
PBStoHTCondor System for Campus Grids

John Brennan, Violeta Holmes, Stephen Bonner

HPC Research Group

The University of Huddersfield

Huddersfield, United Kingdom

Email: j.brennan@hud.ac.uk,

v.holmes@hud.ac.uk, s.bonner@hud.ac.uk

Ibad Kureshi

Institute of Advanced Research Computing

Durham University

Durham, United Kingdom

Email: ibad.kureshi@durham.ac.uk

Abstract—The campus grid architectures currently available

are considered to be overly complex. We have focused on High

Throughput Condor HTCondor as one of the most popular

middlewares among UK universities, and are proposing a new

system for unifying campus grid resources. This new system

PBStoCondor is capable of interfacing with Linux based system

within the campus grids, and automatically determining the best

resource for a given job. The system does not require additional

efforts from users and administrators of the campus grid

resources. We have compared the real usage data and

PBStoCondor system simulation data. The results show a close

match. The proposed system will enable better utilization of

campus grid resources, and will not require modification in

users’ workflows.

Keywords—HTCondor; Campus grids; PBS; Torque

I. INTRODUCTION

Within many Higher Education and Research Institutions
computer grids play an important role in making
geographically distributed disparate resources accessible to the
researchers and students. Research effort into grid computing
has generated a number of grid middlewares, which are often
integrated with underlying cluster computing middlewares and
schedulers. There is increasing pressure for grid solutions to be
able to interface with a wider range of end resource types
However, grid middlewares are generally considered to be
rather complex by users and administrators alike.

At the University of Huddersfield (UoH) the High
Performance Computing (HPC) and High Throughput
Computing (HTC) resources are unified in the QueensGate
Grid (QGG) Campus Grid [1,2]. The QGG consists of a
number of disparate resources with a gateway to external and
internal resources. There is a common connection point for
most systems, and on reaching this point users would branch
out to their preferred HPC/HTC system. This multiple system
configuration has a serious drawback - the system load
balancing is almost impossible to achieve. In its present
configuration, to better balance the systems would require
action from the users. The users would have to investigate the
state of each suitable resource before submitting a job to any of
them. In some cases a user may not know that a particular
resource is suitable for a job, and such resources would not be
utilized. In addition, there are many different job schedulers
deployed within the QGG which present further problems to a

user when trying to access the resources. Consequently,
additional time is required to train the users to get proficient in
using a particular scheduler or batch system. Therefore, a
solution is required to improve load balancing and utilization of
existing resource without affecting users’ preferred workflows.
We have considered some current campus grids at UK
universities and efforts to overcome challenges to deliver
services tailored to their users, and identified that they could be
improved.

In this paper we are presenting a novel PBStoCondor
system design which will lead to better utilization of the
resources in our campus grid QGG. The system will
autonomously adjust the jobs submitted by the users, without
users’ intervention. Based on our research, it is evident that
similar systems do not exist in currently deployed university
grids.

Our aim was to create an innovative system which will
allow use of “idle” computers in university library and
departmental laboratories, integrated into a HTCondor pool and
our campus grid, and facilitate the following:

 Submission of serial (single core) jobs to
HTCondor pool, freeing the HPC resources for
parallel jobs and better load balancing

 Minimize possible impact on end users

 Minimize requirement for additional
administration time in user training on different
job schedulers

Our work extends the existing solutions in UK campus
grids and QGG UoH grid. The results of review of UK
universities campus girds are presented in section II. The rest
of the paper is organized as follows: Section III describes the
QGG campus grid solution at the University of Huddersfield
focusing the HTCondor component; in Section IV and V we
present PBStoCondor system design, and evaluation of
PBStoCondor simulation results, ending with the summary in
section VI.

II. REVIEW OF CAMPUS GRIDS AT UK UNIVERSITIES

Initially we considered deployment of campus grids at UK

universities using Condor middleware, Reading, Cambridge,

Oxford and Manchester.

mailto:j.brennan@hud.ac.uk
mailto:v.holmes@hud.ac.uk
mailto:s.bonner@hud.ac.uk
mailto:ibad.kureshi@durham.ac.uk

A. The Univeristy of Reading Campus Grid

The University of Reading grid is a HTCondor pool which
is composed of around five hundred worker nodes. These
worker nodes have Microsoft Windows and Linux binaries,
allowing both to be run, without the need to have multi-boot
systems. Since this is a single system it is not a true grid but a
number of HTCondor pools with campus wide flocking
enabled [3].

