
Hardware-aware block size tailoring on adaptive spacetree
grids for shallow water waves

Tobias Weinzierl
∗

School of Engineering and
Computing Sciences
Durham University

Durham DH13 LE, GBR
tobias.weinzierl@durham.ac.uk

Roland Wittmann
Informatics, TUM

wittmanr@in.tum.de

Kristof Unterweger
Department of Informatics

Technische Universität
München (TUM)

85748 Garching, GER
unterweg@in.tum.de

Michael Bader
Informatics, TUM

bader@in.tum.de

Alexander Breuer
Informatics, TUM

breuera@in.tum.de

Sebastian Rettenberger
Informatics, TUM

rettenbs@in.tum.de

ABSTRACT
Spacetrees are a popular formalism to describe dynamically
adaptive Cartesian grids. Though they directly yield an
adaptive spatial discretisation, i.e. a mesh, it is often more
efficient to augment them by regular Cartesian blocks em-
bedded into the spacetree leaves. This facilitates stencil ker-
nels working efficiently on homogeneous data chunks. The
choice of a proper block size, however, is delicate. While
large block sizes foster simple loop parallelism, vectorisation,
and lead to branch-free compute kernels, they bring along
disadvantages. Large blocks restrict the granularity of adap-
tivity and hence increase the memory footprint and lower
the numerical-accuracy-per-byte efficiency. Large block sizes
also reduce the block-level concurrency that can be used for
dynamic load balancing. In the present paper, we therefore
propose a spacetree-block coupling that can dynamically tai-
lor the block size to the compute characteristics. For that
purpose, we allow different block sizes per spacetree node.
Groups of blocks of the same size are identified automatically
throughout the simulation iterations, and a predictor func-
tion triggers the replacement of these blocks by one huge,
regularly refined block. This predictor can pick up hardware
characteristics while the dynamic adaptivity of the fine grid
mesh is not constrained. We study such characteristics with
a state-of-the-art shallow water solver and examine proper
block size choices on AMD Bulldozer and Intel Sandy Bridge
processors.

∗Corresponding author.

HiStencils 2014
First International Workshop on High-Performance Stencil Computations
January 21, 2014, Vienna, Austria
In conjunction with HiPEAC 2014.

http://www.exastencils.org/histencils/2014/

1. INTRODUCTION
In this paper, we address an important conflict of inter-

est faced by numerical simulations on modern architectures:
while many algorithms strive to reduce the number of un-
knowns and required operations per accuracy via adaptivity
in space and time, the latest computing architectures ask
for regular data access patterns. Our objective is to team
up the advantages of adaptive, octree-type meshes with reg-
ularly refined patches (blocks). We propose to merge multi-
ple small blocks into bigger though regular blocks wherever
possible, while the size of the merged blocks is chosen with
respect to hardware characteristics. If adaptivity criteria re-
fine parts of the composed regular grid regions later, the big
blocks can be decomposed again.

Plain shallow water equations act as test bed for our ap-
proach well-suited for hyperbolic partial differential equa-
tions (PDEs) in general. The latter are used to model a wide
range of problems of great societal and technical relevance:
examples include tsunamis or earthquakes on the continental
scale, radiation-sensitive cooling processes in manufacturing,
as well as flow in blood vessels on the cell scale. Hyperbolic
PDE models are often characterised by a multitude of scales
in space and time, such that accurate solutions demand for
very fine meshes—at least in certain critical regions that
change in time. At the same time, the respective applica-
tions often demand for a low time to solution. Simulation-
based tsunami prediction systems, for example, have to yield
reasonable results within minutes.

The multitude of scales of interest for hyperbolic solvers
and the local behaviour in time (reflected by the use of ex-
plicit time stepping methods) imply that efficient compu-
tational meshes for these problems need to be dynamically
adaptive: they should follow the characteristic features of
the solution. Furthermore, local time stepping is impor-
tant where individual subgrids march in time with different
time step sizes determined by the varying wave propagation
speed, e.g. The finer the granularity of the adaptivity both
in space and time, the “better” is the algorithm—at least in
terms of the required number of unknowns and arithmetic
operations.

