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Abstract—The server-centric data centre network architecture
can accommodate a wide variety of network topologies. Newly
proposed topologies in this arena often require several rounds of
analysis and experimentation in order that they might achieve
their full potential as data centre networks. We propose a family
of novel routing algorithms on two well-known data centre
networks of this type, (Generalized) DCell and FiConn, using
techniques that can be applied more generally to the class
of networks we call completely connected recursively-defined
networks. In doing so, we develop a classification of all possible
routes from server-node to server-node on these networks, called
general routes of order t, and find that for certain topologies of
interest, our routing algorithms efficiently produce pathsthat are
up to 16% shorter than the best previously known algorithms,
and are comparable to shortest paths. In addition to finding
shorter paths, we show evidence that our algorithms also have
good load-balancing properties.

I. I NTRODUCTION

The explosive growth of online services powered by data
centres (web search, cloud computing, etc.) has motivated
intense research into data centre network (DCN) design over
the past decade and brought about major breakthroughs. For
example, fat-tree DCNs, introduced in [1], use commodity off-
the-shelf (COTS) servers and switches in a fat-tree (topology),
and have resulted in an evolutionary shift in production
data centres towards leaf-spine topologies, built from COTS
hardware. COTS fat-tree DCNs are not a panacea, however;
for example, fat-trees are difficult to scale.

Research on DCN architecture is ongoing and each new
architecture invites the use of certain classes of topologies.
Indirect networks, where servers are the terminals connected
to a switching fabric, are the prevailing example. Fat-trees
are among the topologies that can be implemented in indirect
network architectures. A host of alternative topologies can be
implemented as indirect networks, including random regular
graphs ([2]) and butterfly networks ([3]). Likewise, the optical-
switch hybrid DCN Helios ([4]) can be seen as an architecture
with the capacity to accommodate a variety of topologies (both
in the wired links as well as in the optical switch itself). Each
architecture sets constraints on the topology in a variety of
ways; for example, by the separation of switching nodes from
server nodes or the number of ports in the available hardware.

The server-centric DCN (SCDCN) architecture, introduced
in [5], accommodates a great variety of network topologies and

has resulted in a number of new DCN designs, both derived
from existing and well-understood topologies in interconnec-
tion networks as well as topologies geared explicitly towards
DCNs (e.g., [5]–[10]).

Only dumb crossbar-like switches are used in an SCDCN
and the servers are responsible for routing packets throughthe
network. Therefore, the switches have no knowledge of the
network topology and are only connected to servers. Servers,
on the other hand, may be connected to both switches and
servers. These parameters, which make up part of the SCDCN
architecture, invite sophisticated topologies from abstractions
as graphs, along with accompanying analyses. We are con-
cerned primarily with routing algorithms for two well-known
SCDCNs, DCell ([5]) and FiConn ([6]), and the topologies
called Generalized DCell ([11,12]).

We characterise (Generalized) DCell and FiConn as a spe-
cial case ofcompletely connected recursively-defined networks
(CCRDN), which we use to develop a classification (which,
to our knowledge, is novel) of all possible routes from server-
node to server-node in the DCNs (Generalized) DCell and
FiConn. Our main result pertains to a specific family of
routing algorithms, calledPR (or ProxyRoute), which we
develop with the primary aim of improving upon the originally
proposed (and best known) routing algorithms, as regards hop-
length. This goal is achieved with improvements as high as
16% for certain topologies and paths that are comparable, in
length, to shortest paths. In addition, we give empirical evi-
dence that the path diversity provided byPR does a better job
of balancing load thanDCellRouting. Hitherto, the only
algorithms for balancing communication load in (Generalized)
DCell and FiConn are the adaptive routing algorithmsDFR and
TAR presented in [5,6], soPR is also novel in this respect.

Two of our instances ofPR calledGP_I andGP_0, exploit
the topological structure of (Generalized) DCell and FiConn in
order to find short paths efficiently by means of an intelligent
search (see Section V-A) of sub-structures called “proxies”.
We then empirically compare the results of our intelligent
versions ofPR with a shortest path algorithm, a brute force
version ofPR and the routing algorithms that were originally
proposed in [5,6,12].

