
Run-Time Mapping of Applications to a
Heterogeneous Reconfigurable Tiled

System on Chip Architecture
Authors, affiliation, acknowledgement and some references removed

for the purpose of anonymous reviewing

Abstract—This paper describes the implementation and evalu-
ation of an algorithm that maps a number of communicating pro-
cesses to a heterogeneous tiled System on Chip (SoC) architecture
at run-time. The mapping algorithm minimizes the total amount
of energy consumption, while still providing an adequate Quality
of Service (QoS). The properties of the algorithm are described
and evaluated and a realistic mapping example is given.

Index Terms— mapping, system on chip (SoC), run-time, tiled,
heterogeneous, reconfigurable, architecture, drm

I. INTRODUCTION

The architecture of a portable multimedia system has to
meet many conflicting requirements. For example, it should
be energy-efficient, due to the scarce energy resources and it
should be flexible. It should be flexible so that it a) can em-
ploy a lot of different standards, b) can be adapted quickly to
implement a new standard c) can run different sets of tasks con-
currently and d) can adapt to the dynamically changing envi-
ronment.

The designer can choose from a wide spectrum of architec-
tures to implement such a system. This can vary from energy-
efficient, high-performance but static and inflexible ASICs to
flexible and easy programmable but energy hungry general pur-
pose processors. The optimal choice depends on the applica-
tion/algorithms and several other aspects, including the avail-
able energy budget, the time to market and the production vol-
ume.

However, no specific architecture will meet all these re-
quirements perfectly. A heterogeneous System on Chip (SoC)
with different kind of (reconfigurable) processing tiles intercon-
nected by a Network on Chip (NoC) as depicted in the lower
part of Figure 1 provides a nice solution for this dilemma. Ex-
amples of different types of processing tiles are:

• General Purpose Processor (GPP), e.g. ARM,
• Digital Signal Processor (DSP)
• Application Specific Integrated Circuit (ASIC),
• Domain Specific Reconfigurable Hardware (DSRH) e.g.

Montium [?]
• Field Programmable Gate Array (FPGA), e.g. embedded

FPGA’s
The best of both worlds (energy-efficient and flexible) can be

combined in such a heterogeneous architecture. For example,
small computational intensive algorithms of an application can
be mapped to an ASIC or a coarse reconfigurable tile avoiding a

GPP

FPGA

DSRH DSP DSP

ASICDSP DSRH DSRH

GPP

DSP ASIC ASIC DSRH

DSRH DSP

Fig. 1. SoC Template and the Mapping of a Process Graph

power hungry tile such as a general purpose processor. On the
other hand, control intensive but computational not so inten-
sive parts of the application can be mapped better to a general
purpose processor. In this way, the architecture can match the
application instead of the other way around, as usual.

Such a heterogeneous tiled architecture has also many other
advantages. To name a few: a) tiles of the same type can be du-
plicated when the number of transistors grow in the next tech-
nology round, b) replication of tiles eases the verification pro-
cess, c) tiles do not grow in complexity with a new technology,
d) relative small tiles makes it possible to optimize them exten-
sively, e) computational performance scales about linearly with
the number of tiles, f) unused tiles can be switched off to reduce
the energy consumption of the chip, g) locality of reference is
exploited, h) it is possible to have individual clock domains per
tile and for reconfigurable tiles it is possible to do partial dy-
namic reconfiguration on a per tile basis.

However, the use of such a heterogeneous tiled SoC archi-
tecture changes the standard development flow (e.g. code a pro-
gram in C and compile or code functionality in VHDL and syn-
thesize). The designer has to partition the application into a
graph with communicating functional processes (see top of Fig-
ure 1). In a process graph, a vertex represents a functional pro-
cess and an directed edge represents communication between
functional processes. For each functional process one or more

realization(s) for one or more different types of processing tiles
have to be made. Designing more, functional equivalent, real-
izations of the same process for different types of tiles makes
it possible to run an application even when the most optimal
tiles are not available. Often, the partitioning of an application
into a process graph arises naturally from the application; an
example of a functional process is an FFT. Quite often, the de-
signer knows which kind of realizations might make sense. For
example, bit level processes such as turbo/convolutional encod-
ing or random number generation match very well to a FPGA
or an ASIC. Computational intensive word based algorithms
such as an FFT can be mapped to an ASIC, DSP or coarse re-
configurable architecture while algorithms with a lot of control
construct, such as if() .. then .. else .., while () loops,
can be mapped best to a general purpose processor. The de-
signer plays an important role in this process and we assume
that the partitioning and the choice of possible realizations are
still made manually by the designer.

