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Abstract

Wireless power transfer (WPT) technologies have been widely used in many areas, e.g., the charging

of electric toothbrush, mobile phones, and electric vehicles. This paper introduces fundamental principles

of three WPT technologies, i.e., inductive coupling-based WPT, magnetic resonant coupling-based WPT,

and electromagnetic radiation-based WPT, together with discussions of their strengths and weaknesses.

Main research themes are then presented, i.e., improving the transmission efficiency and distance, and

designing multiple transmitters/receivers. The state-of-the-art techniques are reviewed and categorised.

Several WPT applications are described. Open research challenges are then presented with a brief

discussion of potential roadmap.

Index Terms

Wireless power transfer, inductive coupling, resonant coupling, electromagnetic radiation, electric

vehicle charging.

I. INTRODUCTION

Have you ever imagined that, one day in the future, all electricity pylons will disappear?

Wireless power transfer (WPT) is an innovative technology that may make this a reality by

revolutionizing the way how energy is transferred and finally makes our lives truly wireless.

WPT technologies can be dated back to early 20th century. Nikola Tesla, a pioneering elec-

tronic engineer, invented the Tesla Coil aiming to produce radial electromagnetic waves with

about 8 Hz frequency transmitted between the earth and its ionosphere, thereby transferring
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energy [1]. Nowadays, are widely used in daily life for charging mobile devices, e.g., cell

phones, laptops, tablets. In addition, WPT technologies have been proved useful in wireless

sensor networks [2], [3], whose lifetime can be extended [4], [5]. In 2009, Sony’s research

and development department in Japan has made a breakthrough in developing highly efficient

WPT-based TVs. In 2014, Apple inc. released iWatch with wireless charging design.

Generally speaking, the WPT technologies can be categorised into inductive coupling-based

WPT, magnetic resonant coupling-based WPT, and electromagnetic radiation-based WPT. The

inductive coupling-based WPT makes use of magnetic field induction theory and belongs to

near-field transmission technique. The magnetic resonant coupling-based WPT relies on the same

resonant frequency at both receiver side and transmitter side, enabling longer distance power

transmission. The electromagnetic radiation-based WPT has longest transmission distance by

using microwave frequencies. Every WPT technology has its own advantages and disadvan-

tages. The main research themes of all WPT technologies focus on improving the transmission

efficiency and distance. In addition, driven by industrial needs, multiple transmitters/receivers

design has attracted much attention. However, several open research challenges exist, hindering

the public acceptance of WPT technologies. Hence, it is crucial to understand and address these

challenges for paving the way for a brighter future of the WPT applications.

This paper provides a survey of the state-of-the-art WPT technologies and then presents open

research challenges and potential roadmap. In the remainder of this paper, we first describe

fundamental principles of WPT technologies in Section II, categorise main research themes of

WPT technologies in Section III, and then discuss the applications of WPT technologies in

Section IV. Open research challenges of WPT are subsequently identified in Section V, together

with a brief discussion of promising roadmap.

II. FUNDAMENTAL PRINCIPLES

There are three categories of WPT technologies: inductive coupling, magnetic resonant cou-

pling, and electromagnetic radiation.

A. Inductive Coupling Approach

Inductive coupling-based WPT makes use of magnetic field induction as shown in Fig.1.

It is a typical near-field transmission technique: the state-of-the-art technologies can support
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Fig. 1. Scheme of Inductive Coupling-based Wireless Power Transfer.

transmission distance of mm or cm [6]. The fundamental theories of inductive coupling-based

WPT include the use of Biot-Savart’s Law and Faraday’s Law. The Biot-Savart’s Law is used

for calculating the magnetic field produced by an arbitrary current distribution:

B =
µ0

4π

∮

IdI × r

|r|3
(1)

where µ0 is the magnetic constant, I is the current in the transmitter coil, dI is a vector whose

magnitude is the length of the differential element of the wire, and r is the full displacement

vector from the wire element to the point at which the field is being computed. The Faraday’s

Law can then be used for calculating the induced voltage VInd over the receiver coil as the rate

of magnetic field B change through an effective surface area S by

VInd = −
∂

∂t

∮

B · ds. (2)

One significant drawback of the inductive coupling-based WPT is its short transmission

distance. Moreover, when the transmitter coil and the receiver coil are not well aligned, the

power transmission efficiency (PTE) drops significantly. Despite of these weaknesses, inductive

coupling-based WPT is often advantageous with respect to its simple design and high safety,

therefore has been broadly used in many applications including the charging of toothbrush,

laptops, mobile phones, and medical implants [1].

