
No Tests Required: Comparing Traditional and Dynamic

Predictors of Programming Success
Christopher Watson

School of Engineering and
Computing Sciences
University of Durham

United Kingdom

christopher.watson@dur.ac.uk

Frederick W.B. Li
School of Engineering and

Computing Sciences
University of Durham

United Kingdom

frederick.li@dur.ac.uk

Jamie L. Godwin
School of Engineering and

Computing Sciences
University of Durham

United Kingdom

j.l.godwin@dur.ac.uk

ABSTRACT
Research over the past fifty years into predictors of programming

performance has yielded little improvement in the identification of

at-risk students. This is possibly because research to date is based

upon using static tests, which fail to reflect changes in a student’s
learning progress over time. In this paper, the effectiveness of 38

traditional predictors of programming performance are compared

to 12 new data-driven predictors, that are based upon analyzing

directly logged data, describing the programming behavior of

students. Whilst few strong correlations were found between the

traditional predictors and performance, an abundance of strong

significant correlations based upon programming behavior were

found. A model based upon two of these metrics (Watwin score

and percentage of lab time spent resolving errors) could explain

56.3% of the variance in coursework results. The implication of

this study is that a student’s programming behavior is one of the

strongest indicators of their performance, and future work should

continue to explore such predictors in different teaching contexts.

Categories and Subject Descriptors
K3.2 [Computer and Information Sciences Education]:

Computer science education.

General Terms
Measurement, Experimentation, Human Factors, Verification.

Keywords
CS1; predictors of success; programming behavior; learning

strategies; learning styles; prediction; watwin; error quotient;

1. INTRODUCTION
Programming courses have a reputation for high difficulty and

failure rates [1], and as a result, predicting a student's performance

in a first programming course is a well studied problem. Although

early work focused upon using standardized aptitude testing [5]

over the past fifty years, various predictors have been proposed.

These include a range of demographic, psychological, academic,

and cognitive factors, such as: previous programming experience

[2,18,25], math background [17,24], science background [2,6],

behavioral traits [2], self-esteem [4], learning styles [7,9,10],

learning strategies [3], and attributions of success [8,11,18].

However studies to date are limited by a lack of verification, and a

tendency to yield inconsistent results [23]. Additionally the

previously researched predictors require the use of lengthy tests to

gather predictive data. The learning strategies assessed by [15] for

instance requires students to complete over 80 questions. Given

potentially high enrollment numbers, the use of such tests to

collect predictive data can take a considerable amount of time for

an instructor to process. Even if a test was indicative of

performance, by the time it was processed, it may be too late for

students to withdraw, or for instructors to intervene to prevent

students from failing [3]. The criteria used for prediction is a

further limitation of these studies. Whilst psychological or

background traits may be indicative of performance, they are not

directly related to the regular programming behavior of a student,

or the programming tasks which they are required to perform. The

previously researched predictors therefore cannot reflect changes

in the learning behavior and progress of a student over time.

Possibly due to these shortcomings, recent research [12,16,23]

has moved towards exploring more data-driven approaches where

aspects of the programming behavior of students (such as number

of errors made) is directly logged by augmenting an IDE, and the

resulting datasets analyzed to identify relations with performance.

Compared to traditional tests, the main advantage of this approach

is convenience. As predictions are made using directly logged

data, neither an instructor, nor student has to process a batch of

lengthy tests. Predictions are formed based upon aspects of a

student’s programming behavior, therefore can reflect changes in

their learning progress over time. Also, as well as being able to

dynamically identify struggling students, such predictors can be

applied to drive an expert system, so that students can be provided

with appropriate interventions when required. However to date,

no paper has compared the performance of these data-driven

predictors against test-based predictors. Contributions include:

1. The verification of 38 traditional test-based predictors of

performance where previous research yielded inconsistent

results, or a small number of studies had been conducted.

2. An exploration of 10 new data-driven dynamic predictors.

3. The first paper to perform a comparative evaluation of the

performance of both data-driven and test-based predictors.