The mapping of these realizations to the heterogeneous tiled
SoC architecture can best be done automatically at run-time. At
design time it is not known which applications run simultane-
ously and how the external environment (with regard to avail-
able services, end-user behavior, wireless link quality) behaves.
Therefore, this mapping decision has to be made at run-time.
This article describes an implementation and evaluation of such
a run-time mapping algorithm.

Section II describes related work. Section III gives an intro-
duction of the MinWeight algorithm that finds an optimal map-
ping solution of the available process realizations to the tiled
SoC architecture. Section IV describes the implementation of
this algorithm and analyzes the (strong and weak) properties of
the MinWeight algorithm. Furthermore, some adaptations are
proposed to get a mapping which fulfills some additional con-
straints. Section V presents a model of the mapping problem
again to give an optimal solution under additional constraints.
Section VI gives an example of the mapping of the digital base-
band part of a radio receiver. First we describe shortly the ap-
plication followed by the results of the MinWeight algorithm.
Section VII concludes the article.

II. RELATED WORK

In the area of scheduling and optimization theory (opera-
tions research) a lot of literature exists on models which have
some similarities with the considered problem (see e.g. [6], [2]).
However, our application has some properties, which not allow
us to use the existing approaches without modification. Com-
pared to traditional scheduling for parallel systems we have the
following differences:

• use of a heterogeneous architecture instead of a homoge-
neous architecture.

• the most important optimization parameter is minimiza-
tion of the energy consumption instead of performance.
The goal of most scheduling methods is to optimize the
performance. In our method, the required performance is
only one of the constraints, which has to be satisfied.

• the communication is an important parameter to be in-
cluded in the total optimization because the communica-
tion consumes a substantial part of the total energy budget.

In normal multiprocessor systems, the main focus is on the
computation costs.

Another important difference with regard to optimization in lit-
erature is that we need to have a light-weight algorithm. It may
be better to have to reasonable good solution computed with lit-
tle effort than to have an optimal solution that requires a lot of
effort for its computation. Therefore, a lot of existing optimiza-
tion algorithms are on beforehand not acceptable for us.

Hu and Marculescu [5] address energy-aware communica-
tion and task scheduling for NoC architectures under real-time
constraints. Their scheduling method is based on the statistical
analysis of the different processes. However, for simple process
graphs with vertices of low degree (as is often the case for typi-
cal process graphs) we are able to compute an optimal solution
with the MinWeight algorithm, while the Hu approach gives
a sub optimal solution. One of the problems that we foresee
with the Hu approach is that it is difficult to add additional con-
straints, such as a limited capacity of processors. Hu assumes
an infinite capacity of the processors, which is not realistic in
practice.

III. MINWEIGHT ALGORITHM

This section describes the MinWeight algorithm that deter-
mines the weight of a minimum processor assignment for any
weighted process graph Gw and a set of processors P . Its run-
ning time is exponential. However, in practice it can compute
solutions quite fast, as long as the input graphs have only a
small number of vertices with a high degree (greater than two).
A proof of the correctness of the algorithm, the complexity of
the algorithm and further explanation can be found in [?].

A. Preliminaries

For the modeling of the optimization problem mentioned in
the Introduction we consider simple graphs, denoted by G =
(VG, EG), where VG is a finite nonempty set of vertices and
EG is a set of unordered pairs of vertices, called edges.

For a vertex u ∈ VG we denote its neighborhood, i.e. the set
of adjacent vertices, by N(u) = {v | (u, v) ∈ EG}. The degree
deg(u) of a vertex u is the number of edges incident with it.