If we express solvers with fine granular, unconstrained
adaptivity in stencil notation, a large variety of stencils
matching all occurring local mesh refinement situations is

57



required. An application of a series of such stencils in turn
exhibits non-uniform data access. However, modern multi-
and manycore systems offering large amount of hardware
threads and vector facilities with increasing register width
yield the best performance for algorithms with low memory
footprint and high arithmetic intensity that are split into a
vast number of homogeneous tasks. Hence, invariant sten-
cils should be applied to big homogeneous data structures.
This conflict of interest renders hyperbolic solvers on block-
structured adaptive Cartesian grids a prototype challenge
for novel and upcoming high-performance computing archi-
tectures.

In the presented work, we address block-structured adap-
tive Cartesian meshes for shallow water simulations. Our
meshes result from a k-spacetree formalism [15, 17] with
k = 2 yielding a quadtree (in 2D) or octree (in 3D), where
regular Cartesian grids—we denote them as SWE blocks—
are embedded into the leaves of the spacetree. Such a scheme
facilitates dynamic block adaptivity. And adaptivity facili-
tates a low computational effort/memory footprint per ac-
curacy ratio. In the present paper, we however study a dif-
ferent selling point of spacetree adaptivity. We use it to
tune the stencil code performance: on the blocks, we ap-
ply state-of-the-art Riemann kernels yielding uniform vec-
torised stencils [1, 3, 9, 10]. The inter-block coupling is
realised through bilinear conservative stencils from [14]. A
similar technique has been proposed later in [4] for the same
type of equations or in [6, 7, 11], e.g., for other challenges.
Adaptive time stepping, dynamic adaptivity, and local time
stepping follow [14] but are beyond scope here. Instead, our
approach yields a methodology to select well-suited sizes of
the Cartesian blocks for a given global adaptivity pattern
automatically.

Each spacetree leaf induces a regular Cartesian block. If
the size of these blocks is fixed, an adaptive spacetree induces
a distinct adaptive Cartesian grid. If the size of these blocks
can be configured, multiple spacetrees induce the same adap-
tive Cartesian grid—with a regular grid being a special case
of an adaptive one. Big blocks facilitate aggressive vector
optimisations, loop fusion, uniform memory access patterns,
and straightforward shared memory parallelisation. Small
blocks mirror loop tiling, which may improve cache usage
[8, 18], but also facilitates fine-grid adaptive meshes and
high block concurrency if blocks can be processed in paral-
lel. The latter gains importance when the application faces
hard memory constraints, if local time stepping is realised
on a per-block basis, and if concurrency and load-balancing
rely on atomic blocks. In practice, one has to choose a block
size compromise. In the present paper, we make the block
size a technical degree of freedom, i.e. we allow a different
choice of the block size per spacetree leaf. At the same
time, we follow [5] and identify regular subgrids consisting
of multiple regular Cartesian grids of the same size on-the-
fly. Given a performance model of the stencil operations on
a regular mesh with respect to the total block size, we can
then dynamically coarsen the spacetree and replace multiple
spacetree leaves with one leaf hosting one capacious Carte-
sian mesh. This optimisation is hidden from the compute
kernels, i.e. the user, and does not restrict the adaptivity
pattern. Simple case studies reveal its potential impact on
simulations, sketch how such a performance model can guide
spacetree block configurations and give estimates for the ef-
ficiency improvements.

The proposed techniques fall into the class of autotun-
ing of stencil codes for streaming-friendly, multicore, SIMD
architectures where the stencil application is tailored to a
given adaptive mesh that might change dynamically rather
than making the mesh follow performance considerations.
On the long term, we expect the tuning facility to be become
particularly interesting when we can determine throughout
the application run, i.e. online, whether few processors with
high frequency and wide vector registers outperform mas-
sively parallel lower frequency configurations or the other
way round. Switching on and off vector facilities, chang-
ing clock speeds, or adding cores then are not any longer
showstoppers but transform into energy-aware tuning pa-
rameters, as long as the stencil operation schemes follow
hardware changes.

The remainder is organised as follows: We first introduce
our mesh formalism and then present our application’s solver
together with its stencils in Section 3. These two building
blocks merge into a single block-based application that is
capable to adapt the mesh-to-block mapping at hands of a
performance model predicting the impact on the runtime
(Section 4). In Section 5, we study the block configuration-
performance interplay and derive which blocks should be
merged or not in the spacetree. A brief outlook and sum-
mary in Section 6 close the discussion.