February 16, 2015 DRAFT



4

"!#$%&'()*!

+,!

,-! .-!

/-!

.0! ,0!

/0! .!/%12!

Fig. 2. The equivalent circuit of magnetic resonant coupling-based wireless power transfer where L1, L2, C1, C2, R1 and

R2 are the inductance, the capacitance, and resistance of the transmitter and the receiver coils, respectively, and RLoad is the

load resistance.

B. Magnetic Resonant Coupling Approach

A typical magnetic resonant coupling system consists of two electromagnetic subsystems with

the same natural resonance frequency, enabling efficient power transfer [7]. Such a system can

be represented by a standard RLC circuit consisting of a resistor, an inductor, and a capacitor

as shown in Fig. 2. When the transmitter coil is excited by the source, the transmitter and the

receiver coils are magnetically coupled. There are two key factors that determine its PTE:

1) The Q-factors of the resonators (Q)

2) The mutual coupling strength (M) [8], [9].

The Q factor is often defined by [7]:

Q =
1

R

√

L

C
=

ω0L

R
(3)

where ω0 =
1√
LC

denotes the resonant frequency. A higher Q indicates less energy loss.

Mutual inductance can be written as [7]:

M = k
√

L1 ∗ L2 (4)

where k is the coupling coefficient determined by the distance between transmitter and receiver

coils. For circle coils, it can be written as [7]

k =
1

[1 + 2
2

3 ( h√
rt∗rr

)2]
3

2

(5)

where h denotes the distance between two coils, and rt and rr are the radius of the transmitter

and the receiver coils.
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Compared with the inductive coupling approach, the magnetic resonant coupling approach can

transfer power to a longer distance. Furthermore, it is non-radiative, so that it does not require

line of sight and has almost no harm to human [1]. However, similar to the inductive coupling

approach, the magnetic coupling approach is also sensitive to misalignment. Another problem

is that it is difficult to adjust the resonance frequency when charging multiple devices [10].

C. Electromagnetic Radiation Approach

Improving PTE is always an important issue in the development of WPT technology. Strong

directional and energy concentrated laser beam, which has similar properties as microwave beam,

is worth being investigated.

A typical electromagnetic radiation approach requires a microwave source, a waveguide,

a transmitting antenna, and a receiving antenna. The energy is initially transmitted from the

microwave source to the waveguide. The transmitting antenna then emits electromagnetic wave

uniformly. The receiving antenna adopts silicon-controlled rectifier diode to collect microwave

energy and convert it into direct current.

The main advantage of electromagnetic radiation approach is its high PTE over long distance.

But it often has radiation concerns and requires the line of sight transmission. Table I shows a

summary of advantages and disadvantages of different wireless power transfer technologies.

III. MAIN RESEARCH THEMES

Although WPT technologies have been successfully utilized to develop a number of com-

mercial products, there are still many areas of improvement. Reviewing the literature, the main

research themes can be summarized as:

1) Improving the transmission efficiency and distance,

2) Multiple transmitters/receivers design.

A. Improving the transmission efficiency and distance

There are several impact factors affecting the PTE and the transmission distance. These impact

factors are summarized in Table II.
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TABLE I

SUMMARY OF ADVANTAGES AND DISADVANTAGES OF DIFFERENT WIRELESS POWER TRANSFER TECHNOLOGIES

WPT Technology Category Advantages Disadvantages

Inductive Coupling Sample, safe, and high transfer Short transmission distance,

efficiency in short distance needs accurate alignment

Magnetic Resonant Coupling Long transmission distance, Difficult to adjust resonant

no radiation frequency for multiple devices

Electromagnetic Radiation Very high transmission Radiation,

efficiency over long distance needs line of sight

TABLE II

THE SUMMARY OF IMPACT FACTORS

Impact Factor Description [reference]

Coil Design Coil material [11], [12], [13]

Coil size [14], [15]

Coil geometry [15], [16]

Coil Alignment Lateral misalignment [17], [18]

Angle misalignment [18]

Circuit Design Frequency [19], [14]

Compensating circuit [20]

Environmental Analysis Temperature, humidity [7], [14]

Ferrite Core

Multiple Transmitters Add additional coils [21].