If e = (u, v) ∈ EG, the contraction G/e of G is the simple
graph obtained from G by replacing u and v and the edges in-
cident with u and v by one new vertex uv and edges joining uv
with the vertices adjacent to u or v in G.

Now let G = (VG, EG) be a simple graph with vertex set
VG and edge set EG. The vertices of G represent the tasks
that have to be performed on a set P of processors. An edge
e = (u, v) exists if and only if there is communication between
the processes of task u and task v.

Let the vertex weight wu
p ≥ 0 represent the costs of pro-

cessing task u on processor p ∈ P . This way a weight vector
wu of size |P | is defined for u ∈ VG. If in practice u cannot
be performed on processor p, this can be expressed by setting
wu

p = ∞ (or a bounded, sufficiently large number M).
For e = (u, v) ∈ EG let the edge weight we

pq ≥ 0 represent
the communication costs between the processes of task u and
v, if u is performed on processor p ∈ P and v is performed on
processor q ∈ P . This way a matrix W e of size |P | × |P | is

defined for e ∈ EG. If in practice two tasks u and v cannot
be performed on the same processor p simultaneously, we can
model this by adding an edge e = (u, v) and setting w

(u,v)
pp =

M , where M is a sufficiently large number.
The graph G together with the weight vectors wu, and weight

matrices W e is called a weighted process graph, and denoted
by Gw.

We call a mapping f : VG → P a processor assignment of
G. Let FG denote the set of all processor assignments of G.
We define the weight of a processor assignment f ∈ FG for a
weighted process graph Gw as

w(f) =
∑

v∈VG

wv
f(v) +

∑

(u,v)∈EG

w
(u,v)
f(u)f(v).

A minimum weight processor assignment f ∗ is a processor
assignment that has minimum weight, i.e., with w(f ∗) =
min{w(f) | f ∈ FG}.

The MINIMUM WEIGHT PROCESSOR ASSIGNMENT prob-
lem (MWPA) is the problem of finding a minimum weight pro-
cessor assignment for a given weighted process graph Gw and
a set P of processors.

If any minimum weight processor assignment f will map
task u on processor q, we say that u is fixed on q. If wu

p = 0 for
all processors p ∈ P , we will say that u is free.

B. MinWeight Algorithm

Figure 2 shows the MinWeight algorithm. In each iteration
of the loop over the steps (2) to (6), one vertex is removed from
the graph and the weight of the vertex and the accompanying
edge(s) are added to another vertex of edge of the graph. De-
pending on the degree of the vertex, a different action is per-
formed. Step (3), (4) and (5) take care of a vertex with degree
1, 2 and 3 or higher respectively. As an example, we give a short
explanation of the action performed in step (3) for a vertex v of
degree 1. First, the neighbor vertex u of vertex v is identified.
There is at most one neighbor, because vertex v has degree 1.
Next, for we pick a processor p for vertex u and perform the
following evaluation: For which processor q for vertex v do we
get a minimum for the cost for the processing of v on q and the
costs for the communication between p and q. This minimum
weight is added to the weight of processing u on processor p.
This is done for all possible processors for vertex u. After eval-
uation of all these possibilities, vertex v is removed from the
graph.

IV. EVALUATION

This section describes the implementation of the MinWeight
algorithm of Section III, the properties of the algorithm and
a description of a slightly adapted version of the algorithm to
cope with one of the limitations of the MinWeight algorithm.

A. Implementation

The MinWeight algorithm is implemented in C++ using the
Boost Graph Library [1] (BGL). The BGL is a library that is
specially developed for the representation and manipulation of
graphs. In the current implementation, it is possible to read a

process graph from a file, to run the MinWeight algorithm and
to output the results in a nicely formatted file.

In the implementation, the weight W for an edge is com-
posed from two different elements because the weight depends
on two quite different properties. First, the costs of communi-
cation between two different processors on the SoC. This is an
architectural property of the SoC, which should be supplied by
a SoC model. Second, the amount of communication, which is
a functional property of the application that is specified in the
process graph.

B. Properties of the MinWeight Algorithm

In this part we describe and discuss the most relevant strong
and weak points of the MinWeight algorithm with respect to
our specific mapping problem.