We give definitions in Sections II–III, where we abstract the
DCNs (Generalized) DCell and FiConn as graphs which can
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be characterised as CCRDNs. Section IV describes previously
known routing algorithms for these DCNs, in the context of
CCRDNs, and our classification of routes in CCRDNs is given
in Section IV-B, asgeneral routes of ordert. We present
our main contribution in Section V: the design ofPR. Our
empirical work is described and evaluated in Section VI and
future avenues for research are identified in the conclusion.

II. SERVER-CENTRIC DCNS

Our results and experiments are concentrated on graph
theoretical abstractions of certain SCDCNs. Therefore, itis
appropriate that we define this abstraction precisely.

An SCDCN consists of switches, which act only as cross-
bars and have no routing intelligence, and servers. These
components are linked together, with the only restriction being
that a switch cannot be linked directly to another switch; we
assume all links are bidirectional. As such, an SCDCN is
abstracted here by an undirected graphG “ pW YS,Eq, with
two types of nodes calledswitch-nodes, W , andserver-nodes,
S. Naturally, each switch of the SCDCN corresponds to a
switch-node,w P W , and each server corresponds to a server-
node,x P S. Each link of the SCDCN corresponds to an edge
e of E, which, for convenience, we shall also call a link. The
condition that switch-to-switch links are not allowed implies
that Epu, vq P E such thatu, v P W . See [13] for undefined
graph-theoretic terms.

Also relevant to our discussion of routing algorithms in
SCDCNs is the fact that(1) packets are sent and received only
by servers, and (2) packets endure a negligible amount of
processing time in each switch, compared to the time spent in
each server. The reason for (2) is that we assume the packet is
routed in the server’s operating system, either via a table look-
up or computation. This could be done, e.g., by a dedicated
virtual machine or a specialised hypervisor with the capability
to route packets. In any case, we may assume that with today’s
COTS servers, a packet spends much more time at servers than
in switches.

The outcome of (1) is that we need only discuss routing
algorithms that construct paths whose endpoints are server-
nodes. That is, aroute on G is a path whose endpoints are
server-nodes. The outcome of (2) is that ahop from server-
node to server-node is indistinguishable from one that also
passes through a switch-node.

III. R ECURSIVELY-DEFINED NETWORKS

Our results are concerned with network topologies of a
certain form that have arisen frequently in the area of inter-
connection networks, and recently as SCDCNs.

Definition III.1. A family X “ tXphq : h “ 0, 1, . . .u of
interconnection networks isrecursively-definedif Xphq, where
h ą 0, is the disjoint union of copies ofXph ´ 1q with the
addition of extra links joining nodes in the different copies. We
call a member ofX a recursively-defined network (RDN). A
family of RDNsX is a completely-connected RDN (CCRDN)
(see, e.g., [14]) if there is at least one link joining every copy
of Xph ´ 1q within Xphq to every other copy.

A. The DCNs DCell

The DCNs DCell ([5]) were the first family of SCDCNs to
be proposed, and their graphs form the family of CCRDNs
described below.

Fix somen ą 2. The graph DCell0,n consists of one switch-
node connected ton server-nodes. Fork ě 0, let tk be the
number of server-nodes in DCellk,n. For k ą 0, the graph
DCellk,n consists oftk´1 ` 1 disjoint copies of DCellk´1,n,
labelled Di

k´1
, for 0 ď i ď tk´1. Each pair of distinct

DCellk´1,ns is joined by exactly one link, called alevel-k
link, whose exact definition is given below, in terms of the
labels of the server-nodes.

Label a server-node of a DCelln,k, for somek ą 0, by
x “ xkxk´1 ¨ ¨ ¨x0, wherexk´1xk´2 ¨ ¨ ¨x0 is the label of a
server-node inDxk

k´1
, and 0 ď x0 ă n and 0 ď xi ă gk

for i ą 0, wheregk “ tk´1 ` 1. The labels of DCelln,k are
mapped bijectively to the sett0, 1, . . . , tk ´ 1u by uidkpxq “
xktk´1 ` xk´1tk´2 ` ¨ ¨ ¨ ` x1t0 ` x0. Label anduid are
combined in the notationrxk, uidk´1pxk´1xk´2 ¨ ¨ ¨x0qs.