B. University of Cambridge Campus Grid

According to Calleja et al. [4] CamGrid, the computing grid
at the University of Cambridge, is now primarily composed of
HTCondor pools. There is a large centrally managed pool
which is augmented by other flocked pools administered by
individual schools within the university, allowing campus wide
resource sharing.

While CamGrid has no central provision for a Portable
Batch System (PBS) based cluster it is potentially supported
through allowing HTCondor to submit jobs to PBS enabling
the users to run jobs which require tightly coupled MPI
networks. There are some issues with this system, one being
that the PBS queue must be on the same machine as the condor
schedd. This means that any PBS based resource which is
added in this manner will not truly be an integral part of the
CamGrid as a whole. The systems implemented in this way
will only be accessible from a school controlled HTCondor
head-node and not from the grid primary entry point which is
controlled centrally (CamGrid and PBS University Computing
Service, 2013). While HTCondor can natively run MPI type
jobs it is far from ideal as systems in HTCondor pools are not
very tightly coupled. Considering this along with the fact that
HTCondor requires dedicated resources for MPI universe jobs
and cannot flock MPI jobs between pools, it highlights a
significant weakness within the deployment [5].

C. University of Oxford Campus Grid

The researchers at University of Oxford recognized almost
a decade ago that with individual schools purchasing resources
to fulfill their own needs, it was very likely that a situation
would arise where some departments may have excess
resources, whereas others may struggle to complete their work
on smaller resources. Consequently, the decision was taken to
implement campus wide resource sharing through a common
middleware. This system was to provide data storage along
with computational resources. Built around four main
components, an information server, resource broker, VO
manager and a data vault, the system became known as OxGrid
[6].

OxGrid provides a single ’control system’ which is the
gatekeeper, that all users of the system, internal or external to
the university, must connect through. This control system is
built around a Virtual Data Toolkit (VDT) software stack
utilizing a Condor-G based Resource Broker (RB) and
encompassing Virtual Organization (VO) support. Through this
the users, with personal X-509 certificates, are able to utilize
PBS, Sun Grid Engine and HTCondor through a single
submission interface.In order for this system to work all
resource endpoints must advertise their capabilities and
supported VOs to an information server. When a user submits a

job, the RB must first check a users VO membership with a
Virtual Organization Management System (VOMS) server.
Then it checks which resources that particular VO is able to
use, at which point a job can actually be submitted to one of the
short listed endpoints utilizing the GT [6].

D. Manchester University Campus Grid

The University of Manchester (UoM) describes clusters
interconnected through the use of GT as ’super-clusters’ which
can then be considered as a single shared resource [7,8]. The
UoM maintains a total of 69 nodes with 2.5TB of storage, all
made available to researchers through the GT middleware. The
GT GSISSH is used as the primary access mechanism for this
system, therefore all users must be in possession of a valid X-
509 certificate. The underlying middleware is GT and the UoM
supports only internal access to these systems.

Table 1 shows a comparison of the university campus grids
examined. It is evident that the HTCondor is the middleware of
choice for many, as it offers a relatively simple scaleable
resource. HTCondor middleware is open source and is actively
maintained, which makes this choice a very cost effective
solution.

E. HTCondor

HTCondor is a middleware which seeks to utilize CPU
cycles which would otherwise be ’wasted’ within an
environment where there are many standard desktop
computers. Many large institutions provide a large number of
workstations to be used for general day to day tasks. A
significant number of time these computers are left idle,
leaving an expensive resource going to waste.