2. RESEARCH DESIGN
There were two main purposes for this study. The first, was to

address the need to verify findings of previous research on

predictors of programming performance where either a limited

number of studies had been performed, or research findings were

inconsistent. The second was to compare the performance of these

traditional test-based predictors, against predictors that did not

require tests and were based upon aspects of a student’s ordinary
programming behavior.

2.1 Participants
The introductory programming module at our university was

designed to teach Java to students of varying abilities. Students

were supported by two weekly lectures and a lab session where

they would practice solving programming problems using the

BlueJ IDE. The sample of students used in this study consisted of

volunteers from both the 2011/12 and 2012/13 cohorts. The

structure of the course was similar for both years, with the only

difference being the removal of the final exam in 2012/13. The

teaching approach and learning materials were identical each year.

2.2 Instruments
Seven instruments were used to collect data from subjects: a

questionnaire on the academic background of students and prior

programming experience; attributions of success; Rosenberg’s
self-esteem scale; Kolb’s learning style instrument; Gregorc style
delineator; the motivated strategies for learning questionnaire

(MSLQ); and a logging extension was added to the BlueJ IDE to

collect data describing the programming behavior of students.

The background questionnaire was designed in-house, and

gathered data on a student’s: (1) gender, (2) GPA: high school,
college, (3) lectures attended per week, (4) math and science

background: courses taken and grades, (5) prior programming: for

each language: years of experience, longest program written.

Measuring attributions of success in this study was based upon

repeating the method used by [8], where students were asked to

rank order four possible reasons for their success in the course.

They were attribution to ability, task difficulty, luck, and effort.

Rosenberg’s self-esteem scale (RSE) is perhaps the most widely

used self-esteem measure in social science research. It consists of

10 questions and has been shown to in general to have a high

reliability [15]. The RSE uses 4 point scales, ranging from

strongly agree to strongly disagree. The only study to date [4] was

replicated by using the reworded questions provided that modified

the scale to relate self-esteem with a programming context.

Kolb’s Learning Style Inventory (LSI) measures an individual’s
intrinsic learning style, or predisposition in any given learning

situation. Kolb describes learning as a cycle of involvement,

starting with concrete experiences and followed by a period of

reflection, observation, and application of those experiences to

solve problems. The LSI consists of a set of 12 sentences where

individuals rank order four completions on a scale of 1 to 4. The

LSI provides scores (range 12 to 48) for an individual’s
predisposition toward concrete experience, reflective observation,

abstract conceptualization, and active experimentation.

The Gregorc style delineator describes an individual’s learning
style based on four dimensions: concrete random, concrete

sequential, abstract random, and abstract sequential. The

instrument consists of a set of 10 sentences where individuals

rank order four completions on a scale of 1 to 4. The highest score

among the four channels determines the dominant learning style.

The motivated strategies for learning questionnaire was co-

designed by Pintrich [15] and is used to measure the motivations

and learning strategies (cognitive, meta-cognitive, and resource

management strategies) or students. It measures 17 different

scales: 6 motivational and 9 learning strategies. The scales can be

used together, but given their modular design, they can also be

administered individually. The MSLQ uses a 7 point scale,

ranging from 1 (not at all true of me), to 7 (very true of me).

A logging extension was used to gather data describing aspects of

a student’s ordinary programming behavior as they completed
programming exercises using the BlueJ IDE. Each time a student

compiled code on a university PC, the extension would log a

snapshot of the code being compiled, along with the student’s
username, a timestamp, event type (compilation success or

failure), and the error message reported with line number

(if applicable). To explore aspects of a student’s programming
behavior and how it may relate to performance, we applied the

data cleaning and processing procedure presented in [23] to each

of our datasets. The procedure takes as an input directly logged

compilation and invocation data, and produces a set of successive

compilation pairings, for each file that a student attempted to

compile during a session. These pairings describes how a

student’s programming behavior in terms of how their source

code evolved between two consecutive compilations.

