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Abstract

From a set of d-dimensional vectors for some integer d ≥ 1, we obtain a d-dot
product graph by letting each vector au correspond to a vertex u and by adding an
edge between two vertices u and v if and only if their dot product au · av ≥ t, for
some fixed, positive threshold t. Dot product graphs can be used to model social
networks. To understand the position of d-dot product graphs in the landscape of
graph classes, we consider the case d = 2, and investigate how 2-dot product graphs
relate to a number of other known graph classes.
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1 Introduction

Consider a social network in which each individual is friends with zero or
more other individuals. In a vector model of the network, an individual u is
described by a d-dimensional vector au for some integer d ≥ 1 that expresses
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the extent to which u has each of a set of d attributes (e.g. hobbies, opinions,
music preferences, etc.). Two individuals are assumed to be friends if and only
if their attributes are “sufficiently similar”. There are many ways to measure
similarity using a vector model (see, for example, [1,4,8,9,14]). In this paper,
we use the dot product model that is, two individuals u and v are friends if and
only if the dot product au · av ≥ t, for some fixed, positive threshold t. The
corresponding graph G, in which each individual is a vertex and the friendship
relation is described by the edge set, is called a dot product graph of dimension
d or a d-dot product graph. We also say that the vector model {au | u ∈ V }
with the threshold t is a d-dot product representation of G.

Dot product graphs have been studied from various perspectives. In par-
ticular, the study of dot product graphs as a model for social networks was
initiated in a randomized setting [11,12,13,15,16], where the dot product of two
vectors gives the probability that an edge occurs between the corresponding
vertices. In a recent paper [5], we started the study of dot product graphs from
an algorithmic perspective by considering the problems of finding a maximum
independent set or a maximum clique in a d-dot product graph.

In this paper, we study dot product graphs from a graph-theoretic perspec-
tive. This line of research was initiated by Fiduccia et al. [3]. They showed
that every graph on m edges has a dot product representation of dimension at
most m [3], and conjectured that every graph on n vertices has a dot product
representation of dimension at most n/2 (this conjecture has been confirmed,
for example, for balanced complete bipartite graphs [3], chordal graphs [10],
and graphs of girth at least 5 [10]). This led to the notion of the dot product
dimension of a graph, which is the smallest d such that the graph has a d-dot
product representation. Although graphs of dot product dimension 1 are eas-
ily understood and can be recognized in polynomial time (they are precisely
the disjoint union of at most two threshold graphs [3]), we know comparatively
little about graphs of dot product dimension 2 (or any higher fixed value).

This paper focusses on graphs of small dot product dimension, and in par-
ticular, on 2-dot product graphs. Kang and Müller [7] proved that recognizing
graphs of any fixed dot product dimension d ≥ 2 is NP-hard (membership in
NP is still open). However, Fiduccia et al. [3] proved that every interval graph
and every caterpillar is a 2-dot product graph; they also showed that not ev-
ery tree is a 2-dot product graph (but trees have dot product dimension at
most 3), that not every chordal graph is a 2-dot product graph (but chordal
graphs have dot product dimension at most min{ω(G) + 1, n/2} [3,10]), and
that not all 2-dot product graphs are interval graphs (as the cycle on four
vertices is a 2-dot product graph). Since there exist trees of dot product di-



mension 3, neither all outerplanar nor all planar graphs are 2-dot product
graphs (however, Kang et al. [6] proved tight bounds of 3 and 4 respectively
on the dot product dimension of these graphs). Li and Chang [10] showed that
every wheel on six or more vertices has dot product dimension 3 (a wheel is a
graph obtained from a cycle by adding a dominating vertex). Observe that in
spite of these results, there are still many graph classes for which the relation
to the class of graphs of small dot product dimension (and of dot product
dimension 2 in particular) is unclear.

Our Results. We provide a more complete picture of the place of 2-dot
product graphs in the landscape of known graph classes. We identify several
new graph classes that are 2-dot product graphs, and show that certain graph
classes are neither contained in the class of 2-dot product graphs nor do they
contain all 2-dot product graphs. In particular, our work seems to provide
evidence that no well-known graph class includes all 2-dot product graphs
(however, we note explicitly here that we neither claim nor conjecture this).

2 Graph Classes and 2-Dot Product Graphs

Throughout, we assume that the threshold t = 1, unless stated otherwise. As
any d-dot product graph has a representation with threshold 1 [3], this is no
restriction. For space reasons, several proofs are omitted.

We start by observing that because the class of 2-dot product graphs is
closed under vertex deletion, it can be characterized by a set of forbidden
induced subgraphs. However, the class of 2-dot product graphs is not well-
quasi-ordered that is, it has no finite set of forbidden induced subgraphs, be-
cause every wheel must be in this set of forbidden induced subgraphs. Indeed,
a wheel minus a vertex is either a cycle or a fan, and thus has dot product
dimension 2.

