level if it replaced the additional variable
generation). These are calculated with respect to adequacy
indices such as the Loss of Load Probability (LOLP) at time of
annual peak, or the Loss of Load Expectation (LOLE, the sum
over periods of LOLP, or equivalently the expected number of
periods of shortage in a given time window).

There are many surveys in the literature of capacity value
calculation methods, e.g. [1]–[3]. A number of papers have
been published recently on analytical calculation approaches
which are valid for small additional capacities [4], [5], or for
the special case where the distribution of margin of existing
capacity over demand has an exponential tail [6], [7]; these
analytical approaches are surveyed in [8]. [9] and [10] provide
general surveys of adequacy assessment methods. The IEEE
PES LOLE Working Group website contains useful presenta-
tions on current industrial adequacy assessment practices [11].
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This paper will introduce a number of new analytical results
on the capacity value of additional generation, and show
how they can be used to interpret the results of practical
calculations. First a survey of existing analytical results re-
garding capacity value calculations is provided (Section II-A).
This includes the ‘time-collapsed’ or ‘snapshot’ picture which
may be used to formulate theoretical results on Hierarchical
Level I (no network restrictions) capacity value calculations
in a common manner for both ‘whole-season’ indices such as
LOLE and ‘single period’ indices such as annual peak LOLP;
this simplifies the mathematical exposition and helps clarify
which what features of distributions drive the capacity value
results. The survey is a condensed version of that provided in
[12], and forms the basis of the new results to follow.

Section II-B presents a number of useful technical results
on capacity values, most significantly the formulation in (7)
of the capacity value as a function of required margin k. This
provides the most convenient means to explore the dependence
of capacity values on shifts in risk level; as EFC and ELCC are
special cases of this more general formulation, it unifies them
mathematically and permits single proofs of results which
apply to either.

The main theoretical contributions are found in Section III:
• The result in Section III-A that, given probability p that

available additional capacity Y is below a value a, this
places a ceiling on the calculated capacity value of Y .

• Generalisation in Section III-B, to any capacity of addi-
tional generation, of the result showing how the depen-
dence of capacity value results on shifts of the distribution
of margin is determined by whether the distribution of
margin of existing capacity over demand is lighter- or
heavier-tailed than exponential; previously this has only
been proved for small additional capacities.

• An analytical result in Section III-C for the capacity
value of additional generation where the distribution of
available existing capacity may be approximated, for
capacities below maximum demand, by an exponential
function. Unlike the previous result quoted in II-A3,
this requires no assumption of statistical independence
between additional generation and demand; however like
other all other results in this paper it requires conventional
capacity to be independent of all else.



These rigorous results are all of practical importance in
understanding results from capacity value studies, as shown
by the example results in Section V using data described in
Section IV. Finally conclusions are presented in Section VI.

II. PROBABILITY THEORY: BACKGROUND AND
TECHNICAL RESULTS

In this section, we first briefly survey previous analytical
results concerning the capacity value of additional generation
which may be derived using probability theory, including the
‘snapshot’ picture in which we work and results which will
be generalised in the next section. We then present a number
of significant new technical results.

A. Background and Previous Results

1) Snapshot Theory: We present first a “time-collapsed”
or “snapshot” description of the theory, appropriate to the
distributions of the variables involved at a given instant of
time. This was introduced in [4] and described fully in [12].

Suppose that existing capacity minus demand is represented
by a random variable M , with distribution function FM and
density function fM . The capacity value of additional gener-
ation represented by a random variable Y is in an appropriate
sense a deterministic capacity which is equivalent to it in terms
of an associated risk. Suppose that Y ≥ 0 with distribution
function FY and density function fY . We denote its mean and
variance by µY and σ2

Y respectively. Unless Y is a constant,
this capacity value is typically somewhat less than the mean of
Y . The two most commonly used definitions of the capacity
value of Y are:

Effective load carrying capacity (ELCC): the solution νELCC
Y

of
P(M + Y ≤ νELCC

Y ) = P(M ≤ 0) = FM (0), (1)

i.e. the amount of further demand which may be added while
maintaining the same level of risk.
Equivalent firm capacity (EFC): the solution νEFC

Y of

P(M + Y ≤ 0) = P(M + νEFC
Y ≤ 0) = FM (−νEFC

Y ), (2)

i.e. the amount of deterministic capacity νEFC
Y whose addi-

tion would result in the same level of risk as that of the
addition of the random capacity Y .

It is important to note that both νELCC
Y and νEFC

Y depend on
the distributions of both M and Y .