2. SPACETREE MESHES WITH REGULAR
CARTESIAN BLOCKS

Let (0, 1) × (0, 1) ⊂ R2 be the bounding box of the com-
putational domain. We cut this domain equidistantly into
k parts along each coordinate axis. This yields k2 non-
overlapping cubes of the same size. If we continue this
splitting recursively while we decide per cube autonomously
whether to refine or not, we end up with an adaptive Carte-
sian grid.

Let c0 := (0, 1) × (0, 1), and make C the set of all cubes
resulting from the construction process. v is the parent-
child relation on C. If ci, cj ∈ C : ci v cj , ci is one of the
k2 subcubes resulting from the refinement of cj . Each cube
has either k2 or no children at all. Cubes without children
are leaves from the set CL ⊆ C, and c0 is the root.
v induces a directed tree graph on C. As the nodes of

this graph are cubes, i.e. spatial elements, this tree is a k-
spacetree [15]. k = 2 gives the special case of a quadtree. The
height of a spacetree is the length of the shortest path in the
graph. For the trivial spacetree with C = CL = {c0}, we end
up with height zero. All experiments of the present work
are based upon the PDE framework Peano [16] and thus use
k = 3. We hence omit the parameter k from now on and
refer to that data structure variant as spacetree (Figure 1).

Volume-based discretisations of hyperbolic equations—or
partial differential equations in general—such as finite vol-
umes or finite elements directly yield stencils on any adap-
tive Cartesian grid induced by a spacetree formalism. While
a direct spacetree-based stencil or system matrix derivation
offers great flexibility with respect to the adaptivity, effi-
ciency considerations as well as the intention to reuse exist-
ing software fragments suggest to add an additional mapping
f : CL 7→ N that embeds an equidistant Cartesian mesh with
f(c)× f(c) cells into each spacetree leaf c. f ≡ 1 embeds a
trivial grid of one cell into each leaf, i.e. each spacetree leaf

58



Figure 1: Adaptive Cartesian spacetree grid (top
layer, transparent) with k = 3. The non-transparent
layers below visualise the individual refinement
steps, i.e. all elements of C, with the tree relation
vchild of as black lines.

is a cell of the computational grid Ωh. In return,

f(c) = kh (1)

can be read as spacetree where a regular subtree of height h
within the total spacetree is replaced by one spacetree node
c with (1). We discuss in [5, 12, 13] how to exploit this tree
replacement formalism to improve performance and intro-
duce red-black Gauß-Seidel concurrency for direct spacetree-
based PDE discretisations. From a performance point of
view, it often pays off to make f return multiples of four or
eight, respectively, as this fits to vector processing units—if
the stencil codes exploit this fact.

Here, we start from a fixed f(c) = n ≥ 2 ∀c ∈ CL, and call
the embedded regular Cartesian grids blocks. The spacetree
then not only defines a block-structured adaptive Cartesian
grid Ωh, it also yields a non-overlapping domain decompo-
sition of Ωh. If we extend each n × n block by a halo layer
of n̂ cells, we obtain an overlapping domain decomposition.

Given a stencil code mapping a (n + 2n̂) × (n + 2n̂) grid
onto new values within the n×n grid and intergrid operators
mapping a n×n grid onto the halo layer of another grid, we
can run over the spacetree’s finest level and write down any
explicit time-stepping as follows:

A Run over each element of CL and copy/interpolate the
values of the 3d − 1 adjacent cells of time t onto the
local halo layer. Each halo layer now holds up-to-date
copies of the grid values.

B Run over each element of CL and advance the values
of the corresponding block from t to t + ∆t.

The scheme exhibits concurrency on the block level, if we
simultaneously hold simulation snapshots at t and t + ∆t

per block. Then, we can update two blocks in parallel in-
dependent of each other, if they share no common vertex
or face—if a neighbouring block has not advanced in time
yet, simulation data of t acts as preimage of the halo ini-
tialisation, otherwise, we use the simulation data of t + ∆t.
For local time stepping, these two snapshots have to be in-
terpolated anyway while the decision whether and how to
advance in time also comprises wave speed considerations
[14]. This scheme mirroring red-black Gauß-Seidel in linear
algebra yields our inter-block parallelisation. It is a task-
based approach with each task comprising both halo layer
initialisation and unknown update.