We note that 2-dot product graphs are not necessarily triangle-free, pla-
nar, nor H-minor-free for some fixed H, as they can contain arbitrarily large
cliques. They are also not necessarily split, AT-free, even hole-free, or odd
hole-free, because cycles of any length are 2-dot product (see [3] for cycles of
length 4 or length at least 6; for the 5-vertex cycle this follows from Li and
Chang’s result [10] on graphs with girth at least 5). Also they are neither
necessarily claw-free, as the claw has a 2-dot product representation (e.g. take
t = 3 and vectors (1, 1), (1, 1), (1, 1) and (2, 2)), nor circular-arc (e.g. take
the complete graph on four vertices and add a pendant vertex to each vertex).
Moreover, there exist 2-dot product graphs that are not a disk graph (take
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(5, 0) with t = 1). We note that grid graphs are not 2-dot product, as the
2× 2 grid can easily be shown not to have a 2-dot product representation by
following the proof for wheels in [10].

2.1 Co-Bipartite Graphs

We exhibit a sharp divide on whether co-bipartite graphs are 2-dot product
graphs. First, we show that a complete graph minus a matching is still a 2-dot
product graph.

Theorem 2.1 Let G be a graph obtained from a complete graph by removing
the edges of a matching. Then G has a 2-dot product representation.

Proof. Let m be a positive integer. Let the vertex set of K2m be denoted
{v1, v2, . . . , vm, w1, w2, . . . , wm} and let Im denote the set of edges {viwi | 1 ≤
i ≤ m} which form a perfect matching. We will first prove the special case
of the theorem where G = K2m − Im. For a nonnegative integer k, let b(k) =
2k − 1. For 1 ≤ i ≤ m, let avi = (1/b(i), b(i − 1)), awi = (b(i − 1), 1/b(i)).
We show this is a 2-dot product representation for K2m − Im. First consider
pairs vi, wi:

avi · awi =
2b(i− 1)

b(i)
=

2i − 2

2i − 1
< 1.

We must show that all other pairs of distinct vertices have dot product at
least 1. As each b(k) ≥ 1, we have avi · avj ≥ 1 and awi · awj ≥ 1 for all i, j.
Finally, for i 6= j,

avi · awj =
b(j − 1)

b(i)
+
b(i− 1)

b(j)
,

and one of the two quotients is at least 1, and the other is positive.

For the general case, choose the largest value of m such that K2m−Im is an
induced subgraph of G. Then every vertex not in this subgraph is adjacent to
every vertex other than itself. We can obtain a 2-dot product representation
of G using the representation described above for the vertices of K2m − Im
and by letting, for every other vertex u, au = (1, 1) (and by noting that every
vertex has two positive coordinates one of which is at least 1). 2

For a positive integer n ≥ 3, let A2n be the (even) anti-cycle on 2n vertices.
We note that even anti-cycles are co-bipartite and note the contrast between
Theorems 2.1 and 2.2.



Fig. 1. The graph J and its representation as a unit circular-arc graph.

Theorem 2.2 For n ≤ 3, A2n is a 2-dot product graph. For n ≥ 4, A2n is
not a 2-dot product graph.

2.2 Unit Circular-Arc Graphs and Split Graphs

Consider the unit sphere Sk. Then for some vector c ∈ Sk, a cap of Sk is the
set {x ∈ Sk | c ·x ≥ a}, where a is a real number in (0, 1]. We call the vector c
the center of the cap, and 2 arccos a its angular diameter. Observe that, given
the range of a, the angular diameter of each cap lies in [0, π). Fiduccia et
al. [3] showed that a so-called capture graph of caps of Sk has dot product
dimension at most k+ 1, while Kang et al. [6] showed that a so-called contact
graph of caps of Sk has dot product dimension at most k+2. We consider unit
caps : a set of caps of Sk is unit if all caps in the set have the same angular
diameter θ ∈ [0, π/2).

Theorem 2.3 The intersection graph of a set of unit caps of Sk has dot
product dimension at most k + 1.

It would seem that Theorem 2.3 also implies that all unit circular-arc
graphs have dot product dimension at most 2. However, due to the limited
angular diameter allowed in our definition of unit caps, this implication only
holds if the graph has a unit circular-arc representation using unit caps of S1.
This is the case, for example, when the graph has no maximal independent
set of size less than 4.

Theorem 2.4 If G is a unit circular-arc graph with no maximal independent
set of size less than 4, then G is a 2-dot product graph.

Surprisingly, this restriction is not an artifact of our proof technique, but is
actually needed: in Figure 1 is an example of a graph J that is a unit circular-
arc graph and that has dot product dimension larger than 2. Note that such
an example must have triangles, as every triangle-free unit circular-arc graph
is either a path or a cycle and so has dot product dimension 2.



Fig. 2. The graph K. As the vertices can be partitioned into a clique and an
independent set, it is a split graph.

Theorem 2.5 There exist unit circular-arc graphs that do not have a 2-dot
product representation.

In Figure 2 is an example of a graph K that is a split graph and that has
dot product dimension larger than 2. This give us our last result.

Theorem 2.6 There exist split graphs that do not have a 2-dot product rep-
resentation.
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