2) Small Additional Capacity: In the case where M and Y
are independent, and in which the variation in Y is small in
relation to that in M , [4] showed that to a good approximation
if M is continuous (and thus has a density fM (m)),

νEFC
Y = νELCC

Y = µY −
f ′M (0)

2fM (0)
σ2
Y , (3)

where the error is negligible in relation to σ2
Y as the latter

becomes small (in relation to the variation in M ). This formula
may also be applied in the case where Y and M are not
independent, by replacing µY and σY by the mean and SD of
Y conditional on M = 0, i.e. on being in the critical regime
where Y is both required and able to mitigate a shortfall.

3) Exponential Left Tail of M : A further special case
– which forms the basis of the Garver approximation [6],
[7] – arises when M and Y are independent and when the
distribution function FM of M may be treated as exponential
below some level m0, i.e. FM (m) = expλMm for m ≤ m0

for some λM > 0. The distribution of M + Y is then also
exponential below the level m0, i.e. for m ≤ m0,

P(M + Y ≤ m) = P(M + νY ≤ m), (4)

where νY is the solution of

E exp(−λMY ) = exp(−λMνY ). (5)

The results of [6], [7], in particular that νEFC
Y = νELCC

Y = µY ,
follow immediately from (5), though this most general form
was first presented in [12].

4) Capacity Values Over Extended Periods of Time: For
practical adequacy calculations, it is most common to calculate
indices such as Loss of Load Expectation, the sum of LOLPs
in individual sub-periods {t} within the extended period (e.g.
a future peak season) under study. For simplicity consider the
EFC νEFC

Y . (2) is now replaced by∑
t

P(Mt + Yt ≤ 0) =
∑
t

P(Mt + νEFC
Y ≤ 0), (6)

i.e. νEFC
Y is the additional deterministic capacity which would

substitute for the randomly varying additional capacity Y if
the same loss of load expectation is to be maintained.

In general all of the preceding theory remains applicable. In
particular the “extended time” theory collapses to the “snap-
shot” theory if we are able to regard the latter as corresponding
to the position at a randomly chosen point in time, provided
that the distributions of M and of Y conditional on M are
defined appropriately.

B. New Technical Results

1) Effect of Distribution Shifts: In order to both to study
the effect of varying risk levels and to give a mathematically
unified treatment of ELCC and EFC, it is convenient, for all
k, to define νkY be the solution of

P(M + Y ≤ νkY + k) = P(M ≤ k) = FM (k). (7)

Note that, since Y ≥ 0, it follows from (7) that νkY ≥ 0 for
all k. Comparison of (1) and (7) shows that νkY is the capacity
value of Y corresponding to “shifting” the risk level by k;
more precisely it is the ELCC corresponding to the shifted
random variable M − k. It now follows that νELCC

Y = ν0
Y ,

while, from (2) and (7), νEFC
Y = ν−cY where c is the solution of

ν−cY = c. Thus νELCC
Y and νEFC

Y are both particular instances
of the ‘generalised’ capacity value νkY .

2) General results for M and Y independent: In this case,
(7) may be written either as∫ ∞

−∞
dmfM (m)FY (νkY + k −m) = FM (k). (8)

or as ∫ ∞
0

dy fY (y)FM (νkY + k − y) = FM (k). (9)



From (8) (and the monotonicity of distribution functions) it
follows that if Y is replaced by an additional capacity Y ′

which is stochastically larger (i.e. FY ′(y) ≤ FY (y) for all y)
and is Y ′ is also independent of M , then νkY ′ ≥ νkY .

Now suppose that the probability represented by the left
side of (7) arises from values of M concentrated in its left
tail—as is natural since we are considering small risks, and
that the distribution function of M is convex in this region—as
is again natural. Then, from (9) and Jensen’s inequality (see,
for example, [13]),

FM (νkY + k − µY ) ≤ FM (k), (10)

so that necessarily νkY ≤ µY . Thus under these conditions the
capacity value of Y , in particular the ELCC or the EFC is at
most the mean µY of Y .

III. NEW RESULTS

A. Limit on Capacity Value of Y Given Probability of Near-
Zero Available Capacity

Suppose that Y and M are independent, and that there is
some a ≥ 0 and p > 0 such that P(Y ≤ a) = p, then,
from (7), for all k,

pP(M + a ≤ νkY + k) ≤ P(M ≤ k),

so that
νkY ≤ a− k + F−1

M

(
1

p
FM (k)

)
, (11)

regardless of how large may be the values of Y above k –
in other words, this probability of near-zero output cannot
be fully compensated in the calculation by the possibility of
very high output. This is particularly relevant in the case of
uncertain generation which may, with some probability p > 0,
fail entirely – in which case we use (11) with a = 0.