Firstly, the MinWeight algorithm computes the optimal solu-
tion to the mapping problem instead of an approximation. This
is a strong advantage of the algorithm.

Secondly, due to the dynamic programming like approach
for vertices with low degrees, the complexity is low. The exact
complexity depends on the degree of the vertices in the graphs,
for more information see [?]. E.g. for the mapping of 10 pro-
cesses to 16 possible processors, 1610 ≈ 1012 solutions are
possible, but the algorithm finishes within a few milliseconds.
When the degree of the vertices increases, the computation time
of the algorithm increases exponential. However, the process
graphs are relative small (between 5 and 20 vertices) in our tar-
geted application domain and in practice a process graph does
not have a lot of vertices with degree ≥ 3. Therefore, we do not
expect that the computation time will be a problem in practice.

Unfortunately, the algorithm does not take into account pos-
sible constraints. E.g. the capacity of processors and commu-
nication links are assumed to be infinite, which is not realistic.
Also other constraints, e.g. restrictions on the delay in com-
munication cannot be not taken into account by the MinWeight
algorithm, which may be necessary to guarantee hard real-time
behavior and Quality of Service (QoS). This is a serious limita-
tion of the MinWeight algorithm.

C. Adding the Processor Capacity Constraint

The MinWeight algorithm can not handle additional con-
straints very well, e.g. the constraint that a processor has a lim-
ited capacity and therefore only a limited fix number of pro-
cesses can run on a processor. Or even more advanced, it has
to determine the number of processes that can run on a specific
processor depending on the load of the processor in combina-
tion with the weight of the processes. To cope with the limited
capacity of a processor, we adapted the MinWeight algorithm so
that it satisfies the constraint that at most one process is mapped
to each processor. A similar approach can be used for other con-
straints, e.g. at most two processes may be mapped to one pro-
cessor. It is implemented in such a way that before computing
the weight of a particular solution two conditions are checked.
First, it checks whether the processors involved in the mapping
solution are not already occupied in an earlier mapping step for
another vertex of a processor graph. Second, it checks whether

Algorithm MINWEIGHT
(1) FOR (u, v) /∈ EG and p, q ∈ P DO w

(u,v)
pq := 0.

(2) Choose a vertex v ∈ VG.
(3) IF deg(v) = 1,

THEN let VG := VG\v, and EG := EG\(u, v) for u ∈ N(v).
FOR u ∈ N(v) and p ∈ P DO

wu
p := wu

p + min
q∈P

{wv
q + w(u,v)

pq }.

(4) IF deg(v) = 2,
THEN let VG := VG\v and EG := (EG ∪ {(x, z)})\{(x, v), (v, z)} for x, z ∈ N(v).
FOR x, z ∈ N(v) and p, q ∈ P DO

w(x,z)
pq := w(x,z)

pq + min
r∈P

{wv
r + w(x,v)

pr + w(v,z)
rq }.

(5) IF deg(v) ≥ 3,
THEN choose a vertex u ∈ N(v). Let G := G/(u, v).
Set P := P × P .
FOR (p, q) ∈ P DO wuv

(p,q) := wu
p + w

(u,v)
pq + wv

q .

FOR x ∈ VG and (p, q) ∈ P DO wx
(p,q) := wx

p .

FOR e = (uv, x) with x ∈ N(uv) and (p, q), (r, s) ∈ P DO w
(uv,x)
(p,q)(r,s) := w

(u,x)
pr + w

(v,x)
qr .

FOR e ∈ EG not incident with uv and (p, q), (r, s) ∈ P DO we
(p,q)(r,s) := we

pr.
(6) IF |VG| ≥ 2, THEN GOTO (2).
(7) Output w∗ := min{wu

p | p ∈ P, u ∈ VG}. STOP.

Fig. 2. The MinWeight Algorithm

the processors involved in the mapping solution are all unique.
Only if both conditions are satisfied, the solution is feasible.