For example, if a student compiled a file and encountered an

error, in the next compilation of that file, were they able to resolve

it? The procedure we selected has been shown to be more robust

[23] than related approaches [12] which simply construct

compilation pairings on a per-session basis, and instead constructs

parings on per-session, per-file basis. The procedure also uses

invocation information to refine estimates of the time a student

spent between compilations – allowing their error resolve time for

different types of error to be more accurately profiled.

In total 37 students (32 male) from the 2011/12 cohort and

45 students (42 male) from the 2012/13 cohort consented to us

logging data describing their programming behavior over a period

of 19 weeks. From the 2012/13 cohort 39 students (36 male)

completed the six questionnaires. A one-way ANOVA showed no

significant differences in the performance of the three samples of

students on the reference criterion, F(2, 118) = .18, p = .83.

2.3 Predictor Variables
The relationships between 50 predictors and student performance

in the introductory programming course at our university were

examined. These predictors fall into 8 categories, including:

1. previous programming experience: has prior experience,

number of languages previously studied, longest

program written, years of experience.

2. previous academic experience: college grades: physics,

chemistry, maths; university grades: discrete, calculus,

GPA: college, high school.

3. attributions of success: scores for 4 scales outlined.

4. behavioral traits: lectures attended, hours part time job.

5. self esteem: overall score on Rosenberg.

6. learning styles: 8 scales taken from ILS and Gregorc.

7. learning strategies and motivations: 12 MSLQ scales.

8. programming behavior: 5 measures based on error

frequency, 5 measures based on time, 2 measures based

on an overall scoring of programming behavior.

470

2.4 Criterion Variable
To maintain an identical criterion variable for all students, we

used overall coursework mark as the measure of programming

ability in this study. This mark consisted of a weighting of a

student’s marks on a mid-term exam (25%), project (25%), a

practical exam (40%), and weekly programming exercises (10%).

3. RESULTS
A priori analysis was carried out to verify that no significant

differences existed between the mean overall scores of the class

on the reference criterion, and those who agreed to participate in

the studies conducted. Test assumptions of normality (Shapiro-

Wilks test) and equality of variance (Levene test) were satisfied,

and a set of t-tests showed no significant differences between the

performance of those who participated in the: 2011/12 logged

data sample (t(78) = .28, p = .77), 2012/13 logged data sample

(t(97) = 1.08, p = .29), or the 2012/13 questionnaire sample (t(91)

= .56, p =.57) and the remainder of their respective cohorts. In the

remainder of this section, the findings on the relationships among

each of the predictors examined and performance are presented.

3.1 Previous Programming Experience
All 39 students completed the background questionnaire section

on prior programming experience. A t-test revealed significant

differences in the performance those students who had prior

programming experience prior to enrolling on the course (n = 15,

M = 71.76, SD = 10.47) and those students who did not (n = 24,

M = 64.34, SD = 10.70), (t(37) = 2.12, p < .05). These findings

are consistent with previous research such as [25], but contradict

research such as [2, 18]. Further analysis showed more interesting

relations between prior experience and performance; however

none of the following measures were significant, (p > .05). The

number of languages that a student had previously studied weakly

correlated with performance, r = .24, the longest program that a

student had written prior to enrolment on the course also weakly

correlated, r = .15, and surprisingly years of programming

experience negatively correlated with performance, r = -.20.

5 students had prior Java experience, but no relation was found

between the longest Java program they had previously written and

performance, r = .01. In general, these results suggest that whilst

prior programming experience may be useful to students, specific

aspects such as years of experience, or the number of languages a

student has studied, has little impact on performance.

3.2 Previous Academic Experience
To establish the relationship between previous academic

experience in mathematics and science, the achievable grades for

each subject were ranked, with the highest rank given to the

highest possible grade, and the lowest rank given to the lowest

possible grade. No significant correlations were found (p < .05)

between either: grades in college physics (n = 26, r = .31),

chemistry (n = 15, r = .27), math (n = 28, r = .20), university

discrete math grade (n = 15, r = .06), or college GPA (n = 35,

r = .21). But, marginally significant correlations were identified

between performance and university calculus grade (n = 26,

r = .37, p = .06), and high school GPA (n = 38, r = .27, p = .10).