In the special case of ‘exponential M ’ given in Section
II-A3, the result (11) reduces to the simple form

νY ≤ a+
1

λM
ln p. (12)

B. Variation of Results with Risk Level

In the general case, when the above ‘exponential M ’ and
‘small Y ’ approximations of FM are not necessarily available,
it is important to understand how the capacity value νkY varies
with variation in the risk level k. For the distribution M , define
the (left-tail) hazard rate function

λM (m) =
fM (m)

FM (m)
=

d

dm
lnFM (m), (13)

and note that, for any m1, m2,

FM (m2) = FM (m1) exp

∫ m2

m1

dmλM (m).

For M and Y independent, (9) may be rewritten as∫ ∞
0

dy fY (y) exp

∫ νk
Y +k−y

k

dmλM (m) = 1. (14)

For the exponential case considered earlier, λM (m) is
constant over values of m in the left-tail region of M
(λM (m) = λM for all m ≤ m0) and so, from (14) the earlier
result that νkY is independent of k is obtained once more.
For a distribution whose left tail is lighter than exponential
(see Page 2 of [14] for the necessary formal definitions), in
general, for values of m in the left-tail region of M (i.e. in
the neighbourhood of k), λM (m) is increasing as m decreases;
hence in this case, in order for (14) to remain satisfied, the
capacity value νkY must decrease as k decreases (corresponding
to a more extreme level of risk). For a distribution whose
left tail is heavier than exponential, we obtain the reverse
inequality: for values of m in the left-tail region of M , λM (m)
is decreasing as m decreases, and hence in this case we have
the result that the capacity value νkY increases as k decreases.

C. Exponential existing capacity X , independent of all else

Suppose that M = X−D where X is the existing capacity
and D is demand. Suppose also that that the random variable
X is independent of all else, and that the distribution function
FX of X is such that, for x below the maximum possible
value of the demand D, FX(x) = ceλXx for some constant
λX . (Thus, in particular, the left tail of the distribution of X
is exponential.) We then have the following result.

1) Result: The distributions of both M and M+Y also have
exponential left tails below zero margin, each with the same
exponential constant λX . Further the additional generation Y
shifts the distribution of margin by a capacity value

νY =
1

λX
ln

(
E[eλXD]

E[eλX(D−Y )]

)
, (15)

i.e. P (M + Y ≤ m) = P (M ≤ m− νY ) for m ≤ 0.
2) Proof: The result stated in Section III-C1 follows from

two applications of the technical result used in Section II-A3,
namely that the convolution of a distribution with an exponen-
tial left tail and a distribution whose support takes a minimum
value results in a distribution which again has an exponential
left tail. This result is applied to obtain both the distributions
of M = X −D and of M + Y = X + Y −D, noting that X
is independent of all else.

3) Remarks:

• It is clear from (15) that if the installed capacity of Y is
large on a scale of 1/λX , then the capacity value νY will
be driven primarily by the part of the distribution of Y
at relatively low output, and the marginal capacity value
will be small relative to the mean of Y

• It is common in R+D work on capacity values to examine
dependence of the capacity value on the installed capacity
by constructing the additional capacity as Y = y+Ω,
where y+ is the installed capacity of additional generation
and Ω the load factor (a random variable). It follows that
the marginal capacity value as y+ is perturbed is

∂

∂y+
νY =

E[y+ΩeλX(D−y+Ω)]

E[eλX(D−y+Ω)]
. (16)



The right hand side may be interpreted as a mean of Y ,
weighted by the factor eλX(D−y+Y ).

• In the case of a hindcast calculation, in which the (suit-
ably rescaled) empirical historic distribution (dt, yt) is
used as the predictive joint distribution of (D,Y ) (so that
e.g. the LOLE is given by N−1

y

∑
t FX(dt − yt) where

Ny is the number of years of data), then the expression
(15) for the capacity value becomes

νY =
1

λX
ln

( ∑
t e
λXdt∑

t e
λX(dt−yt)

)
. (17)

• As with all special case results on capacity values, the full
calculation is not so computationally intensive that the
special case is required in order to speed up calculations.
However, as is typically the case it is valuable in giving
transparent insights into the parts of the distributions
of M and Y which drive the results, and also the
parametrisation by λX of the distribution of X may be
useful in investigating the sensitivity of capacity value
results to the distribution of X .