1) Coil Design: Optimising the coil material can improve the system’s PTE. In [11], it has

been shown that using a high Q planar-Litz coil can get almost 20 % efficiency improvement.

In [12], a magnetoplated wire (a copper wire) has been used, and in [13], multi-layer, multi-turn

tubular coils have been adopted for improving the transmission efficiency, with a study of the

skin-effect.

In the inductive coupling-based WPT, the ratio of the transmitter coil diameter and transmit
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distance (air gap) can also affect the transmission efficiency. Assuming a constant Q-factor, if

the air gap (L) is smaller than the half of the coil diameter (A), i.e., L/A < 0.5, the transmission

efficiency will become greater than 80%. Furthermore, if L/A < 0.25, the transmission efficiency

can reach 90% [14].

The coil geometry can also influence the PTE. Spiral coil, flat coil, square coil, and circular

coil have different PTEs according to the studies in [16]. In [15], asymmetric coupling resonators

have been proposed that consist of three different size transmitter coils and two different size

receiver coils.

2) Coil Alignment: One of the important factors affecting the PTE is the coil misalignment

between the transmitter coil and the receiver coil [16], [18], [22], [23]. There are two forms of

misalignment [18], [22], [24]

• Lateral misalignment: when the transmitter coil and the receiver coil are placed in parallel,

their centres do not only have horizontal distance ∆, but also have the vertical distance d.

• Angular misalignment: the receiver coil is turned by an angle ϑ when the centres of the

transmitter coil and the receiver coil are well aligned.

The magnetic resonance coupling WPT system with lateral misalignment has been studied in

[17] that uses ANSYS model to simulate the relation between the transfer efficiency and the

lateral misalignment distance. The high efficiency misalignment range can then be determined. In

practice, the coils’ lateral and angular misalignment may happen together. However, most of ex-

isting work tends to analyse the lateral misalignment and the angular misalignment, respectively.

Therefore, there exists a research gap here.

3) Circuit Design: To maintain a high PTE, we can find the optimal operating frequency, e.g.,

by frequency tracking. In [19], an automatic frequency turning method has been proposed to find

the possible maximum PTE. However, due to the skin effect and the proximity effect increasing

winding resistances, the operating frequency shall not be too high [14]. In [20], a compensating

system has been proposed to improve the PTE by using a serious-shunt mixed-resonant circuit,

resulting in a high transmission efficiency over long distance.

4) The Environmental Analysis: The temperature and humidity [7] are important factors that

affect the PTE. Some semiconductors are also sensitive to the temperature [14]. In addition,

adding a ferrite core can improve the magnetic field strength and increasing magnetic flux, thus

leading to higher PTE. Adding a third coil may also improve the PTE. In [21], an optimal
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design has been proposed that makes use of an intermediate coil between the primary coil and

the secondary coil. It can boost the effective self-inductance and magnetizing inductance in the

primary coil, thereby increasing the apparent coupling coefficient.

B. Multiple transmitters/receivers design

Exploring the use of multiple transmitters and receivers is another important research theme.

This is because the ability of transferring power from a single transmitter to multiple receivers

is often required in practice [25]. Moreover, the transmission efficiency varies as the number of

the transmitters/receivers changes.

In [25], a method has been proposed to analyse the influence of multiple transmitters or

multiple receivers in the WPT system. Compared with the single transmitter/receiver coil case,

it has been found that increasing the receiver coils can improve the transmission efficiency. In

contrast, increasing the number of transmitter coils could degrade the transmission efficiency if

the coupling coefficient from a newly added transmitter to the receiver is small.

Matching the resonant frequency in multiple transmitters/receivers in the magnetic resonant

coupling-based WPT system has been found difficult [10]. An algorithm has been studied

to determine the resonant frequency in a 2 by 2 array multiple transmitters/receivers WPT

system. The PTE can be maintained at certain high level without changing the system operating

frequency. In [26], a multi-receiver WPT system has been presented that analyses both the PTE

and the power distribution among the receivers. The power distribution depends on both the load

impedances and the relative position of the receivers to the transmitter. In addition, it has been

found that using a repeater can extend the transmission distance.