The problem with adding these kind of constraints is that
they introduces dependencies between the different assignment
steps. Suppose we have two processes 1 and 2 and two pro-
cessors A and B. Process 1 can be mapped to processor A and
B and process 2 can only be mapped to processor B. Further-
more, processor B can execute only one process. If process 1 is
mapped to process B, process 2 can not be assigned to processor
B and therefore the mapping problem can not be solved in this
way. In this example, the algorithm can even not find a solution.
However, if a solution is found it is likely to be not an optimal
one, because processes are competing for resources with lim-
ited capacity. One way to come up with an optimal solution is
to iterate all the possible mappings. This solution is discussed
in Section V. However, for practical use this is too time con-
suming and not possible at run-time. However, it is useful to
know how far the adapted MinWeight solution deviates from
the optimum.

D. Improvement of the Adapted MinWeight Algorithm

The adapted MinWeight problem suffers from two prob-
lems:

1) The algorithm does not find a mapping
Different processes can compete for the same resources
and it may happen that all the resources for a specific
process are already occupied due to mapping decisions in
the past. In this case, it is not possible for the algorithm
to find a solution.

2) The algorithm finds a mapping that is far from optimal
This is a result of the dependencies mentioned already.

The first problem is the most severe one. To reduce the
chance of getting no feasible solution we may improve the Min-
Weight algorithm from Section IV-C by reordering the vertices
that are chosen in step 2), see Figure 2. If a vertex only needs
scarce resources, the probability is high that these resources are
already taken by other processes when this vertex is mapped as
one of the latest. Therefore, it is obvious that it is better to start
with the mapping of vertices that needs only scarce resources to
avoid resource bottlenecks instead of ending up with the result
that the algorithm is not able to map the process graph to the
SoC architecture.

When it is clear that there are no (longer) resource problems,
it is better to start with mapping processes that have a high
weight, because the quality of a solution is worse when a pro-
cess with high processing costs is mapped inefficient, as when a
process with low processing costs is mapped inefficient. There-
fore, we propose an ordering of the vertices that is based on 1)
the scarcity of the resources and 2) the weight of the processes.

However, it is not so simple to estimate when the resource
scarcity is not longer a threat. It is important to detect as soon as
possible that a reordering based on the weight of the processes
is possible because this improves the optimality of the final so-
lution. Currently, we are investigating which simple metric we
may use to decide how to order the processes to obtain a possi-
ble near optimal mapping.

For the NoC in general we do not expect resource problems.
Most tiled SoC architectures use a mesh structure for the NoC.
That means that there are several different routes possible be-
tween two processing tiles with an equal length.

V. QUADRATIC PROGRAMMING SOLUTION

The assignment problem with the constraint that a processor
may execute at most one process can be modeled as a quadratic
assignment problem ([6], Section 12.9). This allows us to com-
pute the optimal solution with the processor capacity constraint
instead of a lower bound given by the MinWeight algorithm.
We formulate our problem in a quadratic assignment problem
as follows:

Input:
• a set P of p processors, P = {1, . . . , p}.
• a weighted process graph Gw = (VG, EG) with a weight

vector wu
p for all u ∈ VG and a weight matrix W e for all

e ∈ EG as defined in Section III-A.
Decision variable:

let variable xu,p =

1,
if process u ∈ VG

is mapped on processor p ∈ P
0, otherwise

Constraints:
∑

p∈P

xu,p = 1, u ∈ VG(each process on exact 1 processor)

∑

u∈VG

xu,p ≤ 1, p ∈ P (maximal 1 process per processor)

xu,p ∈ {0, 1}, u ∈ VG, p ∈ P
Objective function:

min

(

(

∑

u∈VG

∑

p∈P

wu
p · xu,p

)

+

(

∑

(u,v)∈EG

∑

j∈P

∑

k∈P

xu,j · xv,k · w
(u,v)
jk

)

)

A. Pseudo code of Quadratic Problem Assignment Model

Existing algorithms (see [6]) can solve the quadratic assign-
ment problem in a smart way, but for small instances also a
simple brute force enumeration of all possible assignments is
possible. In the following we give a pseudo code of such an
algorithm to solve the Quadratic Problem Assignment problem
in a brute force way. Two vectors are used:

• a vector assign with length n (number of processes),
which denotes which process is assigned to which proces-
sor. For example, assign = [2,4,9] means that process 1 is
assigned to processor 2, process 2 is assigned to processor
4 and process 3 is assigned to processor 9.