These findings are consistent with previous research that suggest

generally academic background factors are weakly correlated with

programming performance [2, 6], and that grades obtained in

calculus courses are more strongly related to programming

performance, than grades obtained in discrete courses [17]. But a

total lack of correlation between discrete math and programming

performance was contradictory to previous research [24].

3.3 Attributions of Success
All 39 students completed the background questionnaire section

on their attributions of success. To date only 3 studies [8, 11, 18]

have explored relationships between attributions and performance.

Significant (p < .05), but weak, correlations were found between

performance and attributions of success to task difficulty

(r = -.10), and attributions to effort (r = .07). A moderate and

marginally significant correlation was found for attribution of

success to luck (r = -.31, p = .05) and a moderate, significant

correlation was found for attribution of success to ability

(r = .40, p < .05). The correlations reported by this study are

consistent with, and within the range of correlations reported by

the previous three studies on attributions to: task difficulty

(r = -.20 to .20), and effort (r = .07 to .16). However much

stronger relations for both attributions to ability (r = .07 to .16)

and attributions to luck (r = -.22 to .05) were found. These

conflicting results suggest that further research on how

attributions of success relate to performance is required.

3.4 Behavioral Traits
All 39 students reported their lecture attendance. No relationship

was found between lectures attended and performance, (r = .02,

p > .10). 7 students reported the weekly hours that they worked in

a part time job whilst studying. A strong negative correlation

between the hours a student worked in a part time job and

programming performance was found (r = -.64, p < .01). But this

result should be interpreted with caution due to the small sample.

3.5 Self-Esteem
All 39 students completed Rosenberg’s self-esteem scale. A weak,

not significant, relation between score obtained on the instrument

and programming performance was found (n = 39, r = .13,

p = .42). Only one other study to date [4] used Rosenberg’s

instrument to examine the relationship between self-esteem and

programming performance. However a moderate correlation

between these two variables (n = 54, r = .36) was reported. The

differing results between this study and prior research suggests

that further research on the relations between programming self-

esteem and programming performance would be beneficial.

3.6 Learning Styles
38 students completed both learning style instruments. Only

3 studies to date [7, 9, 10] have reported correlations between

scores on the 4 dimensions of Kolb’s ILS and performance. In this

study no significant relations between learning style and

performance were found for any of the 4 dimensions: concrete

experience (CE) (r = -.18, p = .29), reflective observation (RO)

(r = -.07, p = .69), abstract experimentation (AE) (r = .14, p =

.39), abstract conceptualization (AC) (r = .10, p = .53). These

correlations are consistent with, and within the range of the

correlations reported by the previous three studies,

(CE: r = -.16 to -.23; RO: r = -.36 to .06; AE: r = .02 to .16;

AC: r = .15 to .26). These results suggest that in general that there

is little to no relation between Kolb’s ILS and the performance of

students. Results for the Gregorc learning style were more

encouraging. No significant correlation for the concrete/random

dimension and performance was found (r = -.14, p = .39);

But moderate and marginally significant correlations were found

for each of remaining dimensions: abstract/random

(r = -.33, p = .05), concrete/sequential (r = .27, p = .10) and

abstract/sequential (r = .29, p = .08). Only 2 studies to date

[13, 14] have explored the use of Gregorc’s instrument as a

predictor. Our findings are consistent with these studies.

471

Table 1. Pearson correlations (r) of this study compared to

previous research MSLQ. (* p < .10, ** p < .05, *** p < .01)

MSLQ Dimension This Study [3] [4]

Critical thinking .28 * .57

Total metacognitive .14 .54

Resource strategy; Effort .28 * .62

Resource strategy: Peer -.06 .37

Total resource strategy .04 .56

Task value .06 .54 .44

MSLQ total .22 * .49

Intrinsic goal orientation .33 * .51

Total self-efficacy .54 *** .54

Compared to previous research, a similar moderate correlation for

the concrete/sequential dimension (n = 218, r = .35) was reported

by [13]. [14] found an identical moderate correlation (n = 131,

r = .30) for abstract/sequential dimension, compared to this study.

