
Bivariate Estimation of Distribution
Algorithms for Protein Structure Prediction

Daniel Bonetti1, Alexandre Delbem1, Jochen Einbeck2

1 Universidade de São Paulo, São Carlos, SP, Brazil
2 Department of Mathematical Sciences, Durham University, UK

E-mail for correspondence: daniel.bonetti@gmail.com

Abstract: A real-valued bivariate ‘Estimation of Distribution Algorithm’ specific
for the ab initio and full-atom Protein Structure Prediction problem is proposed.
It is known that this is a multidimensional and multimodal problem. In order to
deal with the multimodality and the correlation of dihedral angles φ and ψ, we
developed approaches based on Kernel Density Estimation and Finite Gaussian
Mixtures. Simulation results have shown that both techniques are promising when
applied to that problem.

Keywords: Estimation of Distribution Algorithm; Protein Structure Prediction;
Finite Gaussian Mixture; Kernel Density Estimation.

1 Background

Protein Structure Prediction (PSP) is a key problem in Biology. It tries
to find protein configurations in order to help in the development of new
medicines. Computer methods have received attention in order to bypass
the high costs and time needed by experimental methods [Bujnicki, 2009].
Despite that computer simulations do not have the same capability to pre-
dict proteins as the experimental methods have, new methods have been
introduced over the last two decades.
In this paper we present a novel computer method to predict protein con-
figurations. We use an Estimation of Distribution Algorithm (EDA) [Lar-
ranaga and Lozano, 2002] to guide our search process in order to find good
protein configurations. EDAs are from the family of Evolutionary Algo-
rithms and they are general optimization techniques.
Most Evolutionary Algorithms use two or three solutions to compose new
ones. In contrast, EDAs have the capability to extract significant statis-
tical information from a set of promising solutions in order to create the
offspring. This is an important step in the optimization process, since it
guides the search process properly toward good solutions.
There are several types of EDAs. The simplest one uses the mean and vari-
ance of variables to compose the offspring. However, as we know, the PSP



2 Bivariate EDAs for Protein Structure Prediction

problem is a multivariate and multimodal problem. Thus, simply using
mean and variance will not describe our set of solutions properly. We de-
signed a new EDA specific for PSP with ab initio and full-atom modelling.
Basically, we fed our EDA with three statistical methods. The first method,
which serves as a reference algorithm, treats the variable as independent
ones, that is, the univariate. Further, we modeled the fixed correlation be-
tween the dihedral angles φ and ψ with two-dimensional Kernel Density
Estimation (KDE) [Venables and Ripley, 2002] and Finite Gaussian Mix-
tures (FGM) [McLachlan and Peel, 2004].
We evaluated our approach with a 25 residues protein. The results showed
that, indeed, EDAs with appropriate statistical methods are able to find
good solutions for small protein configurations.

2 Estimation of Distribution Algorithms for Protein
Structure Prediction

EDAs are a relatively new class of optimization algorithms. They explore
the search space by building and sampling probabilistic models from promis-
ing solutions. The whole set of solutions is called population. From a ran-
domly initialized population p all solutions (also called individuals) are
evaluated using a fitness function. It is a quality measure function that
describes how good a solution is. Next, solutions are chosen to be part of
the set of selected individuals s. This new set of individuals usually has
promising solutions, in which the probabilistic model will be created. It is
also important to have a diversified set of selected solutions in order to
avoid premature convergence. Next, a probabilistic model of the selected
individuals is built. As we discussed in the previous section, we developed
three methods. From this model, we generated a new set of individuals,
called offspring o. Finally, we can mix the population and the offspring
ordered by the fitness value and truncate it with the size of population and
overwrite it. All these steps are called a generation (or iteration) and they
may continue until a convergence criterion is reached as, for example, a
predefined variation of the fitness of the population.
The fitness function of our algorithm has eight different energy types. How-
ever, in this paper, only van der Waals energy is used since it describes well
the interaction among atoms and makes the experimental analysis easier
to understand.
The population is denoted as p = (p11, . . . , p

m
n ), in which n is the popula-

tion size and m is the length of the vector (an individual). A real-valued
vector holds all the dihedral angles of a protein configuration, ranging in
(−180.0, 180.0). Each residue in a protein has its own number of dihedral
angles. For example, the smallest residue Glycine has only two dihedral
angles, φ and ψ, while Arginine has six, φ, ψ, χ1, χ2, χ3 and χ4. Thus, the
number of dihedral angles of a protein configuration depends on the pri-
mary sequence of the amino acids. In this paper, all experiments were



Bonetti et. al 3

performed using a 25 residues protein called 1A11. This yielded in a vector
with m = 95 positions.

