

OK

... in favour of the cherry tree?

- Common view held by educationalists, teachers, instructional designers ...
- Goldstone & Sakamoto (2003): the use of variable labels referring to familiar contexts facilitates the understanding of abstract scientific concepts (see also Lazonder, Wilhelm & Hagemans, 2008; Lazonder, Wilhelm & Van Lieburg, 2009)
- Reference to prior knowledge helps generating hypotheses that can be tested
- Sense of familiarity is considered helpful

Durham

... well, maybe not!

- Beckmann, 1994; Beckmann & Guthke, 1995; Burns & Vollmeyer, 2002;
- Lazonder, Wilhelm & Hagemans, 2008*; Lazonder, Wilhelm & Van Lieburg, 2009*
- Poorer performance under "semantically meaningful" conditions
- → Semantic Effect

Durham

Aim

Why is the acquisition of *new* knowledge inhibited by a "semantically meaningful" context?

Two explanatory mechanisms:

- Goal Adoption
 - despite instruction to explore problem solvers tend to adopt goals (i.e. self-defined optimisation of values in output variables)
- Presumptions
 - Semantic contexts induces sense of familiarity
 - Familiarity triggers assumptions
 - Testing of assumptions is cognitively more demanding than seeking for confirmation

Durham

De	sign		
N	Condition	Input	Output
21	abstract	A B C	X Y Z
			1
20	concrete	Light Water Temperature	Cherries Leaves Beetles
Durham	A, S	ge: 18 – 48 (20, 5) ex: 72 % female	

	ee gi		
N	Condition	Input	Output
21	abstract	A B C	X Y Z Goal Adoptic
19	abstract output	Light Water Temperature	X unlikely Y Z
20	concrete output	A B C	Cherries Leaves Beetles Goal Adoptio
20	concrete	Light Water Temperature	Cherries Leaves Beetles

A priori Assumptions

	Conditions						
# assumptions	Abstract in & out	Concrete out	Abstract out	Concrete in & out	total		
High (7 – 12)	3	5	8	11	27		
Low (0 - 6)	18	15	11	9	53		
	21	20	19	20	80		
	Semanticity						
		medium		high	total		
# assumptions	low	me	arann	nign	1.010		
# assumptions High (7 – 12)	low 3		13	11	53		
# assumptions High (7 – 12) Low (0 – 6)	low 3 18		13 16	11 9	53 27		
# assumptions High (7 – 12) Low (0 – 6)	low 3 18 21	·······································	13 16 39	11 9 20	53 27 80		

Results Summary

Goal Adoption?

- contrast b/w conditions with concrete and abstract labels for outputs
- Knowledge acquisition: $F_{1,78} = 3.48$, p = .07, $\eta^2 = 0.04$
- System control: $F_{1,78} = 1.38$, p = .24, $\eta^2 = 0.02$

Presumptions?

- higher levels of semanticity increases significantly the likelihood to adopt high numbers of presumptions (Somer's D = .25, p = .003)
- contrast b/w high and low levels of a priori assumptions
- Knowledge acquisition: $F_{1,78} = 12.89$, p < .01, $\eta^2 = 0.14$ System control: $F_{1,78} = 24.60$, p < .01, $\eta^2 = 0.24$

Durham

Systematicity

- only 4 interventions are necessary to completely identify the underlying causal structure
 - Leave all inputs at zero → identifies autonomic changes
 - Vary one input at a time → identifies effects of inputs on each output
 - Combined: Vary One or None at A Time (VONAT) as indicator of systematicity
- High levels of assumptions are associated with low levels of systematicity in exploration behaviour $(r_{\rm pb} = -.53, p < .001)$
- Low levels of systematicity is associated with low levels of accuracy of acquired knowledge (r = .32, p = .002).

Durhan

Summary

Semantic effect replicated

No support for goal adoption as explanatory mechanism

Support for presumption hypothesis:

- Concrete labels induce sense of familiarity
- Familiarity generates presumptions
- Presumptions are less likely to be tested systematically
- Unsystematic exploration behaviour impedes knowledge acquisition
- Poor knowledge acquisition leads to poor system control

Durham

Implications

- It is presumptuous to assume that hypotheses testing does occur "naturally" in learners.
- "instructional disobedience" or "instructional idealism"?
- challenge for constructivist, discovery, problembased, experiential, and inquiry-based teaching
- guidance needed on how to (a) explicate • assumptions and (b) test them systematically.

Durham