This suggests that the Gregorc learning style delineator may

perform as a reasonable indicator of programming performance.

3.7 Learning Strategies and Motivations
All 39 students completed the MSLQ. Results are presented in

Table 1. Only 2 studies to date [3, 4] have explored the relations

between programming performance and scores on the various

motivational and learning strategies scales on the MSLQ.

Compared to prior research, an identical strong correlation for the

self-efficacy for learning and performance dimension (r = .54,

p < .01) was found. Marginally significant (p < .10) correlations

were found for: intrinsic goal orientation (r = .33, p = .04), critical

thinking (r = .28, p = .08), resource strategies: effort (r = .29,

p = .08), and MSLQ total score (r = .22, p = .09). These findings

confirm the research by [3, 4] who suggested that students who

perform well in programming courses have high levels of intrinsic

motivation and self-efficacy. However the findings of this study

differed with previous researchers on a number of dimensions. No

significant correlations were found between the total scores on the

resource strategies scale (r = .05, p = .76), task value (r = .06,

p = .70) scale, and the metacognitive strategies scale (r = .15,

p = .37) was found to have a significantly lower correlation than

previous researchers reported. These findings suggest that whilst

certain dimensions of the learning strategies employed by students

are related to their programming performance, further research is

required to identify the dimensions that are the most significant.

3.8 Programming Behavior
10 metrics based upon the programming behavior of students

were examined. Each metric was based upon the specific types of

event pairings that students produced, measured as a percentage

of their total number of pairings. Percentages were chosen as a

means of standardizing the number of event pairings against all

pairings each student produced, and as prior research has shown

that metrics based upon event counts alone are poor indicators of

performance [23]. 5 metrics were based upon the frequency of

specific types of pairings a student produced. 5 metrics were

based upon the percentage of lab time a student spent working on

specific types of pairing. Results are shown in Table 2.

Unlike the traditional test-based predictors that we have examined

throughout this section, an abundance of strong and significant

relations were found between metrics of programming behavior

and the performance of students. In terms of the percentage of

specific types of pairings logged for each student, a strong

significant correlation was found for the percentage of pairings

where an error persisted for two successive compilations

(n = 82, r = -.51, p < .01). Moderate correlations were also

identified for the percentage of pairings where any errors existed

in two successive compilations (n = 82, r = -.46, p < .01), and for

the percentage of pairings where two successive compilations

were successful (n = 82, r = .38, p < .01). Consistent with

[12, 23], these results suggest weaker students are characterized

by a high percentage of successive errors during lab sessions,

whilst stronger students are characterized by having a high

percentage of successive successful compilations.

Examining the relations between the time students spent on

different types of event pairings, further significant correlations

were found. A strong significant correlation was found for the

percentage of lab time that students spent working on pairings

where any errors existed in two successive compilations (n = 82,

r = -.50, p < .01). An inverse relation was found for the

percentage of lab time that students spent working on pairings

where two successive compilations were successful (n = 82,

r = .39, p < .01). A further moderate correlation was found for the

percentage of lab time that students spent working on pairings

where an error persisted for two successive compilations (n = 82,

r = -.42, p < .01). These results suggest that not only are weaker

students characterized by producing a high percentage of

successive errors during lab sessions, but also, weaker students

will generally spend a greater percentage of their lab time

interacting with uncompilable code, than stronger students.

