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Abstract: Shape information is of great importance in many applications. For
example, the oil-bearing capacity of sand bodies, the subterranean remnants of
ancient rivers, is related to their cross-sectional shapes. The analysis of these
shapes is therefore of some interest, but current classifications are simplistic and
ad hoc. In this paper, we describe the first steps towards a coherent statistical
analysis of these shapes by deriving the integrated likelihood for data shapes given
class parameters. The result is of interest beyond this particular application.
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1 Introduction

Sand bodies, the sedimentary, subterranean remnants of ancient rivers, are
important to both geology and the petroleum industry. In particular, their
cross-sectional shapes help determine their oil-bearing capacity. Current
classification schemes for sand body shapes are qualitative, simple, and ad
hoc, and so there is a need for a quantitative analysis with the help of sta-
tistical models. There are several problems of interest: estimation of shape
class parameters given labelled data shapes (a ‘data shape’ is an ordered set
of points in R2); classification of new data shapes; and unsupervised clas-
sification. Parameter estimation is described by the probability P(w|y, c),
where w denotes the shape class parameters and y the dataset, which con-
sists of several data shapes, together with their class labels c. By Bayes’
theorem, this is given by:

P(w|y, c) ∝ P(y|w, c)P(w) . (1)

In this, as in all of the above problems, the major task is to calculate
the likelihood P(y|w, c). This is the problem addressed in this paper. The
problem is not unique to the sand body application: it occurs in many
applications of shape modelling, and is thus of broad interest.



2 Bayesian shape modelling

2 The likelihood

The calculation of the likelihood is complicated due to the presence of
many nuisance parameters that must be integrated over. The partitioned
likelihood is:

P(y|w, c) =∑
b∈B

∫
ds dg dβ dσ P(y|σ, b, s, g, β)P(σ)P(b)P(s|β)P(g)P(β|w, c) , (2)

where we have made a number of simplifying independence assumptions.

Here P(y|σ, b, s, g, β) = exp
(
− 1

2σ2

∑N
i=1 |y(i)− g ◦ β(s(b−1(i)))|2

)
models

errors in shape point collection as Gaussian white noise.

In the above expression, β is the underlying sand body shape modulo sim-
ilarity transformations, which comes from a class C with parameters w,
while g ∈ G ≡ SO(2) n R2 × R+ is a similarity transformation gen-
erating the full sand body shape gβ. Data formation is modelled as a
sampling s of N points around the sand body shape, and a bijection
B 3 b : [1, ...n] → [1, ...n] relating each point of the sand body shape
to a unique point of the data shape, giving gβ(s(b−1)), plus the above
Gaussian noise with variance σ.

In previous work, e.g. Dryden and Mardia (1998) or Srivastava and Jermyn
(2009), an algorithmic approach was taken to the integrals over the group
G, using the Procrustes algorithm to compute a zeroth order Laplace ap-
proximation. Here we carry out the group integrations, and the integration
over σ, analytically, resulting in a closed form expression. This is the main
contribution of this paper.

First, we have to choose the priors for g and σ. Jeffrey’s joint prior for g

and σ was calculated to be a Var(β(s))
σ5 , but this leads to a non-normalizable

likelihood. Instead, a regularized version was employed. A Gaussian prior
was used for translations; a uniform prior for rotation angle; and a Rayleigh
prior for scaling. These choices break translation invariance by effectively
limiting the size of the two-dimensional domain in R2 in which the shape
points lie, and break scale invariance by effectively limiting the range of
scales considered. With these priors, the result of the integrations over
translations, rotations, and scalings is:

P(y|b, s, β) =

1

Z

1

σ2n
exp

{
−1

2σ2

(
ñ ˜Var(y)− ñ2 ˜Cov2(β(s(b−1)), y)

ñṼar(β(s(b−1)) + 1/B2

)}
, (3)

where:
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• ñ = n+ 1
D2

• Ṽar(y) = 1
ñ

[∑
i |yi|2 −

1
ñ

∑
i

∑
j yiyj

]
• C̃ov(β(s(b−1)), y) = 1

ñ

[∑
i β(s(b−1(i)))yi − 1

ñ

∑
i

∑
j β(s(b−1(i))yj

]
which are regularized versions of the number of points and the variance.
B,D,α, c are appropriate regulators and Z the normalization constant.

A Γ prior was used for σ. After integration, this leads to:

P(y|b, s, β) =
Γ(n+ α)

Z
×

[
ñ ˜Var(y)− ñ2 ˜|Cov(β(s(b−1)), y)|2

ñṼar(β)(s(b−1)) + 1/B2
+ 2c

]−n−α
(4)

This expression is the main result of the paper. It applies to any shape
modelling application in which white Gaussian noise is added to a discrete
set of shape points.

To finish the calculation of the likelihood, we have to perform the s and β
integrations, and the b summation, in equation (2). This we do using Monte
Carlo techniques. We use a uniform distribution on [0, 1]N for samplings
s, while β, which consists of positive quantities such as aspect ratios and
lengths, is modelled with Γ distributions, whose parameters over all classes
constitute w. In previous work, when the group integrations were approxi-
mated using the Laplace approximation and the Procrustes algorithm, the
sum over bijections could be approximated, again in a zeroth order Laplace
estimation, using the Hungarian algorithm, since only a linear assignment
problem was involved. In the integrated likelihood derived here, the terms
involving ˜Cov(β(s(b−1)), y) complicate the situation, and turn the linear
assignment problem into quadratic assignment, which is NP-hard. Instead
of using the Laplace approximation, we approximate the full summation
using Monte Carlo, with a uniform prior on b.

3 Parameter estimation

The above result can be used to estimate the class parameters w given data
shapes from each class. Figure 1 shows an example of a likelihood surface, in
this case computed for the simplest case of a rectangle modulo similarities.
This is a one-dimensional shape space that can be parametrized by the
aspect ratio. There is thus one Gamma distribution involved, and w is two-
dimensional. The surface is rough, since only a coarse grid in parameter
space was used to reduce simulation time.
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FIGURE 1. The likelihood surface

Maximum likelihood estimation was carried out using a built-in Matlab op-
timization function. The algorithm correctly navigated towards the max-
imum of the likelihood surface, but convergence was slow. We hope to
improve this in the future by using a different maximization algorithm.

4 Conclusion

The main contribution of this paper is the analytical evaluation of the
integrals over the similarity group and the noise variance in a model for
shape data. The application considered here is to the classification of the
cross-sectional shapes of sand bodies, but the same techniques apply to
any shape model involving Gaussian noise. This work is still in progress but
shows promising signs of improving the current classification and estimation
methods employed by geologists. There are technical obstacles in the form
of numerical integrations which we hope to overcome in the near future.
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Notes
In the manuscript version published in the conference proceedings volume, there

was a small error in expression (4). This is now corrected.