HTCondor runs a service/daemon on Microsoft Windows
or *NIX based systems which advertises itself as a worker
node to a management server. This management server, or
head node, accepts jobs from a user and then forwards it on to a
suitable idle worker node for execution, employing underused
resources to solve computational problems. There are number
of potential drawback with this system. One of them is
potential loss of data when the job execution in the HTCondor
is interrupted by a conventional use of the machine. Where
there is source code available for the software being used,
HTCondor has the ability to compile an executable with
specific ’hooks’ allowing checkpointing, meaning that the
worker node can periodically report a jobs progress along with
any data to a checkpointing server. If a worker node then has to
’dump’ that job then the next worker node can get the progress
information from the checkpoint server and continue the job
from the point that the last checkpoint save was made, leading
to far fewer lost cycles and much better overall utilization of
available systems. Another limitation of the HTCondor
middleware is that although it is capable of running parallel
jobs which require a Message Passing Interface (MPI)
environment, to do this requires that a HTCondor pool has
specially configured dedicated machines and cannot be
achieved within the standard cycle stealing model [9].

TABLE I. CAMPUS GRID MIDDLEWARE COMPARISON

Campus

Grid

Middlewa

re
Access

Current

Support

Scale

Admin

Support

Source

Reading HTCondor Key Y Y Med Open

Cambridge

HTCondor Key Y Y Med Open

Oxford

VDT Cert N N High Open

Manchester

GT Cert Y N High Open

Within the HTCondor ecosystem there is another
significant shortcoming. Most institutional general purpose
computers with Microsoft Windows based operating systems
installed, whereas a large degree of computational science
requires *NIX type systems. This limitation is addressed by the
Pool Of Virtual Boxes (POVB) project. POVB can be installed
on a Microsoft Windows based host. During this process a
Linux based VirtualBox Virtual Machine (VM) is created
which has HTCondor installed. The created virtual machine is
then controlled by POVB passing required input to the
virtualised HTCondor instance. This configuration creates a
Windows host that advertises itself to the HTCondor head node
as a Linux resource and can process any Linux based software.
The VM within POVB is always started at system boot time
and controlled dynamically. When a user is physically present
and using the machine the VM is scaled back, in terms of
memory and Central Processing Unit (CPU) usage, as far as is
possible to minimise any impact of this system on the user.
Once the system has been idle for a predetermined period of
time then the VM is ’woken up’ and the resources available to
it are increased to allow for maximum utilization of the
resource [10].

F. PBS/Torque

The PBS project was initially started in the early 1990’s

and developed by Veridian Information Solutions, funded by

National Aeronautics and Space Administration (NASA). Not

long after the initial development, Veridian released a

commercial version of the software called PBSPro. Following

this the open source version came to be called OpenPBS.

However, withinin three years the project was acquired by

Altair Engineering who discontinued development of

OpenPBS. At this point, development of the open source

product was taken over by Adaptive Computing who, having

no rights to the PBS brand, changed the name of the software

to Torque. Since then the status quo has been maintained with

the paid for commercial version remaining PBSPro and the

open source version being Torque [11].

PBS and Torque consist of three distinct parts, pbs_server,

pbs_sched and pbs_mom. There is one pbs_mom for each

compute node within a system, all of which communicate

back to a single pbs_server instance. The pbs_server makes a

queue for requested jobs and delegates them to the pbs_moms,

along with collecting job related information such as time

taken etc. The bundled scheduler, pbs_sched, is an

interchangeable part of the system that can be replaced with

alternatives such as Maui, Moab or even a custom scheduler.

The purpose of the scheduler is to decide which jobs should

run next, depending on which resources are available. While

PBSPro is capable of running under Microsoft Windows as

well as with *NIX based systems, this capability has not been

extended to Torque, which means that Torque is unsuitable for

any software not built against a *NIX based system [12].

Based on our review of existing solutions we envisaged a
new PBStoCondor system that will overcome the issues
outlined above. The proposed system will aid better utilisation
of cluster resources in our QGG campus grid.

III. QGG UNIVERSTIY OF HUDDERSFIELD CAMPUS GRID

The QGG campus grid consists of a number of computer
clusters linked via the university network. Table II gives an
overview of the systems which are currently available at the
UoH.

