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Abstract—The campus grid architectures currently available 

are considered to be overly complex.  We have focused on High 

Throughput Condor HTCondor as one of the most popular 

middlewares among UK universities, and are proposing a new 

system for unifying campus grid resources. This new system 

PBStoCondor is capable of interfacing with Linux based system 

within the campus grids, and automatically determining the best 

resource for a given job. The system does not require additional 

efforts from users and administrators of the campus grid 

resources. We have compared the real usage data and  

PBStoCondor system simulation data. The results show a close 

match. The proposed system will enable better utilization of 

campus grid resources, and will not require modification in 

users’ workflows. 
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I.  INTRODUCTION 

Within many Higher Education and Research Institutions 
computer grids play an important role in making 
geographically distributed disparate resources accessible to the 
researchers and students. Research effort into grid computing 
has generated a number of grid middlewares, which are often 
integrated with underlying cluster computing middlewares and 
schedulers. There is increasing pressure for grid solutions to be 
able to interface with a wider range of end resource types 
However, grid middlewares are generally considered to be 
rather complex by users and administrators alike.  

At the University of Huddersfield (UoH) the High 
Performance Computing (HPC) and High Throughput 
Computing (HTC) resources are unified in the QueensGate 
Grid (QGG) Campus Grid [1,2]. The QGG consists of a 
number of disparate resources with a gateway to external and 
internal resources. There is a common connection point for 
most systems, and on reaching this point users would branch 
out to their preferred HPC/HTC system. This multiple system 
configuration has a serious drawback - the system load 
balancing is almost impossible to achieve. In its present 
configuration, to better balance the systems would require 
action from the users. The users would have to investigate the 
state of each suitable resource before submitting a job to any of 
them.  In some cases a user may not know that a particular 
resource is suitable for a job, and such resources would not be 
utilized. In addition, there are many different job schedulers 
deployed within the QGG which present further problems to a 

user when trying to access the resources. Consequently, 
additional time is required to train the users to get proficient in 
using a particular scheduler or batch system. Therefore, a 
solution is required to improve load balancing and utilization of 
existing resource without affecting users’ preferred workflows. 
We have considered some current campus grids at UK 
universities and efforts to overcome challenges to deliver 
services tailored to their users, and identified that they could be 
improved. 

In this paper we are presenting a novel PBStoCondor 
system design which will lead to better utilization of the 
resources in our campus grid QGG. The system will 
autonomously adjust the jobs submitted by the users, without 
users’ intervention. Based on our research, it is evident that 
similar systems do not exist in currently deployed university 
grids.  

Our aim was to create an innovative system which will 
allow use of “idle” computers in university library and 
departmental laboratories, integrated into a HTCondor pool and 
our campus grid,  and facilitate the following: 

 Submission of serial (single core) jobs to 
HTCondor pool, freeing the HPC resources for 
parallel jobs and better load balancing  

 Minimize possible impact on end users 

 Minimize requirement for additional 
administration time in user training on different 
job schedulers 

Our work extends the existing solutions in UK campus 
grids and QGG UoH grid. The results of review of UK 
universities campus girds are presented in section II. The rest 
of the paper is organized as follows: Section III describes the 
QGG campus grid solution at the University of Huddersfield 
focusing the HTCondor component; in Section IV and V we 
present PBStoCondor system design, and evaluation of 
PBStoCondor simulation results, ending with the summary  in 
section VI. 

II. REVIEW OF CAMPUS GRIDS AT UK  UNIVERSITIES 

Initially we considered deployment of campus grids at UK 

universities using Condor middleware, Reading, Cambridge, 

Oxford and Manchester.  
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A. The Univeristy of Reading Campus Grid  

The University of Reading grid is a HTCondor pool which 
is composed of around five hundred worker nodes. These 
worker nodes have Microsoft Windows and Linux binaries, 
allowing both to be run, without the need to have multi-boot 
systems. Since this is a single system it is not a true grid but  a 
number of HTCondor pools with campus wide flocking 
enabled [3]. 