IV. APPLICATIONS

A. Home Electronics:

Besides the charging of smart phones, cameras, and iWatches, the WPT technologies can be

used for charging TVs. In [27], a 150 watt wireless charging circuit has been presented that

makes use of three self-resonators for charging 47 inch LED TV. The transmitter resonator and

the intermediate resonator are placed in vertical, whilst the receiver resonator and the intermediate

resonator are placed in parallel. The PTE has been shown as up to 80% when the frequency is

250MHz.
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B. Medical Implants:

One important application of WPT technologies is the medical implants, e.g., cardiac implant

[28]. Most medical implants only need tiny voltage, and they will not use external charging

once transplanted into the human body. In many medical applications, a WPT transmitter can

be mounted outside of the human body whereas the receiver which is implanted into the human

body. In this setup, the surgeries of replacing batteries can be avoided.

C. Electric Vehicles:

In [29], the concept of the roadway-powered electric vehicle has been proposed which can

achieve 100 kW power output with 80% PTE at the 26 cm transmitter/receiver distance. In order

to compensate the reactive power, a series-compensation system has been adopted that is proved

with high PTE and high tolerance of lateral misalignment. Such a system consists of two main

parts: transmitter part with an inverter and the power line, and the receiver part with pick-up

modules, rectifiers, and regulators.

D. Wireless ‘Grid’:

Electrical grid is an essential part of human life due to its capability of delivering electricity

from suppliers to consumers. WPT-based ‘grid’ would eliminate the need of using wire trans-

mission grids to deliver electricity [30]. In the future, it may be possible to transfer power from

remote renewable energy sources, such as wind farms and solar array fields, to consumers. In

addition, it could enable the collection and utilization of micro-power from ambient sources - a

technique known as power harvesting [31], [32].

V. OPEN RESEARCH CHALLENGES AND ROADMAP

A. Self-adaptation to Misalignment

In practice, lateral misalignment and angular misalignment will inevitably happen that reduce

the PTE and the transmission distance. One potential approach of mitigating misalignment is to

track the power output on the load at the receiver side and then adjust receiver parameters to

maximise the power output. However, this may involve multiple parameters adaptation such as

lateral misalignment, angular misalignment, and operating frequency. The research challenge is

February 16, 2015 DRAFT



10

on how to adjust these parameters in a real-time manner whist guaranteeing the global optimal

power output. Alternatively, we could adapt the transmitter parameters by obtaining feedback

from the receiver side such as building a feedback link by using Zigbee modules. The Zigee

technology is based on IEEE 802.15.4 protocol and used in low cost, low power consumption,

low complexity, and short distance networking applications. The future research challenges lie

on the mutual self-adaptation of both transmitter and receiver’s parameters in order to obtain

maximum PTE.

B. Self-adaptation to Coil Length and Geomery

As aforesaid in Section III-A, both coil length and coil geometry have effects on the PTE

and the transmission distance. With the same coil length, the coil geometry can be optimised,

and vice versa. In this context, it is crucial that the transmitter coil and/or the receiver coil can

adaptively change their length/geometry to improve the PTE. To do that, it is essential to build

theoretical models relating the coil length/geometry with the PTE. Moreover, the coil itself shall

be flexible enough enabling us to change its length and geometry. Therefore, the modelling of

PTE as a function of coil length and geometry, and the coil flexible design are of prime research

interests in the future.

C. Small Animal Protection

WPT systems may potentially cause healthy issues of small animals. To protect small animals

from the WPT system, it will be necessary to explore small animal detection system. For example,

when the electric vehicle is being charged, the small animal (such as dog or cat) may stay under

the vehicle, i.e., between the transmitter coil and the receiver coil, that may harm the small

animal. Therefore, a suitable small animal protection system will be needed to detect them, e.g.,

turn off the charging system when appropriate.

VI. CONCLUSION

WPT technologies can be divided into three types: inductive coupling-based WPT, magnetic

resonant coupling-based WPT, and electromagnetic radiation-based WPT. The first two WPT

technologies belong to near-field transmission techniques, and the last one is a far-field transmis-

sion technique. They present different features and can be used in different scenarios. Although
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the principles of these three types WPT are different, the common feature is the lower PTE

compared with the wired power transfer. The state-of-the-art research focuses on improving

transmission efficiency and distance, and enabling multiple devices charging. The challenges

issues lie on the adaptation of system (either transmitter or receiver) parameters, such as coil

length and geometry, to address the misalignment problems since the misalignment often occurs

in practice.
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