• a vector busy with length m (number of processors),
which denotes whether a processor is already occupied
with a process or not. For example, busy = [0,1,0] means
that processor 1 is free and available for usage, processor 2
is busy with a process and processor 3 is free and available
for usage.

Both vectors start at index 1 and are initialized with ze-
ros. Furthermore, we assume the availability of two functions
nextfreeprocessor, which return the next available pro-
cessor or -1 when there is no next processor available and a
function evaluate, which returns the costs of the current
mapping. Figure 3 shows the pseudo code of the algorithm.

i = 1;
while (i > 0) {

int np = nextfreeprocessor(..);
if (np == -1) {
busy [assign[i]] = 0;
assign[i] = 0;
i--;

}
else {
busy[assign[i]] = 0;
assign[i] = np;
busy[np] = 1;
if (i == n) { // leaf

int costs = evaluate(..);
if (costs < currentmin) {
currentmin = costs;
save solution

}
}
else { // no leaf

i++;
}

}
}

Fig. 3. Pseudo Code for Quadratic Assignment Algorithm

VI. EXAMPLE

Digitale Radio Mondiale (DRM) [3] is a standard for digital
radio below the 30 Mhz. A concise explanation of the DRM
standard can be found in [4]. This section describes the map-
ping of a part of a DRM receiver to a heterogeneous tiled SoC
architecture with 16 processing tiles. We use the template de-
picted in Figure 1. We number the tiles as follows: The left top
tile is tile number 0, the direct right neighbor is tile number 1,
the right bottom tile is tile number 15.

Figure 4 shows the processes of the digital baseband part of
our DRM receiver. Table I shows the processes that we would
like to map on the SoC (for a functional description of the pro-
cesses see [4]). These processes concern the data flow of the
DRM application; we do not consider the processes 9,10,11 in
the ”Global control & estimation” part of Figure 4. To test our
algorithms, it is not crucial to have very accurate estimations of
the weights. Therefore, we make a few assumptions to test our
algorithms so that we do not have to realize the system to get
the exact numbers:

• the number of multiplications per second is used as an in-
dication for the costs of a process. Table I shows of the
costs of the process in terms of multiplications per second
for reception of Mode B, and the available implementa-
tions for the different type of processors.

• the ratio between processing an multiplication on an
ASIC, DSRH, FPGA, DSP, GPP are 10:40:50:60:500 re-
spectively.

• the communication costs increase linear with the distance
of the communication path on the SoC. The communica-

A

D
DDC

Guard time
removal

fcF offset
correction

DFT

Channel
equalization

Cell De-
mapping

QAM
De-mapping

Channel
estimation

Frame
estimation

Parameter
estimation

Global control
& estimation

T
im

e
F

requency
B

its

= process number
= Real signal
= Complex signal

0
1

3 4 5

6

7

12 8

2

1
output

Fig. 4. DRM Processes to Map on SoC

tion costs are equal to the throughput in kbit/s given in
Table II multiplied by the Manhattan distance between the
tiles.

Note that processes that have an ASIC realization need a spe-
cific ASIC. It is not possible to assign a process with an ASIC
realization to an arbitrary ASIC processor.

A. Results

Table III shows the solutions (the assignments and the total
costs) of the different algorithms. In the mapping, position i
gives the mapping of the ith process. So, e.g. for all mappings,
process 3 (the fourth process) is assigned to processor 12.

The optimal mapping without constraints is given by the
MinWeight algorithm. Note that the MinWeight algorithm
maps different processes to the same DSRH tiles (6 and 13).
If we assume that a tile may be used for at most one process
there is a resource problem. Even by swapping some of these
processes to other tiles of the same type, no feasible solution
can be obtained, since 5 processes are assigned to the DSRH
tiles, but only 4 instances of this type of tile are available.