B. University of Cambridge Campus Grid 

According to Calleja et al. [4] CamGrid, the computing grid 
at the University of Cambridge, is now primarily composed of 
HTCondor pools. There is a large centrally managed pool 
which is augmented by other flocked pools administered by 
individual schools within the university, allowing campus wide 
resource sharing.  

While CamGrid has no central provision for a Portable 
Batch System (PBS) based cluster it is potentially supported 
through allowing HTCondor to submit jobs to PBS enabling 
the users to run jobs which require tightly coupled MPI 
networks. There are some issues with this system, one being 
that the PBS queue must be on the same machine as the condor 
schedd. This means that any PBS based resource which is 
added in this manner will not truly be an integral part of the 
CamGrid as a whole. The systems implemented in this way 
will only be accessible from a school controlled HTCondor 
head-node and not from the grid primary entry point which is 
controlled centrally (CamGrid and PBS University Computing 
Service, 2013). While HTCondor can natively run MPI type 
jobs it is far from ideal as systems in HTCondor pools are not 
very tightly coupled. Considering this along with the fact that 
HTCondor requires dedicated resources for MPI universe jobs 
and cannot flock MPI jobs between pools, it highlights a 
significant weakness within the deployment [5]. 

C. University of Oxford Campus Grid 

The researchers at University of Oxford recognized almost 
a decade ago that with individual schools purchasing resources 
to fulfill their own needs, it was very likely that a situation 
would arise where some departments may have excess 
resources, whereas others may struggle to complete their work 
on smaller resources. Consequently, the decision was taken to 
implement campus wide resource sharing through a common 
middleware. This system was to provide data storage along 
with computational resources. Built around four main 
components, an information server, resource broker, VO 
manager and a data vault, the system became known as OxGrid 
[6].  

OxGrid provides a single ’control system’ which is the 
gatekeeper, that all users of the system, internal or external to 
the university, must connect through. This control system is 
built around a Virtual Data Toolkit (VDT) software stack 
utilizing a Condor-G based Resource Broker (RB) and 
encompassing Virtual Organization (VO) support. Through this 
the users, with personal X-509 certificates, are able to utilize 
PBS, Sun Grid Engine and HTCondor through a single 
submission interface.In order for this system to work all 
resource endpoints must advertise their capabilities and 
supported VOs to an information server. When a user submits a 

job, the RB must first check a users VO membership with a 
Virtual Organization Management System (VOMS) server. 
Then it checks which resources that particular VO is able to 
use, at which point a job can actually be submitted to one of the 
short listed endpoints utilizing the GT [6]. 

D. Manchester University Campus Grid 

The University of Manchester (UoM) describes clusters 
interconnected through the use of GT as ’super-clusters’ which 
can then be considered as a single shared resource [7,8]. The 
UoM maintains a total of 69 nodes with 2.5TB of storage, all 
made available to researchers through the GT middleware. The 
GT GSISSH is used as the primary access mechanism for this 
system, therefore all users must be in possession of a valid X-
509 certificate. The underlying middleware is GT and the UoM  
supports only  internal access to these systems. 

Table 1 shows a comparison of the university campus grids 
examined. It is evident that the HTCondor is the middleware of 
choice for many, as it offers a relatively simple scaleable 
resource. HTCondor middleware is open source and is actively 
maintained, which makes this choice a very cost effective 
solution. 

E. HTCondor 

HTCondor is a middleware which seeks to utilize CPU 
cycles which would otherwise be ’wasted’ within an 
environment where there are many standard desktop 
computers. Many large institutions provide a large number of 
workstations to be used for general day to day tasks. A 
significant number of time these computers are left idle, 
leaving an expensive resource going to waste.  