The halo layer initialisation is pure copying of grid values
into halo layers if two adjacent blocks prescribe the same
grid resolution as the spacetree cubes are aligned. Their
stencil is the identity. Otherwise, we realise bilinear inter-
polation or update fluxes according to [14] to preserve mass.
Halo layer updates are cheap with respect to required float-
ing point operations per unknown but require high memory
throughput. Compared to the internal block updates, they
are cheap with respect to total floating point operations as
they work only on a one-dimensional submanifolds. While
halo layer updates induce an overhead compared to a plain
algorithm working on one regular Cartesian grid, the un-
known update within the blocks dominates the overall com-
putational workload.

3. SHALLOW WATER STENCILS
As stencil code working on the regular blocks in each leaf

cell of our spacetree grid we use the SWE package [1] de-
veloped originally for teaching purposes. It processes regu-
lar Cartesian blocks of arbitrary n with n̂ = 1 halo layers.
While it offers MPI parallelism and CUDA support for clus-
ters of GPUs, we focus here on the vectorised kernels that
can process a block with initialised halo data in parallel due
to OpenMP. OpenMP yields our inter-block parallelisation.

SWE solves the basic shallow water equations given as


h
hu
hv




t

+




hu
hu2 + 1

2
gh2

huv




x

+




hv
huv

hv2 + 1
2
gh2




y

= S(t, x, y),

where h denotes the height of the water column (water
depth), u and v encode the momentum in x- and y-direction
and g is the gravitational constant (g := 9.81 m/s2). The
source term S(t, x, y) models effects of varying ocean depth
(bathymetry) or frictional or Coriolis forces. In this paper,
however, we set S(t, x, y) := 0. Solutions are characterised
by water waves (traveling at a speed of ≈ √gh) triggered
by initial displacements of the surface, i.e., changes in the
water height h (cf. Figure 2 for some artificial settings).

SWE realises an explicit Finite Volume scheme. It leads
to two computational kernels executed in each time step
per block as soon as the halo layer also describing global
boundary conditions is initialised:

B.1 Computation of net updates: For each edge, an approx-
imate solution of the Riemann problem is computed
from the quantities Qn

i,j = [hi,j , (hu)i,j , (hv)i,j ] in the
two adjacent grid cells. Following the wave propaga-
tion formulation [9], we compute so-called net updates
A±∆Qi∓1/2,j and B±∆Qi,j∓1/2, which determine the
impact of waves entering or leaving the respective grid
cells on the cell quantities.

59



Figure 2: Two artificial water height start configu-
rations induce waves traveling through the domain
with reflecting boundary conditions. Snapshots at
time t ∈ {0 · 10−4, 6 · 10−4, 1.1 · 10−3, 2.0 · 10−3} resulting
from a 972× 972 grid.

B.2 Updating the unknowns: For each cell, the quantities
Qi,j are then updated according to the balance equa-
tion

Qn+1
i,j = Qn

i,j (2)

− ∆t

∆x

(
A+∆Qi−1/2,j +A−∆Qn

i+1/2,j

)

− ∆t

∆y

(
B+∆Qi,j−1/2 + B−∆Qn

i,j+1/2

)
,

which is obtained by adding the four wave components
entering the cell (i, j). The time step size ∆t is re-
stricted via the CFL condition: the maximum local
wave speed (computed together with the net updates)
must not exceed a fixed fraction of the mesh resolution
(∆x resp. ∆y) per time step.

Both, computing the net updates and updating the ker-
nels are classical stencil-type computations, though with dif-
ferent characteristics. Updating the unknowns in (2) is a
memory-bound loop kernel, with roughly one floating-point
addition per accessed float variable as long as the steps (B.1)
and (B.2) are ran one after another and not merged into one
stencil. The present studies rely on a non-fused implemen-
tation. Auto-vectorisation by the compiler here can easily
be achieved via a respective compiler-hint to ignore vector
dependencies (#pragma ivdep). A similar reasoning holds
for parallel for-based OpenMP parallelisation.

The loop kernel to compute the net updates runs an f -
wave solver [3] on the Riemann problem. SWE provides
a careful implementation of the f -wave solver that allows
auto-vectorisation based on the #pragma simd statements
introduced by the Intel compiler. Similar, it supports
OpenMP concurrency. The f -wave solver requires roughly
80 floating-point operations per edge and is executed in sep-
arate loops for horizontal and vertical edges, respectively.
In each loop the kernel read the quantities from two adja-
cent grid cells (2 ·3 = 6 floats stored in single precision) and
writes net updates for h and the normal momentum compo-
nent (4 floats). Hence, the computational intensity, defined
as the ratio of floating-point operations vs. accessed bytes
of memory, of the second kernel is around two.