Table 2. Pearson correlations (r) between programming

behaviors and performance (* p < .10, ** p < .05, *** p < .01)

Programming

Behavior

2011/12 2012/13 Total

n = 37 n = 45 n = 82

Based on Frequency of Events. Percentage of pairings:

Error to Same Error -.50 *** -.54 *** -.51 ***

Error to Different Error -.32 * -.43 *** -.37 ***

Error to Any Error -.48 *** -.48 *** -.46 ***

Error to Success .18 .54 *** .38 ***

Success to Success .44 ** .37 ** .38 ***

Based on Time. Percentage of Lab Time Spent On:

Error to Same Error -.35 ** -.51 ** -.42 ***

Error to Different Error -.44 *** -.43 *** -.41 ***

Error to Any Error -.54 *** -.51 *** -.50 ***

Error to Success .07 -.09 -.01

Success to Success .41 ** .38 ** .39 ***

Overall Quantification Measures:

Error Quotient [12] -.42 ** -.47 *** -.44 ***

Watwin Score [23] -.60 *** -.65 *** -.60 ***

472

The use of programming behavior as a predictor of performance

was further explored by applying two overall quantification

algorithms to our datasets: Error Quotient (EQ) [12] and Watwin

Score [23]. Both algorithms work by applying a scoring algorithm

to the different types of compilation pairings that a student

produces during a lab session. The major difference between the

two algorithms is that Watwin [23] relatively penalizes a student

based upon how their resolve time for different types of error,

compares to the resolve times of their peers on the same error. The

EQ moderately correlated with performance (n = 82, r = -.44,

p < .01). However Watwin score showed a significantly stronger

correlation (n = 82, r = -.60, p < .01). These findings suggest that

aspects of a student’s programming behavior are strongly related
to their performance in programming courses and that hybrid

algorithms may be one of the best data-driven predictors.

3.9 Regression Analysis
To investigate whether the various factors examined were

predictive of performance in the module, three regression analyses

were performed. As 5 of the students who completed the

questionnaires did not provide consent for us to log their

programming behavior, our sample size is reduced to 34 students.

The first model was designed to determine the predictive potential

of the six written questionnaires. Consideration was given for all

the traits examined in this study, with the exception of: previous

programming experience, academic background (apart from

GPA), hours worked in a part time job, due to a small number of

students in each of these categories. Using a stepwise regression, a

significant model was found with F(3, 24) = 8.56, p < .01, and an

adjusted R-square of 45.6%. Significant values were found for

MSLQ test anxiety (β = -.33, p = .04), MSLQ total metacognitive

self regulation (β = .34, p = .03), and score on the Gregorc

abstract/random dimension (β = -.40, p = .01).

The second model was designed to determine the predictive

potential of the 12 programming behavior traits. Using a stepwise

regression, a significant model was found with F(2, 33) = 22.21,

p < .01, and an adjusted R-square of 56.3%. Significant values

were found for Watwin score (β = -.56, p < .00) percentage of lab

time spent working on error to success pairings (β = .41, p < .01).

A third model was designed to determine whether a hybrid of both

traditional predictors and those based on programming behavior

could explain more variance than the previous two models. All

characteristics used to construct the previous two models were

entered into the regression. A significant model was found with

F(3, 27) = 17.92, p < .01, and an adjusted R-square of 60.6%.

Significant values were Watwin score (β = -.77, p < .01), MSLQ

total resource management strategies (β = .29, p < .01), and

MSLQ total control of learning beliefs (β = .29, p < .01).

4. DISCUSSION
For almost 50 years, researchers have examined how prior

academic experience, attributions of success, behavioral traits,

self-esteem, learning styles, and learning strategies relate to the

programming performance of students. But, with the exception of

self-efficacy measured by the MSLQ (r = .54, p < .01) this study

found no predictor within any of these traditional categories that

strongly correlated with the performance of our students. Figure 1

shows the top 20 predictors found by this study. As can be seen,

whilst 9 of the traditional test-based predictors are in the top 20,

the strength of their correlations with programming performance

are concentrated around the weak-moderate range. The remaining

29 traditional predictors outside the top 20 performed similarly.

Figure 1. Bar chart showing the top 25 predictors of

programming performance identified by this study.

Correlations shown are absolute values and references to

corresponding sections are shown in brackets. Programming

behavior predictors are yellow, test-based predictors are blue.