TABLE II. QGG CAMPUS GRID

Compute

Element
OS

Cluster

Midd

Grid

enab

led

Numb

of

cores

Cores

per

node

Taucety CentOS 6
Torque/

Warewulf
Yes

4 4

Eridani
CentOS 6 Torque/

VDT

Yes 37 4

Sol
CentOS 6 Torque/

Warewulf
Yes 64 4

Condor CentOS 6 HTCondor Yes 2000 4-8

Bellatrix CentOS 6 VDT Yes N/A N/A

As can be seen in Table II the systems in the QGG use
Community ENTerprise Operating System (CentOS) which is
essentially a re-branded clone of Red Hat (RHEL) along with a
Windows Enterprise Linux based Graphical Processing Unit
(GPU) cluster. The High Throughput Condor (HTCondor)
system is not exclusively a Linux based system, as while the
head-node runs CentOS 6 the compute nodes are a mixture of
Windows and Linux systems.

The largest system in the QGG, by node and Central
Processing Unit (CPU) count, is the HTCondor system. This
system is a truly heterogeneous pool utilizing the resources
from different hardware configurations and software stacks.
Within the HTCondor pool there are around 2000 Windows
based systems, each having between 4 and 8 slots depending
on number of CPU cores in the individual system. These
systems are located in the University’s computer laboratories,
and on the computers provided by Computing & Library
Services. In addition to these resources there are around 140
systems which have Pool Of Virtual Boxes (POVB) installed,
allowing Linux based jobs to be run on the system.

As shown in Figure 1. QGG Users can connect to the QGG
HTCondor head node and submit all jobs from there.
HTCondor defines jobs in subsets, or as the middleware
defines it - a job ’universe’. The grid universe is available,
allowing jobs to be submitted to any resource which has a
Globus gatekeeper. Therefore all job submission can be
achieved using a single Job Description Language (JDL).

The main drawbacks for this process are that HTCondor
has no real mechanism for automated discovery of grid
resources. Also, the users are reluctant to move away from the
familiar Torque resource manager based submission. Without a
resource discovery mechanism, the users must specify an
endpoint they would like to use in the JDL, which would
require prior knowledge about the resources. The users can
easily make a direct SSH connection to the known system
instead of via the HTCondor head node.

The real power of HTCondor lies within the vanilla and
standard universe models. Within the vanilla universe
HTCondor will choose suitable resources from the pool of
discovered resources based on the requirements of the job. The
standard universe is similar to vanilla, but has the added
functionality of job check-pointing. This allows binaries that
have been compiled with Condor compile to periodically
checkpoint their progress. Progress information created in this
way is sent to a checkpoint server, which can subsequently be
used to restart the job at that point if it fails for any reason,
enabling HTCondor to deliver an extremely resilient resource.

Where multiple resources are available, load balancing
becomes very difficult as users have a tendency to consistently
use the resource they are most familiar with. For many reasons,
such as time, cost, etc, it is always preferential to balance load
across all suitable resources. One approach address this issue
would be to force all users into a particular batch system, such
as High Throughput Condor (HTCondor), which is capable of
submitting to all resources. This would impact greatly on the
users and was considered inappropriate.

Therefore a submission system based on the users’
’favourite’ batch system needed to be devised. Such a system
needs to provide a submission mechanism which behaves, from
a user perspective exactly the same way as Torque, while
allowing the administrators to control load balance by sending
jobs to an appropriate resource. Another important aspect, from
an administration perspective, was centralization of all
accounting records.

In order to achieve better load balancing of existing
systems without impacting on users’ preferred workflows,
PBStoCondor system was developed.

IV. PBSTOCONDOR SYSTEM

The PBStoCondor System was designed and implemented
in Python, as the problem to be solved was essentially a
scriptable problem but beyond capabilities of a standard shell
interpreter.

The first problem to overcome was enabling Torque to
recognise the Pool Of Virtual Boxes (POVB) based resources
within the HTCondor pool, as potential compute nodes. It was
determined very early in the project that it would not be
possible to simply run a pbs mom (executor demon running in
a background) on each of these nodes, as such an arrangement
would be placing jobs on HTCondor resources without any of
the HTCondor services being aware of them. Therefore all jobs
needed to be run through HTCondor but monitored by Torque.

From Torque version 3.0 it has been possible to run
multiple moms on a single node. Through observation of
running moms it was found that an average mom uses minimal
(<0.1%) Central Processing Unit (CPU) time and around
30MB of memory. The HTCondor head-node in the QGG had
a total of 15.5GB of memory of which 13.8GB was free with
all required processes running at any given time. This means
that the system was theoretically capable of running 471 moms,
235% over the potentially required 200 moms.