HTCondor runs a service/daemon on Microsoft Windows 
or *NIX based systems which advertises itself as a worker 
node to a management server. This management server, or 
head node, accepts jobs from a user and then forwards it on to a 
suitable idle worker node for execution, employing underused 
resources to solve computational problems. There are number 
of  potential drawback with this system. One of them is 
potential loss of data when the job execution in the HTCondor 
is interrupted by a conventional use of the machine. Where 
there is source code available for the software being used, 
HTCondor has the ability to compile an executable with 
specific ’hooks’ allowing checkpointing, meaning that the 
worker node can periodically report a jobs progress along with 
any data to a checkpointing server. If a worker node then has to 
’dump’ that job then the next worker node can get the progress 
information from the checkpoint server and continue the job 
from the point that the last checkpoint save was made, leading 
to far fewer lost cycles and much better overall utilization of 
available systems. Another limitation of the HTCondor 
middleware is that although it is capable of running parallel 
jobs which require a Message Passing Interface (MPI) 
environment, to do this requires that a HTCondor pool has 
specially configured dedicated machines and cannot be 
achieved within the standard cycle stealing model [9]. 

 

 

 



TABLE I.  CAMPUS GRID MIDDLEWARE COMPARISON 
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Source 

Reading HTCondor Key Y Y Med Open 

Cambridge 

 
HTCondor Key Y Y Med Open 

Oxford 

 
VDT Cert N N High Open 

Manchester 

 
GT Cert Y N High Open 

 

Within the HTCondor ecosystem there is another 
significant shortcoming. Most institutional general purpose 
computers with Microsoft Windows based operating systems 
installed, whereas a large degree of computational science 
requires *NIX type systems. This limitation is addressed by the 
Pool Of Virtual Boxes (POVB) project. POVB can be installed 
on a Microsoft Windows based host. During this process a 
Linux based VirtualBox Virtual Machine (VM) is created 
which has HTCondor installed. The created virtual machine is 
then controlled by POVB passing required input to the 
virtualised HTCondor instance. This configuration creates a 
Windows host that advertises itself to the HTCondor head node 
as a Linux resource and can process any Linux based software. 
The VM within POVB is always started at system boot time 
and controlled dynamically. When a user is physically present 
and using the machine the VM is scaled back, in terms of 
memory and Central Processing Unit (CPU) usage, as far as is 
possible to minimise any impact of this system on the user. 
Once the system has been idle for a predetermined period of 
time then the VM is ’woken up’ and the resources available to 
it are increased to allow for maximum utilization of the 
resource [10]. 

F. PBS/Torque 

The PBS project was initially started in the early 1990’s 

and developed by Veridian Information Solutions, funded by 

National Aeronautics and Space Administration (NASA). Not 

long after the initial development, Veridian released a 

commercial version of the software called PBSPro. Following 

this the open source version came to be called OpenPBS. 

However, withinin three years the project was acquired by 

Altair Engineering who discontinued development of 

OpenPBS. At this point, development of the open source 

product was taken over by Adaptive Computing who, having 

no rights to the PBS brand, changed the name of the software 

to Torque. Since then the status quo has been maintained with 

the paid for commercial version remaining PBSPro and the 

open source version being Torque [11]. 

PBS and Torque consist of three distinct parts, pbs_server, 

pbs_sched and pbs_mom. There is one pbs_mom for each 

compute node within a system, all of which communicate 

back to a single pbs_server instance. The pbs_server makes a 

queue for requested jobs and delegates them to the pbs_moms, 

along with collecting job related information such as time 

taken etc. The bundled scheduler, pbs_sched, is an 

interchangeable part of the system that can be replaced with 

alternatives such as Maui, Moab or even a custom scheduler. 

The purpose of the scheduler is to decide which jobs should 

run next, depending on which resources are available. While 

PBSPro is capable of running under Microsoft Windows as 

well as with *NIX based systems, this capability has not been 

extended to Torque, which means that Torque is unsuitable for 

any software not built against a *NIX based system [12]. 
 