IV. DATA FOR EXAMPLES

A. Demand Data

For this paper, coincident Great Britain wind resource and
demand data are available for the seven winters 2005-12. The
demand data are supplied by National Grid, the GB System
operator. This is based on historic metered demand (available
publicly at [15]); and an estimate of historic distribution-
connected wind output is added back on to the transmission-
metered demand series, giving a consistent series of gross
demand as seen at grid supply points under an assumption
of unchanging underlying demand patterns.

Historic demand data may be rescaled to a required un-
derlying level using each winter’s average cold spell (ACS)
peak demand. ACS peak demand is the standard measure of
underlying peak demand level in Great Britain; conditional on
a given underlying demand pattern, it is the median out-turn
winter peak demand [16].

The historic demand data is on a half-hourly time resolution.
However as for some examples coincident historic wind and
demand series are required, the demand series is converted to
hourly by taking for each hour the higher of the two half-
hourly demands contained therein.

In order to account for the operator’s practice of taking
emergency measures such as demand reduction in preference
to eroding the frequency response which protects the system
against sudden losses of infeed, 700 MW is added to all
demand values to represent the response which is supplied
by conventional generating units. This is consistent with the
statutory Capacity Assessment Study [17].

B. Wind Data

An hourly wind power resource dataset has been supplied
by National Grid, combining wind speed resource data from
NASA’s MERRA [18] reanalysis dataset (winters 1979-2012)
with installed capacity scenarios based on National Grid’s

‘Gone Green’ (GG) scenario of future system development. In
recognition of the fact that this is a methodological research
publication rather than a statement of actual GB adequacy
risk levels or wind capacity values for future years, the
installed capacity at each wind farm site is slightly adjusted
from the actual 2013 GG scenario; however the observations
regarding dependence of capacity values on input data are fully
representative of the real GB system. The dataset will thus be
referred to as ‘Adjusted Gone Green’ (AGG).

C. Conventional Plant Data

The distribution of available conventional capacity is con-
structed from individual unit capacities and availability prob-
abilities assuming independence between availabilities of dif-
ferent units. The list of units is that from National Grid’s
Gone Green scenario, and the unit capacities are again slightly
adjusted from those in the GG scenario (for the same reason
as wind). The availability probabilities for each class of units
are the central estimates from the Great Britain Electricity
Capacity Assessment Report [17].

The distribution of available conventional capacity is then
constructed by assuming that each plant is either fully available
or not available at all, and that the availabilities of the different
units are statistically independent. The convolution of these
distributions is usually referred to in power systems as a
capacity outage probability table [9].

D. Choice of Years of Data

In order to provide a representative range of GB example
results, calculations will be performed using the 2013/14 AGG
installed capacity and ACS peak demand scenario (a relatively
low adequacy risk scenario for GB), and the 2015/16 installed
capacity and ACS peak demand scenario (a relatively high risk
scenario for GB).

The 2013/14 scenario has ACS peak demand of 55.55 GW,
10.12 GW installed wind capacity, and a distribution of avail-
able conventional capacity with mean 58.82 GW and SD 1.95
GW. The 2015/16 scenario has ACS peak demand of 54.59
GW, 12.40 GW installed wind capacity, and a distribution of
available conventional capacity with mean 55.91 GW and SD
1.87 GW.

V. RESULTS

A. Relative Shifts of Distributions of Demand and Supply

This section demonstrates the result of Section III-B, namely
that if the distribution of M = X − D has a left tail which
is lighter than exponential, then a shift in the distribution of
M so as to increase risk will result in an increased capacity
value of Y .

1) Distribution Estimation: For this example
• the distribution of X is as described in Section IV;
• the distribution of D is the empirical distribution of

[historic demand rescaled to AGG ACS peak] for data
from the 7 historic winters 2005-12;

• the distribution of Y is the empirical distribution of
[historic MERRA wind records combined with AGG



Fig. 1. Snapshot LOLP as a function of required margin for the 2013/14
and 2015/16 AGG scenarios.

installed capacity scenario] for wind data from the 33
winters 1979-2012.

For estimating the peak season distribution of demand, a 20
week peak (winter) season is used, beginning on the first
Sunday in November. The distribution of available wind is
estimated from historic wind records from November to March
inclusive. M and D are assumed independent.

2) Effect on LOLP of Shift of Distribution of M : The
cumulative distribution function FM (m) is plotted in Fig. 1 for
the 2013/14 and 2015/16 scenarios. This may be interpreted
as the LOLP at a random snapshot in time if the distribution
of demand is shifted by m relative to the original scenario;
snapshot LOLPs may be converted to LOLE by multiplying
by 3360, the number of hours in a 20 week winter.