A. Initial PBStoCondor system

The most intuitive method for allowing Torque to choose
POVB nodes was simply through queue management. Torque
was configured to send all jobs which requested a serial queue,
and a short enough wall-time, to the HTCondor based moms,
where wall-time is the total amount of real time requested by a
user to complete a job. The reason for using wall-time in this
way was that common installations of applications were being
used across all systems, not applications compiles specifically
for HTCondor. Meaning jobs could not make use of HTCondor
checkpointing mechanisms and henceforth were limited to the
vanilla universe. Therefore it was undesirable to have very long
running jobs submitted to HTCondor resources.

On the HTCondor head-node, the symlinks pointed to a
script which would generate a job submission script suitable
for HTCondor and subsequently submit it to the system. This
script was also required to monitor the progress of the job and

Figure 1, QGG System Overview

modify Torque accounting records to maintain accuracy of the
accounting across all systems. The basic workflow of this
system is quite simple, as described in Figure 2.

Although this system worked, it relied on Torque moms
being manually started on the HTCondor head-node. Given the
dynamic nature of HTCondor this was not a feasible solution.
To address this issue a daemon was developed to monitor the
available resources and start moms accordingly.

Figure 2, PBStoCondor System Overview

B. PBStoCondor Deamon

In Figure 3 the functionality of the developed daemon is
shown. The daemon is started as a standard *NIX system
service, or daemon, which will fail if the configuration file is
missing. The initial startup procedure creates a table of possible
moms, including name and required ports, from the variables
found within the configuration file. Once the program is
running in the background, it cycles through the while loop
once every 30 seconds. This was done in order to prevent the
daemon from unnecessarily using CPU cycles. The daemon
queries the HTCondor pool to discover the current number of
POVB nodes which are in an ’unclaimed’ state. If this number
is greater than the number of moms currently running, then an
appropriate number of moms are started. If the number of
’unclaimed’ nodes is less than the number of moms that are
running then a suitable number of moms are killed. When this
situation is true, the daemon checks that the mom to be killed
has no child processes. This ensures that a mom which is
currently processing a job will not be killed by the daemon. If
the mom currently being evaluated has child processes the
daemon will then consider the next mom within the array to
determine a suitable mom to stop. Every time the daemon starts
or stops a process, the internal data array is updated to ensure

there is always valid information of which moms are running
for the system to query. If at any point the daemon receives a
termination signal it will end all running moms before exiting.
This will ensure there are no orphaned processes on the system.
PBStoCondor handles all short serial jobs submitted to a
Torque batch system which can be pushed to a more
appropriate HTCondor resource.

This system allows Torque to delegate particular jobs to a
HTCondor system. Most importantly, this added functionality
allows for better use of more tightly coupled resources while
maintaining a consistent, and familiar, submission method to
users. However, there was also a requirement to allow the
system to provision for jobs which required resources greater
than those currently available. This will be considered in future
publications.

V. PBSTOCONDOR SYSTEM EVALUATION

In order to test PBStoCondor further development was
required to gain real comparative data. This was developed in
the form of a simulator to emulate the system modifications
which would have been provided by a PBStoCondor
deployment within the QGG. The research work on the
simulator will be presented in future publications. The data
produced by this system was then analysed.

There was the opportunity to test this system by using
historic Torque accounting logs. The aim of which was to
highlight improved overall throughput by automatically
pushing all serial jobs to HTCondor. The test strategy was
based around one year of Torque accounting logs taken from
the Eridani cluster in QGG. Torque logs are organized as a
single file for each day as they are produced. Using these files a
single file of all logs from 2013 was produced, which is
referred to as the original Torque log. Once simulated log files
had been produced, those logs, along with the original Torque
logs, were analyzed to extract useful data, such as jobs arrival
and completion rates. This allowed for direct comparison of
simulated and real system performance as seen in figure 4.