Based on our review of existing solutions we envisaged a 
new PBStoCondor system that will overcome the issues 
outlined above. The proposed system will aid better utilisation 
of cluster resources in our QGG campus grid. 

III. QGG UNIVERSTIY OF HUDDERSFIELD CAMPUS GRID 

The QGG campus grid consists of a number of computer 
clusters linked via the university network. Table II gives an 
overview of the systems which are currently available at the 
UoH. 

TABLE II.  QGG CAMPUS GRID 

Compute 

Element 
OS 

Cluster 

Midd 

Grid 

enab

led 

Numb 

of 

cores 

Cores 

per 

node 

Taucety CentOS 6 
Torque/ 

Warewulf 
Yes 

4 4 

Eridani 
CentOS 6 Torque/ 

VDT 

Yes 37 4 

Sol 
CentOS 6 Torque/ 

Warewulf 
Yes 64 4 

Condor CentOS 6 HTCondor Yes 2000 4-8 

Bellatrix CentOS 6 VDT Yes N/A N/A 

 

As can be seen in Table II the systems in the QGG use 
Community ENTerprise Operating System (CentOS) which is 
essentially a re-branded clone of Red Hat (RHEL) along with a 
Windows Enterprise Linux based Graphical Processing Unit 
(GPU) cluster. The High Throughput Condor (HTCondor) 
system is not exclusively a Linux based system, as while the 
head-node runs CentOS 6 the compute nodes are a mixture of 
Windows and Linux systems. 

The largest system in the QGG, by node and Central 
Processing Unit (CPU) count, is the HTCondor system. This 
system is a truly heterogeneous pool utilizing the resources 
from different hardware configurations and software stacks. 
Within the HTCondor pool there are around 2000 Windows 
based systems, each having between 4 and 8 slots depending 
on number of CPU cores in the individual system. These 
systems are located in the University’s computer laboratories, 
and on the computers provided by Computing & Library 
Services. In addition to these resources there are around 140 
systems which have Pool Of Virtual Boxes (POVB) installed, 
allowing Linux based jobs to be run on the system. 

As shown in Figure 1. QGG Users can connect to the QGG 
HTCondor head node and submit all jobs from there. 
HTCondor defines jobs in subsets, or as the middleware 
defines it - a job ’universe’. The grid universe is available, 
allowing jobs to be submitted to any resource which has a 
Globus gatekeeper. Therefore all job submission can be 
achieved using a single Job Description Language (JDL).  



The main drawbacks for this process are that HTCondor 
has no real mechanism for automated discovery of grid 
resources. Also, the users are reluctant to move away from the 
familiar Torque resource manager based submission. Without a 
resource discovery mechanism, the users must specify an 
endpoint they would like to use in the JDL, which would 
require prior knowledge about the resources. The users can 
easily make a direct SSH connection to the known system 
instead of via the HTCondor head node.  

The real power of HTCondor lies within the vanilla and 
standard universe models. Within the vanilla universe 
HTCondor will choose suitable resources from the pool of 
discovered resources based on the requirements of the job. The 
standard universe is similar to vanilla, but has the added 
functionality of job check-pointing. This allows binaries that 
have been compiled with Condor compile to periodically 
checkpoint their progress. Progress information created in this 
way is sent to a checkpoint server, which can subsequently be 
used to restart the job at that point if it fails for any reason, 
enabling HTCondor to deliver an extremely resilient resource.  

Where multiple resources are available, load balancing 
becomes very difficult as users have a tendency to consistently 
use the resource they are most familiar with. For many reasons, 
such as time, cost, etc, it is always preferential to balance load 
across all suitable resources. One approach address this issue 
would be to force all users into a particular batch system, such 
as High Throughput Condor (HTCondor), which is capable of 
submitting to all resources. This would impact greatly on the 
users and was considered inappropriate. 