As required for the result of III-B to hold, the distribution
of M is everywhere light-tailed (i.e. decays faster than ex-
ponentially) for the examples considered; this follows from
inspection of FM (m) as viewed on a log scale in Fig. 1.

3) Effect on EFC of Shift of Distribution of M : Fig. 2
shows the dependence on the distribution shift m of the
calculated EFCs for the 2013/14 and 2015/16 AGG scenarios.
As predicted in Section III-B, due to the form of FM (m)
the EFC does indeed increase as the distribution of margin
is shifted so as to increase the risk level. This commonly
observed phenomenon is entirely due to the form of the
distribution of M ; if its tail were heavier than exponential
then the capacity value would decrease.

B. Upper Limit on Capacity Values

This section demonstrates the result of Section III-A,
namely that if there is a probability p that Y lies below
a certain level, this places an upper limit on the calculated
capacity value of Y , irrespective of its distribution elsewhere.

1) Data Used: This demonstration uses the same distribu-
tion of M as in Section V-A. The additional generation Y

Fig. 2. EFC as a function of margin shift for the 2013/14 and 2015/16 AGG
scenarios.

Fig. 3. Upper limit on EFC as a function of the probability of zero available
capacity for the 2013/14 and 2015/16 AGG scenarios.

considered has probability p of zero available capacity; it is
not necessary to specify other features of its distribution.

2) Results: Fig. 3 shows the upper limit on EFC as a
function of the probability p = P (Y = 0), for the 2013/14
and 2015/16 AGG scenarios. Section III-A has already noted
that this result implies that a probability of near-zero available
capacity from Y cannot be fully compensated by the possibil-
ity of very high available capacity. It is particularly striking
that at high probabilities of zero available capacity, this upper
limit can drop to a very low level indeed, to 500 MW or less.

3) Application: Tidal Barrage: This provides the clearest
demonstration of the reason behind the result in [19] that the
capacity value of a single large tidal barrage can be very small
as a percentage of installed capacity (the specific example used
was a proposed Severn Barrage scheme in SW England, with
over 8 GW installed capacity.) This is because typical ebb-



Fig. 4. Exponential approximations to distribution of X for the 13/14 and
15/16 scenarios.

generation schemes only generate when the sea level is low
relative to the water stored behind the barrage, i.e. they can
generate for less than half of a tidal cycle. For this tidal barrage
case, where for researchers outside the project team itself there
is inevitably limited access to information on proposed opera-
tional practices, this limiting result is particularly valuable as
it provides a rigorous upper bound which is independent of the
precise detail of the scheme. Specifically, it provides a general
result that the contribution of a single large barrage scheme
in isolation is very limited; it can only make a substantial
contribution to adequacy if there are other facilities whose
operation is out of tidal phase with that barrage.

C. Exponential X Approximation

This section demonstrates application of the closed form
result in Section III-C for the case where the distribution of
X may be approximated by an exponential function in the
relevant part of its left tail.

1) Distribution Estimation for GB Example: For this GB
example, the distribution of X is constructed for a given
scenario as described above. A hindcast estimate is used for the
joint distribution of Y and D, in which case the EFC is given
by the expression in Section III-C3; within this expression,
the sum over t is over the joint time series (dt, yt) for the
seven historic winters 2005-12. The decay constant λX is set
so that the exponential approximation is tangent to FX(x) at
x = ACS peak demand, see Fig. 4. The hindcast approach
is commonly used in applied studies [1], and thus provides a
very relevant demonstration of this approximation.

2) GB Results and Discussion: The ‘Exponential X’ EFCs
for the 2013/14 and 15/16 scenarios are respectively 1631
MW and 2497 MW; this compares to 1685 MW and 2257
MW for the full hindcast calculation. The errors in the
exponential approximation calculation are respectively 3% and
15% of the full hindcast EFC. However, we observe that
for this data FX(x) is not particularly well approximated by

an exponential function over the whole relevant region, and
thus even the seemingly good approximation for 13/14 is not
very reliable. This closed form result might however be a
better approximation in other systems, and the parametrisation
of the distribution of X which it provides may be useful
in investigating sensitivity of capacity value results to input
parameters.

VI. CONCLUSIONS

This paper has presented a number of new theoretical results
regarding the capacity value of additional generation, along
with examples of how they may be used to explain practical
calculation results. We hope soon to explore how the resulting
insights may be used to explain the results of capacity value
calculations from a range of systems, and differences between
these results.
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