The final results obtained from comparison of
PBStoCondor simulation with historical Eridani cluster logs
were very encouraging. These results showed that
PBStoCondor provided a significant improvement in job
completion times over a period of one year. This improvement
was particularly apparent when the system had very large
numbers of serial jobs submitted. Had this system been
deployed at the beginning of the testing period, then there
would have been 306 hours, almost 13 days, where the system
would have been idle, compared to still working on completing
jobs when only Eridani was being used. These periods could
represent significant power savings or allow users to submit
more jobs, thus making far better use of existing resources.

Figure 3, Flowchart for the Daemon

Figure 4, Comparison of Original logs and PBStoCondor

job completions rates

VI. CONCLUSION

This research was focused on making the best use of
institutional computational resources and improve load

balancing whilst maintaining the user’s existing workflows.
The existing Grid and Cluster middlewares were investigated
as well as their deployment in other UK HE and research
institutions. These investigations found a mixture of High
Performance Computing (HPC) and High Throughput
Computing (HTC) systems. The High Throughput Condor
(HTCondor) system was a system of choice for many
universities.

 HTCondor is also deployed in the QGG campus grid.
Within the QGG there is a very large HTCondor pool (over
2000 nodes) which was largely under-utilised. The users within
the QGG had displayed a reluctance to move between Torque
and HTCondor systems. The campus grid administrators
observed that most users remained exclusively on Torque
based systems regardless of the type of job being run.

A novel system PBStoCondor was designed in attempt to
address this problem, make utilization of resources more
efficient and suitable for the jobs submitted. In particular, it
should improve campus grid user experience. The developed
systems is designed to be simple to deploy. The developed
software allowed users to maintain use of the more familiar
Torque based submission, seamlessly pushing suitable jobs to
the HTCondor pool, thus allowing the overall grid to complete
computational processes much quicker. This resulted in better

load balancing of the systems. Consequently this will also
potentially provide some power savings on the high power
consumption clusters.

PBStoCondor has been bundled into a Red Hat Package
Manager (RPM) package to allow for rapid deployment on any
system which uses RPM packages.

ACKNOWLEDGMENT

The authors would like to acknowledge the use of the
University of Huddersfield QGG Campus Grid.

REFERENCES

[1] V. Holmes, and I. Kureshi, “‘Creating an HE ICT Infrastructure Fit for
the 21st Century’. In: Higher Education Show 2013, 25 April 2013,
London, UK.

[2] J. Brennan, “Developing Trusted Computational Grid”, MSc Thesis, The
University of Huddersfield, April 2014.

[3] University of Reading. (2013). Campus grid.
https://www.reading.ac.uk/internal/its/e-research/its-
eresearchcampusgrid.aspx. Retrieved 2013-11-01

[4] M. Calleja, et al, “Camgrid: Experiences in constructing a university-
wide, condor-based gridat the university of cambridge”, 2008.

[5] D. Thain, at al. , ”Distributed computing in practice: the condor
experience. Concurrency and Computation: Practice and Experience,
17(24), 323-356, 2005.

[6] D.C. Wallom, and A.E. Trefethen, “OxGrid, a campus grid for the
university of Oxford”. In Proceedings of the UK e-science all hands
meeting, 2006.

[7] University of Manchester, “Access to computational grid systems at
UoM made easy”, 2013.

[8] R. Allan, “Infrastructure - northwest grid”, 2011. Retrieved 2013-11-15,
from http://www.nw-grid.ac.uk/Infrastructure

[9] D. Thain, T. Tannenbaum, and M. Livny, ”Distributed computing in
practice:the condor experience. Concurrency and Computation: Practice
and Experience, 17(24), 323-356, 2005

[10] D.J.Herzfeld, L.E. Olson, and C.A. Struble, “ Pools of virtual
boxes:Building campus grids with virtual machines. In Proceedings of
the 19th acm international symposium on high performance distributed
computing (pp.667–675). New York, NY, USA: ACM, 2010.

[11] C Samuel, “Torque history”, 2008 Retrieved 20-09-2013, from
http://www.supercluster.org/pipermail/torqueusers/2008-
Febuary/006827.html

[12] D Beer, “torque for windows”, 2008 Retrieved 20-09-2013, from
http://www.supercluster.org/pipermail/torqueusers/2012-
April/014467.html