Therefore a submission system based on the users’ 
’favourite’ batch system needed to be devised. Such a system 
needs to provide a submission mechanism which behaves, from 
a user perspective exactly the same way as Torque, while 
allowing the administrators to control load balance by sending 
jobs to an appropriate resource. Another important aspect, from 
an administration perspective, was centralization of all 
accounting records. 

In order to achieve better load balancing of existing 
systems without impacting on users’ preferred workflows, 
PBStoCondor system was developed. 

IV. PBSTOCONDOR SYSTEM 

The PBStoCondor System was designed and implemented 
in Python, as the problem to be solved was essentially a 
scriptable problem but beyond capabilities of a standard shell 
interpreter. 

The first problem to overcome was enabling Torque to 
recognise the Pool Of Virtual Boxes (POVB) based resources 
within the HTCondor pool, as potential compute nodes. It was 
determined very early in the project that it would not be 
possible to simply run a pbs mom (executor demon running in 
a background) on each of these nodes, as such an arrangement 
would be placing jobs on HTCondor resources without any of 
the HTCondor services being aware of them. Therefore all jobs 
needed to be run through HTCondor but monitored by Torque.  

From Torque version 3.0 it has been possible to run 
multiple moms on a single node. Through observation of 
running moms it was found that an average mom uses minimal 
(<0.1%) Central Processing Unit (CPU) time and around 
30MB of memory. The HTCondor head-node in the QGG had 
a total of 15.5GB of memory of which 13.8GB was free with 
all required processes running at any given time. This means 
that the system was theoretically capable of running 471 moms, 
235% over the potentially required 200 moms.  

A. Initial PBStoCondor system 

The most intuitive method for allowing Torque to choose 
POVB nodes was simply through queue management. Torque 
was configured to send all jobs which requested a serial queue, 
and a short enough wall-time, to the HTCondor based moms, 
where wall-time is the total amount of real time requested by a 
user to complete a job. The reason for using wall-time in this 
way was that common installations of applications were being 
used across all systems, not applications compiles specifically 
for HTCondor. Meaning jobs could not make use of HTCondor 
checkpointing mechanisms and henceforth were limited to the 
vanilla universe. Therefore it was undesirable to have very long 
running jobs submitted to HTCondor resources.  

On the HTCondor head-node, the symlinks pointed to a 
script which would generate a job submission script suitable 
for HTCondor and subsequently submit it to the system. This 
script was also required to monitor the progress of the job and 

 

Figure 1, QGG System Overview 

 



modify Torque accounting records to maintain accuracy of the 
accounting across all systems. The basic workflow of this 
system is quite simple, as described in Figure 2. 

Although this system worked, it relied on Torque moms 
being manually started on the HTCondor head-node. Given the 
dynamic nature of HTCondor this was not a feasible solution. 
To address this issue a daemon was developed to monitor the 
available resources and start moms accordingly. 

 

 

Figure 2, PBStoCondor System Overview 

B. PBStoCondor Deamon 

In Figure 3 the functionality of the developed daemon is 
shown. The daemon is started as a standard *NIX system 
service, or daemon, which will fail if the configuration file is 
missing. The initial startup procedure creates a table of possible 
moms, including name and required ports, from the variables 
found within the configuration file. Once the program is 
running in the background, it cycles through the while loop 
once every 30 seconds. This was done in order to prevent the 
daemon from unnecessarily using CPU cycles. The daemon 
queries the HTCondor pool to discover the current number of 
POVB nodes which are in an ’unclaimed’ state. If this number 
is greater than the number of moms currently running, then an 
appropriate number of moms are started. If the number of 
’unclaimed’ nodes is less than the number of moms that are 
running then a suitable number of moms are killed. When this 
situation is true, the daemon checks that the mom to be killed 
has no child processes. This ensures that a mom which is 
currently processing a job will not be killed by the daemon. If 
the mom currently being evaluated has child processes the 
daemon will then consider the next mom within the array to 
determine a suitable mom to stop. Every time the daemon starts 
or stops a process, the internal data array is updated to ensure 

there is always valid information of which moms are running 
for the system to query. If at any point the daemon receives a 
termination signal it will end all running moms before exiting. 
This will ensure there are no orphaned processes on the system. 
PBStoCondor handles all short serial jobs submitted to a 
Torque batch system which can be pushed to a more 
appropriate HTCondor resource. 