4. GRID TRANSITIONS
We expect the runtime per cell/stencil update to depend

on the actual block size f(c) whenever we update all un-
knowns of a block c. A naive assumption expects big blocks
to be advantageous in terms of cost per unknown while small
blocks allow us to tailor the grid to the solution at minimal
memory cost. Given the marker

M(c) =





0 if c ∈ CL
n if c ∈ C \ CL∧
∃n : ∀ci v c : (M(ci) = 0 ∧ f(ci) = n))

⊥ else

(3)
on all spacetree nodes, we know due to (1) that we can
replace any node c in the spacetree with M(c) = n > 0
and all of its children with a new node ĉ ∈ CL with f(ĉ) =
kn. Such a replacement searches for a k× k arrangement of
blocks of the same size, merges the corresponding spacetree
nodes into their spacetree parent, and replaces the original
k2 blocks by one block. The replacement preserves the fine
grid Ωh. We hence copy the values from the original blocks,

60



and the spacetree modification is hidden from the compute
kernels. If (3) is recomputed again immediately, we may
re-apply this replacement strategy.

If the start grid Ωh is a regular Cartesian grid, such a tree
replacement strategy deteriorates the spacetree after h steps
with h being the height of the initial tree. On adaptive grids,
it reduces the number of spacetree nodes iteratively. The
interplay with dynamic adaptivity is obvious. In practice,
merging always is not a good choice. Instead, it does make
sense to establish a performance model r(n) returning the
cost per unknown for a block with n× n unknowns, and to
calibrate this predictor with measurements.

The replacement of a subtree labeled with M(c) = n then
is advantageous if k2 ·r(n) > r(k ·n). Once a proper runtime
predictor is available that takes overhead cost due to the
inter-block data exchange (initialising the halo layer) into
account, we end up with an autotuning approach. As each
merge reduces halo layers, this autotuning also reduces the
memory footprint of a given fine grid Ωh iteratively. At
the same time, each merge reduces the inter-block while it
increases the intra-block concurrency.

5. RESULTS
All experiments were conducted on the Sandy Bridge and

Bulldozer partitions of the CoolMAC cluster hosted at the
Leibniz Supercomputing Centre. The AMD partition con-
sists of quad-socket AMD Bulldozer Opteron 6274 nodes
with 16 cores per socket, 256 GB RAM, and 2 MB exclusive
L2 cache shared by two cores. They run at
2.2 GHz. The Intel partition consists of dual socket Intel
Sandy Bridge-EP Xeon E5-2670 nodes with 8 real cores per
socket, 128 GB RAM, and 256 KByte L2 cache per core at
2.6 GHz up to 3.3 GHz. All figures illustrate the cell updates
per second for the whole simulation, i.e. include any setup
or administration cost. They hence show the algorithmic
throughput corresponding to the actual runtime directly.

We restrict ourselves to regular grid case studies where the
block size transitions have a major impact. Statements on
adaptive grids derive from the histogram of regular subtrees.
The Opteron experiments are driven by the GNU compiler.
Due to the pragmas, we study the vectorisation impact only
on the Intel system instructed by the Intel compiler. Inter-
block parallelisation is done via Intel’s TBB on both sys-
tems. The intra-block parallelisation relies on OpenMP.

We first study the single core performance for grids of dif-
ferent size that are split into blocks of n = 3k · 12 (Figure
3). The Sandy Bridge system outperforms Bulldozer by up
to a factor of 3.5 due to the use of single precision vector
facilities and its higher frequency. For Sandy Bridge, block
sizes smaller than 108 are not reasonable. Block sizes bigger
than 972 also do not yield sufficient performance. The lat-
ter degradation is not observed if vectorisation is disabled.
For Bulldozer, block sizes smaller than 108 also suffer from
overhead. Yet, if we select bigger block sizes than 108, we
observe a performance breakdown. Another breakdown is
observed if we go beyond blocks of n = 972. The impact of
Intel’s turbo boost increasing the clock rate from 2.6 GHz
to 3.3 GHz is not analysed further here. If interfering, it
changes the results quantitatively but does not qualitatively
alter the curve shape that is important to the proposed
methodology.