In contrast, 11 of the 12 predictors based upon programming

behavior were within the top 20, and were found to significantly

relate to the programming performance of students. As can be

seen from Figure 1, a total of 7 predictors based on programming

behavior were found to strongly correlate with performance, and

the remaining 4 moderately correlated. The implication of this

research is that traditional test-based predictors are substantially

less effective at reflecting the programming ability of students,

and that data-driven approaches offer a more accurate method of

prediction. In this study the results for test-based predictors were

mostly inconsistent. The results for the programming behavior

metrics (Table 2) were mostly consistent. It is worth stressing the

further advantages of using predictors based on programming

behavior. Traditional test-based approaches mainly examine traits

that are static in nature and fail to reflect changes in the students

learning progress over time. Although such approaches may have

a chance of identifying weaker students, their one-shot, static

nature, means that they cannot be dynamically used to support

such students, e.g., by providing automatic interventions to assist

weaker students when they are struggling. The programming

behavior metrics however could be used in such circumstances,

without the requiring any additional workload for either

instructors or students.

Finally we acknowledge the limitations of this study. There are

numerous difficulties associated with identifying predictors of

programming performance. Our data was consistent with previous

researchers in terms of the frequency and distribution of different

types of error [12,16,23]. However conditions, such as the

language taught or tools used to program vary considerably across

different teaching contexts. Whilst this study has shown that

several aspects of programming behavior can significantly

correlate with a student’s performance, further verification is
required to determine the general applicability of these metrics

across a variety of different teaching contexts and situations.

473

5. CONCLUSION AND FUTURE WORK
In this paper, 38 traditional test-based predictors of programming

performance were reexamined, and compared to 12 dynamic

predictors that were based upon analyzing aspects of a student’s
regular programming behavior. Whilst only one strong relation

was identified between traditional predictors and performance, an

abundance of strong and significant relations were found between

aspects of programming behavior and performance. A model

based upon two aspects of programming behavior could account

for 56.3% of the variance in coursework marks, an improvement

of approximately 25% when compared to a model based on

traditional predictors alone. The results are encouraging, and the

implication of this study is that predictors based upon aspects of

programming behavior may be one of the strongest predictors of

performance. Researchers should continue to explore their

potential further, and work is essential to verify the performance

and applicability of such predictors across a variety of teaching

contexts. Future work will aim to develop techniques of applying

the metrics within practical contexts, such as visualizations of

learning progress [19], game-based tools [21,22], or tools to

improve the compiler feedback provided to novice students [20].

6. REFERENCES
[1] Bennedsen, J. and Caspersen, M.E. 2007. Failure rates in

introductory programming. SIGCSE Bull. 39(2), 32-36.

[2] Bergin, S. and Reilly, R. 2005. Programming: factors that

influence success. SIGCSE Bull. 37(1), 411-415.

[3] Bergin, S., Reilly, R. and Traynor, D. 2005. Examining the

role of self-regulated learning on introductory programming

performance. In Proc. of the 1st Int. Workshop on Computing

Education Research (ICER), 81-86.

[4] Bergin, S. and Reilly, R. 2005. The influence of motivation

and comfort-level on learning to program. In Proc. of the

17th PPIG Workshop, 293-304.

[5] Biamonte, A.J. 1964. Predicting success in programmer

training. In Proc. of the 2nd SIGCPR Conference on

Computer Personnel Research, 9-12.

[6] Byrne, P. and Lyons, G. 2001. The effect of student

attributes on success in programming. SIGCSE Bull. 33(3),

49-52.

[7] Campbell, V. and Johnstone, M. 2010. The Significance of

Learning Style with Respect to Achievement in First Year

Programming Students. In Proc. of the 21st Australian

Software Engineering Conference (ASWEC), 165-170.

[8] Cantwell-Wilson, B. and Shrock, S. 2001. Contributing to

success in an introductory computer science course: a study

of twelve factors. SIGCSE Bull. 33(1), 184-188.

[9] Chamillard A.T. and Karolick, D. 1999. Using learning style

data in an introductory computer science course. SIGCSE

Bull. 31(1), 291-295.

[10] Corman, L.S. 1986. Cognitive style, personality type, and

learning ability as factors in predicting the success of the

beginning programming student. SIGCSE Bull. 18(4), 80-89.