3 Univariate EDA for PSP

The Univariate (UNI) version is a simple and fast algorithm. First, an
individual randomly chosen from s is used to generate an o11 value. Next,
we cause a perturbation to that value by adding a Gaussian random number
with mean zero and standard deviation σ. Then, another individual from s
is selected to generate the value of o21 and the perturbation is added. That
process is repeated until the vector o1 is filled. At this point, we are ready
to compute the fitness of individual o1. That entire process is repeated until
all individuals of o have been filled, that is, until on has been created.

4 Bivariate EDA for PSP

Considering that all variables can interact with each other we could consider
the entire individual as a m–dimensional problem. However, as we showed
in previous section, even a small protein with 25 residues would produce
a 95–dimensional problem. That is not computationally efficient and may
not render good results. For this reason, we decided to split the problem
per residue. Thus, for a 25 residues protein configuration we will have 25
two–dimensional algorithms to perform instead of one of 95–dimensional.
We considered that dihedral angles φ and ψ within the same residue are
strongly correlated, since rotations produced in φ will, in general, cause
stereochemical constraints in angle ψ. Furthermore, every time one sees a
Ramachandram plot, it is correlating φ and ψ of the same amino acid.
Two methods to handle the bivariate data were implemented. One uses
two-dimensional Kernel Density Estimation (KDE). For each [φ;ψ] pair, it
creates a kernel density map from the real values of s. Then, the φ values
are generated independently, and ψ values are generated conditional on the
values of φ. To do that, we need also to create a one-dimensional KDE of
φ and sample a value from that distribution. Next, we choose the closest
point from value φ in our just created two-density map. At this point, there
is a one-dimensional KDE that is conditional to the previous value of φ.
Finally, we generate a new ψ value based on that distribution.
The second method uses a two-dimensional Finite Gaussian Mixture (FGM)
in order to estimate values of the pair [φ;ψ]. For each [φ;ψ] pair, it per-
forms a whole bivariate Expectation-Maximization (EM) algorithm until
convergence, for a given number of components. The value of [φ;ψ] of the
offspring is generated at once. First, a component is randomly chosen with
probability π. Next, a bivariate Gaussian random number is generated ac-
cording to the mean and covariance matrix of the chosen component.



4 Bivariate EDAs for Protein Structure Prediction

In order to keep performance, in both two-dimensional KDE and FGM
methods, we generated all these steps for all individuals of the offspring
before going to the next pair [φ;ψ].

5 Results

All techniques were performed, which changed the population size, selection
pressure and tournament size. Specifically, UNI also had the σ changed and
FGM also had the number of components and λ (used to avoid singular
matrices) modified. That rendered in a total of 1680 combinations and took
over than 3000 hours of CPU time of the LNCC cluster. Figure 1 shows
the results achieved. At the left, a performance comparison is made. As
we expected, UNI was the fastest. FGM was better than KDE, despite it
has some outliers caused by the runnings with the high number of mixture
components. Figure 1 (middle) shows a scatterplot between energy and
RMS (quality measurement in PSP: low RMS means high quality). Points
of Pareto Front are highlighted by a dashed line. Finally, Figure 1 (right)
shows a protein configuration predicted (blue) fitted with a native (green).

●●

●

●●●●●
●
●●●●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●
●
●
●

●

●

●

●

●

●

●
●

●

UNI FGM KDE

20
40

60
80

10
0

Time (min.)

−160 −140 −120 −100 −80

2
4

6
8

10

Energy

R
M

S

●

●

●

●

●
●
●

●

●

●

●

●
●

●●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

UNI
FGM
KDE

FIGURE 1. Left: Performance comparison; Middle: Scatterplot between energy
and RMS; Right: A predicted configuration (blue) aligned to native (green).

References

Bujnicki, J. M (2009). Prediction of Protein Structures, Functions, and
Interactions West Sussex: Wiley

Larranaga, P. and Lozano, J. A. (2002). Estimation of Distribution Algo-
rithms: A New Tool for Evolutionary Computation New York: Spring

McLachlan, G. and Peel, D. (2004). Finite Mixture Models. Hoboken, NJ,
USA: Wiley

Venables, W. N. and Ripley, B. D. (2002). Statistics with S Fourth edi-
tion. New York: Springer.



Bonetti et. al 5

Daniel Bonetti is PhD student in Instituto de Cincias Matemticas e de
Computao (ICMC) at Universidade de So Paulo (USP), Brazil. He is bach-
elor in Computer Science by Escola de Engenharia de Piracicaba, Brazil
and got his Master’s degree in 2010 at ICMC - USP with the work En-
hance the Van der Waals energy efficiency calculi in genetic algorithms for
protein structure prediction. His research interests include Evolutionary
Algorithms, High Performance Computing and Protein Structure Predic-
tion.