Both systems suffer from the per-block overhead (halo
layer setup and administration) for tiny block sizes. Since

2,00E+007

2,50E+007

3,00E+007

3,50E+007

4,00E+007

972

2916

8748

12 +vec 36 +vec 108 +vec 324 +vec 972 +vec 2916 +vec 8748 +vec
1,00E+000

5,00E+006

1,00E+007

1,50E+007

,00 007

12 36 108 324 972 2916 8748
0.00E+000

2.00E+006

4.00E+006

6.00E+006

8.00E+006

1.00E+007

1.20E+007

972

2916

8748

Block size

Figure 3: Throughput, i.e. cell updates per second,
on a single core of Sandy Bridge (top) and Bulldozer
(bottom). Each run tackles a grid of different total
size split up into blocks of different size (x-axis). The
Sandy Bridge measurements also compare a SIMD-
loop vectorisation (+vev) to a plain implementation.

61



3 00E+08

3,50E+08
12

2,50E+08

3,00E+08 36

108

1 50E+08

2,00E+08
324

972

1,00E+08

1,50E+08 2916

0 00E 00

5,00E+07

1 2 4 8 16 32
0,00E+00

ThreadsThreads

9,00E+07

1,00E+08

12

7,00E+07

8,00E+07 36

108

5,00E+07

6,00E+07 324

972

3,00E+07

4,00E+07
2916

0 00E 00

1,00E+07

2,00E+07

1 2 4 8 16 32 64
0,00E+00

ThreadsThreads

Figure 4: Inter-block parallel throughput, i.e. cell
updates per second, with TBB for fixed grid of res-
olution 2916× 2916 for Sandy Bridge (top) and Bull-
dozer (bottom). The grid is broken down into blocks
of different size for the individual measurements,
and the experiment enables different numbers of
threads.

block sizes of 324 with four unknowns per cell do not fit
into the L2 cache if we hold two time steps, the correspond-
ing Bulldozer performance degradation results from the fact
that the tiling cache optimisation induced implicitly by the
blocking then does not avoid memory accesses anymore. An-
other cache threshold is hit at 972. Sandy Bridge is not that
sensitive to tiling. However, its performance also degener-
ates for huge blocks.

If we run both codes with inter-block parallelisation where
the blocks are processed in parallel (Figure 4 for n = 2916—
other block sizes yield similar results), we observe that Sandy
Bridge’s hyperthreading does pay off and that both algo-
rithms scale. While the single core performance suffers from
very small block sizes, small block sizes induce a higher level
of inter-block concurrency. This level in turn yields better
parallel efficiency.

For the intra-block parallelisation (Figure 5), we observe
a performance saturation before all cores come into play.
Furthermore, the larger the blocks the better the scalabil-
ity. Obviously, the inter-block parallelisation can fuse the
different phases of the block updates (halo layer initialisa-
tion and the two update sweeps). However, a parallelisation
exclusively of the compute loops with a serial halo layer ini-
tialisation still performs better—in particular on Intel.

Tests with a hybrid inter-/intra-block parallelisation (Fig-
ure 6) finally reveal that such a combination can not compete

1 2 4 8 16 32
0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

12

36

108

324

972

2916

Threads

9,00E+07

1,00E+08

12

7,00E+07

8,00E+07

9,00E 07 12

36

108

5,00E+07

6,00E+07
108

324

972

2 00E+07

3,00E+07

4,00E+07 972

2916

0,00E+00

1,00E+07

2,00E+07

1 2 4 8 16 32 64

Threads

Figure 5: Intra-block parallel throughput, i.e. cell
updates per second, due to OpenMP for fixed grid
with 2916 × 2916 grid cells broken down into blocks
of different size. Sandy Bridge (top) and Bulldozer
(bottom). Exclusively the algorithmic phases B.1
and B.2 run in parallel due to parallel-for pragmas.