Even when different tiles were chosen for this type of im-
plementation of the processes, the mapping is not permitted if
the DSRH may be used only for one process because this type
of tile is 5 times requested and only 4 instances of this type of
tile are available. Taking into account that every processor may
run at most 1 process, another mapping is determined by the

Block Process Multiplies Processors

A/D converter 0 0 ASIC

Mixer 1 24k DSP, DSRH, GPP

DDC 2 0 ASIC

Guard time correlation 3 144k DSP, FPGA, GPP

Frequency Correction 4 96k DSP, DSRH, GPP

FFT 5 346k ASIC, DSP, DSRH, GPP

Channel equalization 6 38k GPP, DSP, DSRH

Demapping 7 0 GPP, DSP, DSRH

Bit decoding 8 0 GPP, DSP, DSRH

Output 12 0 GPP

TABLE I
MULTIPLICATION COSTS FOR DRM MODE B

Edge kbit/s

0→ 1 375k

1→ 2 750k

2→ 3 755k

3→ 4 600k

4→ 5 600k

5→ 6 300k

6→ 7 241k

7→ 8 201k

8→ 12 78k

TABLE II
COMMUNICATION COSTS FOR DRM MODE B

algorithm mapping costs

MinWeight 5, 13, 9, 12, 13, 10, 6, 6, 6, 0 22324

Adapted MinWeight 5, 13, 9, 12, 6, 10, 7, 3, 2, 0 24188

Quadratic programming 5, 1, 9, 12, 13, 10, 6, 7, 11, 15 22985

TABLE III
DIFFERENT MAPPINGS

adapted MinWeight algorithm. Note that the initial processor
mappings are the same and that a first difference occurs when
tile 13 is used a second time. This gives a mapping that is 8%
more expensive compared to the solution of the MinWeight al-
gorithm. The remaining question is how much the solution of
the adapted MinWeight differs from the optimal solution, which
is expected to be higher than the lower bound given by the Min-
Weight algorithm due to the additional constraint. Therefore,
the optimal solution is determined using the quadratic program-
ming solution. It took several hours of computation on a Pen-
tium 4 processor to evaluate all the possibilities with the brute
force enumeration. This solution is about 3% more expensive
than the MinWeight solution due to the additional processor ca-
pacity constraint. Therefore, we can conclude that we loose
about 5% performance due to non optimality for the adapted
MinWeight algorithm.

VII. CONCLUSION

The MinWeight algorithm computes very fast an optimal so-
lution. However, the algorithm does not take into account all
relevant constraints and therefore the practical use of the al-
gorithm is limited. Adaptation of the MinWeight algorithm in
order to fulfill the additional constraints gives a method which
leads to a non-optimal solution. A realistic case shows that the
adapted MinWeight algorithm gives a near optimal solution in
a reasonable short computation time.

In future, we focus on three issues. First, additional con-
straints and heuristics will be added to the MinWeight algorithm
to cope with more real life restrictions and to improve the solu-
tions respectively. Second, we expect that adding heuristics to
change the order in which the processes are mapped to proces-
sors improves the optimality of the solution. We are currently
investigating how to determine a good ordering based on sim-
ple criteria. Third, another approach may be used so that in the

first step an optimal solution is computed using the MinWeight
algorithm and in the second step the constraint violations are
solved.

Acknowledgement

removed for the purpose of anonynous reviewing.

REFERENCES

[1] http://www.boost.org/libs/graph/doc/.
[2] P. Brucker. Scheduling Algorithms. Springer, 3 edition, 2001. ISBN:3-

540-41510-6.
[3] E. T. S. I. (ETSI). Digital radio mondial (drm); system specification, Apr.

2003. ETSI ES 201 980 v1.2.2 (2003-04).
[4] F. Hofmann, C. Hansen, and W. Schäfer. Digital radio mondiale (drm)

digital sound broadcasting in the AM bands. IEEE Transactions on Broad-
casting, 49(3):319–328, Sept. 2003.

[5] J. Hu and R. Marculescu. Energy-aware communication and task schedul-
ing for network-on-chip architectures under real-time constraints. In Pro-
ceeding of DATE04, pages 234–239, Feb. 2004.

[6] W. L. Winston. Operations Research; Applications and Algorithms. Inter-
national Thomson Publishing, 3 edition, 1993. ISBN: 0-534-20971-8.