[11] Henry, J.W., Martinko, M.J., and Pierce, M.A. 1994.

Attributional style as a predictor of success in a first

computer science course. Computers in Human Behavior,

9(4), 341-352.

[12] Jadud, M.C. 2006. Methods and tools for exploring novice

compilation behaviour. Proc. of the 2nd Int. Workshop on

Computing Education Research (ICER), 73-84.

[13] Lau, W.W., and Yuen, A.H. 2009. Exploring the effects of

gender and learning styles on computer programming

performance implications for programming pedagogy. British

Journal of Educational Technology, 40(4), 696-712.

[14] Lau, W.W., and Yuen, A.H. 2011. Modelling programming

performance: Beyond the influence of learner characteristics.

Computers & Education, 57(1), 1202-1213.

[15] Pintrich, P. R., Smith, D. A., García, T., & McKeachie, W. J.

1993. Reliability and predictive validity of the Motivated

Strategies for Learning Questionnaire (MSLQ). Educational

and psychological measurement, 53(3), 801-813.

[16] Rodrigo, M.M.T., Baker, R.S., Jadud, M.C., Amarra,

A.C.M., Dy, T., Espejo-Lahoz, M.B.V, Lim, S.A.L., Pascua,

S.A.M.S., Sugay, J.O., and Tabanao, E.S. 2009. Affective

and behavioral predictors of novice programmer

achievement. SIGCSE Bull. 41(3), 156-160.

[17] Stein, M.V. 2002. Mathematical preparation as a basis for

success in CS-II. Computing Sciences in Colleges, 17(4), 28-

38.

[18] Ventura, P. 2005. Identifying predictors of success for an

objects-first CS1. Computer Science Education, 15(3), 223-

243.

[19] Watson, C., Li, F.W.B., and Lau, R.W.H. 2010. A

pedagogical interface for authoring adaptive e-learning

courses. In Proc. of the 2nd Int. Workshop on Multimedia

Technologies for Distance Learning, 13-18.

[20] Watson, C., Li, F.W.B., and Godwin, J.L. 2012. BlueFix:

using crowd sourced feedback to support programming

students in error diagnosis and repair. In Proc. of 11th Int.

Conference on Advances in Web-Based Learning, 228-239.

[21] Li, F.W.B., and Watson, C. 2011. Game-based concept

visualization for learning programming. In Proc. of the 3rd

Int. Workshop on Multimedia Technologies for Distance

Learning (MTDL), 37-42.

[22] Watson, C., Li, F.W.B., and Lau, R.W.H. 2011. Learning

programming languages through corrective feedback and

concept visualisation. In Proc. of 10th Int. Conference on

Advances in Web-Based Learning (ICWL), 11-20.

[23] Watson, C., Li, F.W.B., and Godwin, J.L. 2013. Predicting

Performance in an Introductory Programming Course by

Logging and Analyzing Student Programming Behavior. In

Proc. of the 13th IEEE International Conference on

Advanced Learning Technologies (ICALT), 319-323.

[24] White, G., and Sivitanides, M. 2003. An empirical

investigation of the relationship between success in

mathematics and visual programming courses. Information

Systems Education, 14(4), 409-416.

[25] Wiedenbeck, S. 2005. Factors affecting the success of non-

majors in learning to program. In Proc. of the 1st Int.

Workshop on Computing Education Research (ICER),

13-24.

474

	1. INTRODUCTION
	2. RESEARCH DESIGN
	2.1 Participants
	2.2 Instruments
	2.3 Predictor Variables
	2.4 Criterion Variable

	3. RESULTS
	3.1 Previous Programming Experience
	3.2 Previous Academic Experience
	3.3 Attributions of Success
	3.4 Behavioral Traits
	3.5 Self-Esteem
	3.6 Learning Styles
	3.7 Learning Strategies and Motivations
	3.8 Programming Behavior
	3.9 Regression Analysis

	4. DISCUSSION
	5. CONCLUSION AND FUTURE WORK
	6. REFERENCES