62



3,50E+08

12

2,50E+08

3,00E+08
12

36

108

1 50E+08

2,00E+08

108

324

972

1,00E+08

1,50E+08 972

0,00E+00

5,00E+07

1 * 32 2 * 16 4 * 8 8 * 4 16 * 2 32 * 1

Threads

9,00E+07

1,00E+08
12

7,00E+07

8,00E+07

9,00E 07
36

108

5,00E+07

6,00E+07 324

972

2 00E+07

3,00E+07

4,00E+07

0,00E+00

1,00E+07

2,00E+07

1 * 64 2 * 32 4 * 16 8 * 8 16 * 4 32 * 2 64 * 1

Threads

3,50E+08

12

2,50E+08

3,00E+08 12

36

108

1 50E+08

2,00E+08
108

324

972

1,00E+08

1,50E+08 972

2916

0,00E+00

5,00E+07

1 * 32 2 * 16 4 * 8 8 * 4 16 * 2 32 * 1

Threads

9,00E+07

1,00E+08

12

7,00E+07

8,00E+07

9,00E 07 12

36

108

5,00E+07

6,00E+07
108

324

972

2 00E+07

3,00E+07

4,00E+07 972

2916

0,00E+00

1,00E+07

2,00E+07

1 * 64 2 * 32 4 * 16 8 * 8 16 * 4 32 * 2 64 * 1

Threads

Figure 6: Throughput, i.e. cell updates per second,
with intra-block and inter-block parallelisation com-
bined. Top down: Sandy Bridge with n = 972, Bull-
dozer with n = 972, Sandy Bridge with n = 2916,
and Bulldozer with n = 2916. Horizontally, the first
number specifies the cardinality of the TBB threads
whereas the number right of * gives the number of
enabled OpenMP threads per TBB task.

with pure inter-block concurrency as long as our grid yields
sufficiently big blocks. Obviously, the stencil kernels benefit
more from uniform streaming data access and a continuous
filling of the compute facilities than from different algorith-
mic phases running concurrently. Only if the grid blocks
have to remain very small (36, e.g.), the hybrid version out-
performs a parallel-for variant. These experiments do not
realise explicit OpenMP-to-TBB pinning, thus might be too
pessimistic on some architectures for future TBB versions
offering explicit pinning.

As a summary, an on-the-fly block configuration predic-
tor should, in the present case, select a block size of around
36 at startup—this allows a reasonable per unknown per-
formance, fine granular adaptivity, and an advantageous
unknown-increase-to-runtime-reduction ratio: Whereas n ∈
{108, 324} yields even higher throughput than 36, refining
the grid once already yields (k = 3)2 = 9 times more grid
cells whereas an initial choice of n = 36 facilitates a finer
control of the adaptivity pattern. A single core optimisation
on Sandy Bridge then coarsens the spacetree as aggressively
as possible as long as no block exceeds a size of 972. A
Bulldozer equivalent stops already at a block size of 108. If
multiple cores are available, the maximum block size should
be around 324.

6. SUMMARY AND OUTLOOK
The present paper introduces a mechanism that tailors

the block size of a block-structured adaptive mesh refine-
ment solver for hyperbolic differential equations to the ar-
chitecture. It starts from a given grid, preserves the fine
grid, reorganises the underlying spacetree, and exploits the
fact that spacetrees simplify dynamic remeshing. Basically,
the approach can be rewritten as sophisticated autotuning
approach for loop tiling on adaptive Cartesian grids.

While the block formalism introduces a task concurrency,
using the inter-block parallelisation rarely pays off. Instead,
it is more beneficial to focus on a shared memory parallelisa-
tion of the compute-intensive stencil kernels. This changes if
we apply solvers with a significantly higher Flops-per-record
rate—they tend to underbook the memory bus and bene-
fit if other blocks stream in data in parallel—solvers with
branches and realisations that do not exploit vector regis-
ters, or architectures with a weaker bandwidth per core.
The latter also tend to undersubscribe the memory subsys-
tem tailored to streaming applications. In the present paper,
inter-block parallelism pays off if and only if the meshing
enforces very small blocks. Its interplay with hard memory
constraints and local time stepping one of the future chal-
lenges to study.

We want to highlight that our methodology fits perfectly
to dynamically adaptive meshes, as the block structure fol-
lows the given mesh. Furthermore, it is able to react to
changes in the environment. If additional cores become
available, vector capabilities increase or reduce, or suddenly
machine subparts with hard memory constraints shall be
used in addition to/as replacement of other nodes, it is able
to adapt the mesh organisation and enable the algorithm to
invade such environments.

Next steps comprise the study of non-standard hardware,
studies on the bigger scale, as well as shared memory and
distributed memory parallelisation in combination. Of spe-
cial interest however is the impact of the present ideas on
different kernels with other compute characteristics.

63



Acknowledgements
This work partially is based on work supported by Award
No. UK-c0020, made by the King Abdullah University of Sci-
ence and Technology (KAUST). The support of the Leibniz
Supercomputing Centre under award pr63no is highly ap-
preciated. All software is freely available at [2, 16].