This system allows Torque to delegate particular jobs to a 
HTCondor system. Most importantly, this added functionality 
allows for better use of more tightly coupled resources while 
maintaining a consistent, and familiar, submission method to 
users. However, there was also a requirement to allow the 
system to provision for jobs which required resources greater 
than those currently available. This will be considered in future 
publications.  

V. PBSTOCONDOR SYSTEM EVALUATION 

In order to test PBStoCondor further development was 
required to gain real comparative data. This was developed in 
the form of a simulator to emulate the system modifications 
which would have been provided by a PBStoCondor 
deployment within the QGG. The research work on the 
simulator will be presented in future publications. The data 
produced by this system was then analysed. 

There was the opportunity to test this system by using 
historic Torque accounting logs. The aim of which was to 
highlight improved overall throughput by automatically 
pushing all serial jobs to HTCondor. The test strategy was 
based around one year of Torque accounting logs taken from 
the Eridani cluster in QGG. Torque logs are organized as a 
single file for each day as they are produced. Using these files a 
single file of all logs from 2013 was produced, which is 
referred to as the original Torque log. Once simulated log files 
had been produced, those logs, along with the original Torque 
logs, were analyzed to extract useful data, such as jobs arrival 
and completion rates. This allowed for direct comparison of 
simulated and real system performance as seen in figure 4.  

The final results obtained from comparison of 
PBStoCondor simulation with historical Eridani cluster logs 
were very encouraging. These results showed that 
PBStoCondor provided a significant improvement in job 
completion times over a period of one year. This improvement 
was particularly apparent when the system had very large 
numbers of serial jobs submitted. Had this system been 
deployed at the beginning of the testing period, then there 
would have been 306 hours, almost 13 days, where the system 
would have been idle, compared to still working on completing 
jobs when only Eridani was being used. These periods could 
represent significant power savings or allow users to submit 
more jobs, thus making far better use of existing resources. 



 

Figure 3, Flowchart for the Daemon
  

 

Figure 4, Comparison of Original logs and PBStoCondor 

job completions rates 

VI. CONCLUSION 

This research was focused on making the best use of 
institutional computational resources and improve load 

balancing whilst maintaining the user’s existing workflows. 
The existing Grid and Cluster middlewares were investigated 
as well as their deployment in other UK HE and research 
institutions. These investigations found a mixture of High 
Performance Computing (HPC) and High Throughput 
Computing (HTC) systems.  The High Throughput Condor 
(HTCondor) system was a system of choice for many 
universities.  

 HTCondor is also deployed in the QGG campus grid. 
Within the QGG there is a very large HTCondor pool (over 
2000 nodes) which was largely under-utilised. The users within 
the QGG had displayed a reluctance to move between Torque 
and HTCondor systems. The campus grid administrators 
observed that most users remained exclusively on Torque 
based systems regardless of the type of job being run.  

A novel system PBStoCondor was designed in attempt to 
address this problem, make utilization of resources more 
efficient and suitable for the jobs submitted. In particular, it 
should improve campus grid user experience. The developed 
systems is designed to be simple to deploy.  The developed 
software allowed users to maintain use of the more familiar 
Torque based submission, seamlessly pushing suitable jobs to 
the HTCondor pool, thus allowing the overall grid to complete 
computational processes much quicker. This resulted in better 



load balancing of the systems. Consequently this will also 
potentially provide some power savings on the high power 
consumption clusters. 

PBStoCondor has been bundled into a Red Hat Package 
Manager (RPM) package to allow for rapid deployment on any 
system which uses RPM packages. 
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