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Abstract: A variant of the EM algorithm for the estimation of multivariate
Gaussian mixtures, which allows for online as well as blockwise updating of se-
quentially obtained parameter estimates, is investigated. Several different update
schemes are considered and compared, and the benefits of artificially performing
EM in batches, even though all data are available, are discussed.
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1 Background

Consider multivariate data yi = (yi1, . . . , yip)T , i = 1, . . . , n sampled inde-
pendently from some population consisting of several latent groups or sub-
populations. Data of this type are conveniently modelled through Gaussian
mixture models

f(yi|θ) =

K∑
k=1

πkf(yi|θk)

where f(yi|θk) = (2π)−p/2|Σk|−1/2 exp
{
− 1

2 (yi − µk)T Σ−1k (yi − µk)
}

, θk =

{πk, µk,Σk}, and θ = {θ1, . . . , θK}, with the restriction πK = 1−
∑K−1

k=1 πk.

Assume a given set of starting values, say θ̂(0). The EM algorithm iterates
between the Expectation (E) –step, updating the posterior probabilities

wik = P (obs. i belongs to comp. k) for given θ̂k,

wik ≡ w(yi, θ̂k) =
πkf(yi|θ̂k)∑K
k=1 πkf(yi|θ̂k)

, (1)
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and the Maximization (M) –step, where the parameter estimates are up-
dated for given wik as

π̂k =
1

n

n∑
i=1

wik; µ̂k =

∑n
i=1 wikyi∑n
i=1 wik

;

Σ̂k =

∑n
i=1 wik(yi − µ̂k)(yi − µ̂k)T∑n

i=1 wik

Let θ̂(j) denote the value of θ̂ after j–th iteration and lj =
∑n

i=1 log f(yi|θ̂(j))
the corresponding log-likelihood. Convergence is established at j–th itera-
tion if the difference lj − lj−1 falls below a small threshold (which we take
to be 0.001). An important feature of this methodology should be high-
lighted: After convergence of the EM algorithm we have not only obtained
the estimate θ̂, but are also able to assign each observation i to a class
ci ∈ {1, . . . ,K} via the classification rule

ci = arg max
k

wik.

For details on how the described routine relates to the original formulation
of the EM algorithm, we refer to Aitkin et al. (2009), Section 7.

2 Updating the EM algorithm

The methodology described in the previous Section implies the assumption
that the full set of responses y = (yT1 , . . . , y

T
n )T has been observed before

the EM algorithm is run. Unfortunately, for new data yn+j , j ≥ 1, the
fitted model does not provide information on the class membership cn+j ,
since the wn+j,k are unknown. Traditionally, if n′ new data have been
observed, the way forward would have been to re–fit the entire model,
using data y1, . . . , yn, yn+1, . . . yn+n′ . This is clearly inefficient, and may
be computationally expensive especially if n and/or p are large. However,
the EM algorithm can easily be adapted to become an update algorithm,
which we outline as follows. Assume that, using a batch of size n, the EM
algorithm as outlined in Section 1 has been executed, yielding estimates θ̂
and a weight matrix W = (wik)1≤i≤n,1≤k≤K . Now, a new batch n′ has been
made available. Via (1), one can compute new membership probabilities

w′n+j,k = w(yn+j , θ̂k)

using the already computed θ̂, which we again summarize in a matrix W ′ =
(wn+j,k)1≤j≤n′,1≤k≤K . Then we stack W ′ underneath W , which we denote
as W ∪W ′. At this stage we have several options.

(i) We use W ∪W ′ to run a single M-step, using all n+n′ data, leading

to an updated θ̂. We refer to this option as one–step– update. Note
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that, under this scenario, the matrix W has not got updated, so the
posterior probabilities of the original data have not benefited from
the new information.

(ii) After running (i), we can run one additional E-step (which then will
update W ∪W ′) and one additional M-step. We call this the two–
step update.

(iii) One can now repeat step (ii) a further number of times, and if we do
this until convergence, we call this a converged update.

Now, any of (i), (ii) or (iii) lead to an update of θ̂ for the single batch n′.
After reception of the next batch, say n′′, again any of (i) to (iii) needs to
be executed, and this will be repeated until all batches have been received.
Unlike other recently proposed approaches to ‘incremental EM’ (such as
Zhang and Scordilis, 2009), where the focus is on approximative updating
to gain computational speed, any combination of (i), (ii) and (iii) will give
an ‘exact’ update, hence enabling to find the MLE of the full data at any
stage, if only (iii) is executed after the last update.

3 Online updating

Options (i) and (ii) are especially attractive in an online scenario, where
new observations i come in at certain timepoints ti, and one wishes to
continuously update the current parameter estimates and weight matrix.
Clearly the initial batch needs to contain at least as many observations as
parameters in θ, that is mathematically n ≥ K(1+3p/2+p2/2)−1 (but in
practice larger values will be required). For all further batches one would
have 1 = n′ = n′′ = . . ..
We illustrate the performance of the online update schemes (i) and (ii)
through a simple simulation. We generated a random dataset with two
Gaussian clusters containing a total of 100 points. The result of applying
usual EM onto this data set is provided in Figure 1, with the log-likelihood
provided by the dashed curve in the middle panel. Next, 60 from these 100
points were randomly selected to drop out the dataset, leaving us with a
batch of size n = 40. After running EM until convergence for this reduced
batch, which required 20 iterations, the previously removed points were
returned one-by-one to the dataset, each followed by procedures (i) and
(ii), respectively. After all data points have been included, we run step (iii)
(this is the part after the vertical line in Figure 1 (middle)).
Note that the higher likelihoods (as compared to usual EM) obtained for
small iteration numbers are an artefact of the smaller sample sizes used
for these. The key observations from Fig. 1 (middle) are: (a) During the
execution of the online–updating, scheme (i) leads to worse solutions than
scheme (ii), and needs a longer time to recover once one goes into mode
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(iii). (b) After final convergence, the log-likelihood `(θ̂) is the same for all
approaches.
Conceptually, it is clear that (b) must be true: If we have achieved some

estimate θ̂ through repeated online updating, and from this moment on we
decide to fill in the remaining data, then we effectively carry out usual EM
but with starting value θ̂(0) = θ̂. The MLE of this problem is the same as
for the full data set.

4 Blockwise updating

Even though the MLE is in principle the same, there may be a difference in
whether or not the maximum is actually found, that is, whether or not the
EM algorithm gets trapped in a local maximum on its way to the MLE. In
other words, there is the intriguing possibility that, by artificial blockwise
splitting and updating data sets which were in principle fully available, one
is able to overcome local maxima (through the influx of fresh data), in
which traditional EM gets trapped. Indeed, one can find scenarios where
this is the case. An exemplary graphical illustration of the log-likelihoods
obtained in a simulation involving 1200 samples (split in three batches)
and K = 8 mixture components is provided in Figure 1 (right).
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FIGURE 1. Left: Result of EM for bivariate data with two clusters; Middle:
Comparing traditional EM with one– and two–step updates; Right: Comparing
traditional EM with blockwise updating (for a more complex data set involving
8 clusters).