7. REFERENCES
[1] M. Bader and A. Breuer. Teaching parallel

programming models on a shallow-water code. In
ISPDC 2012 – 11th International Symposium on
Parallel and Distributed Computing, pages 301–308.
IEEE Computer Society, 2012.

[2] M. Bader, A. Breuer, and S. Rettenberger. SWE—the
Shallow Water Equations teaching code, 2013.
https://github.com/TUM-I5/SWE.

[3] D.S. Bale, R.J. LeVeque, S. Mitran, and J.A.
Rossmanith. A wave propagation method for
conservation laws and balance laws with spatially
varying flux functions. SIAM Journal on Scientific
Computing, 24(3):955–978, 2003.

[4] K. Mandli C. Burstedde, D. Calhoun and A. R. Terrel.
Forestclaw: Hybrid forest-of-octrees amr for
hyperbolic conservation laws. Technical report,
Universität Bonn, 2013. Preprint.

[5] W. Eckhardt and T. Weinzierl. A Blocking Strategy
on Multicore Architectures for Dynamically Adaptive
PDE Solvers. In R. Wyrzykowski, J. Dongarra,
K. Karczewski, and J. Wasniewski, editors, Parallel
Processing and Applied Mathematics, PPAM 2009,
volume 6068 of Lecture Notes in Computer Science,
pages 567–575. Springer-Verlag, 2010.

[6] C. Feichtinger, S. Donath, H. Köstler, J. Götz, and
U. Rüde. WaLBerla: HPC software design for
computational engineering simulations. Journal of
Computational Science, 2(2):105–112, 2011.

[7] J. Frisch, R.-P. Mundani, and E. Rank. Adaptive
distributed data structure management for parallel
CFD applications. In Proc. of the 15th Int.
Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, 2013. accepted.

[8] M. Kowarschik and C. Weiß. An Overview of Cache
Optimization Techniques and Cache-Aware Numerical
Algorithms. In U. Meyer, P. Sanders, and J. F.
Sibeyn, editors, Algorithms for Memory Hierarchies
2002, pages 213–232. Springer-Verlag, 2003.

[9] R. J. LeVeque. Wave propagation algorithms for
multidimensional hyperbolic systems. Journal of
Computational Physics, 131(2):327–353, 1997.

[10] R. J. LeVeque, D. L. George, and M. J. Berger.
Tsunami modelling with adaptively refined finite
volume methods. Acta Numerica, 20:211–289, 2011.

[11] P. Neumann. Hybrid Multiscale Simulation Approaches
For Micro- and Nanoflows. Verlag Dr. Hut, München,
2013.

[12] M. Schreiber, T. Weinzierl, and H.-J. Bungartz.
Cluster optimization and parallelization of simulations
with dynamically adaptive grids. In F. Wolf, B. Mohr,
and D. an Mey, editors, Euro-Par 2013, volume 8097
of Lecture Notes in Computer Science, pages 484–496,
Berlin Heidelberg, 2013. Springer-Verlag.

[13] M. Schreiber, T. Weinzierl, and H.-J. Bungartz.
Sfc-based communication metadata encoding for
adaptive mesh. In Michael Bader, editor, Proceedings
of the International Conference on Parallel Computing
(ParCo), October 2013. accepted.

[14] K. Unterweger, T. Weinzierl, D. Ketcheson, and
A. Ahmadia. Peanoclaw - a functionally-decomposed
approach to adaptive mesh refinement with local time
stepping for hyperbolic conservation law solvers.
Technical report, Institut für Informatik, Technische
Universität München, June 2013.

[15] T. Weinzierl. A Framework for Parallel PDE Solvers
on Multiscale Adaptive Cartesian Grids. Verlag Dr.
Hut, 2009.

[16] T. Weinzierl et al. Peano—a Framework for PDE
Solvers on Spacetree Grids, 2012.
www.peano-framework.org.

[17] T. Weinzierl and M. Mehl. Peano – A Traversal and
Storage Scheme for Octree-Like Adaptive Cartesian
Multiscale Grids. SIAM Journal on Scientific
Computing, 33(5):2732–2760, October 2011.

[18] C. Weiß, W. Karl, M. Kowarschik, and U. Rüde.
Memory characteristics of iterative methods. In
Supercomputing ’99: Proceedings of the 1999
ACM/IEEE conference on Supercomputing, pages
1–31. ACM Press, 1999.

64