Let 0 ď xk ă yk ă tk´1 ` 1 be the indices of the
DCellk´1,ns labelledDxk

k´1
andDyk

k´1
. A level-k link connects

nodeyk ´ 1 in Dxk

k´1
to nodexk in D

yk

k´1
. This is the link

pyk ´ 1 ` xktk´1, xk ` yktk´1q.
1) Generalized DCell:The definition of the DCNs DCell

generalises readily; see [11,12]. The key observation is that
the level-k links are a perfect matching of the server nodes
in the disjoint copies of the DCellk´1,ns, where every pair
of distinct DCellk´1,ns is connected by a link. Many such
matchings are possible. A given matchingρk which satisfies
the stated properties defines the level-k links and is called a
ρk-connection rule([12]).

A Generalized DCellk,n inherits the definition of DCellk,n,
for k ě 0, except that the level-k links may satisfy an arbitrary
ρk-connection rule. Note that we insist that there be only one
connection rule for each levelk, so that a given family of
Generalized DCells can be specified by a set of connection
rulestρ1, ρ2, ρ3, . . .u.

This is in accordance with Definition 1 in [12], with two
exceptions. We model Generalized DCell0,n as a switch-node
connected ton server-nodes, rather than modelling it asKn,
and we requiren ą 2.

In order to demonstrate the impact of different connection
rules on the routing algorithms presented in Section IV, it
suffices to consider just one connection rule besides the one
for DCell. For this purpose, we useβ-DCell, defined by the
β-connection rule given in [12].

Theβ-connection rule is (perhaps not obviously) as follows:
Let 0 ď xk ă yk ă tk´1 ` 1 be the indices of theβ-
DCellk´1,ns labelledBxk

k´1
andByk

k´1
. A level-k link connects

nodeyk´xk´1 in Bxk

k´1
to nodetk´1´yk`xk in B

yk

k´1
. This

is the link pyk ´ xk ´ 1 ` xktk´1, tk´1 ´ yk ` xk ` yktk´1q.

B. The DCNs FiConn

One of the issues with (Generalized) DCellk,n is that each
server-node has degreek ` 1. This requires that each server



hask`1 NIC ports, which is not typically the case for COTS
servers whenk ą 1.

FiConn, proposed in [6], is a CCRDN that requires at most
two ports per server; it uses only half of theavailableserver-
nodes (those of degree one) in each copy of FiConnk´1,n

when building FiConnk,n. This, in turn, leaves server-nodes
of degree one available to build the next level. We describe
FiConn below.

Fix some evenn ą 3. FiConn0,n is the network consisting
of one switch-node connected ton server-nodes. Letb be
the number of available server-nodes in FiConnk´1,n for
k ą 0. Build FiConnk,n from b{2` 1 copies of FiConnk´1,n,
labelled F i

k´1
, for 0 ď i ď b{2. From [6] we have that

b{2 ` 1 “ tk´1{2k ` 1, so that the label of a server-
node x of a FiConnk,n is, expressed as thepk ` 1q-tuple
x “ xkxk´1 ¨ ¨ ¨x0, wherexk´1xk´2 ¨ ¨ ¨x0 is a server-node
in F xk

k´1
and we have0 ď x0 ă n, but 0 ď xi ă gk, where

gk “ b{2 ` 1 “ tk´1{2k ` 1 (diverging slightly from the
labels in DCell). We haveuidkpxq “ xktk´1 ` xk´1tk´2 `
¨ ¨ ¨ ` x1t0 ` x0 and rxk, uidk´1pxk´1xk´2 ¨ ¨ ¨x0qs to label
server-nodes, once more.

Let 0 ď xk ă yk ă tk´1{2k ` 1 be the indices of the
FiConnk´1,nsF xk

k´1
andF yk

k´1
. A level-k link connects server-

nodepyk ´ 1q2k ` 2k´1 ` 1 in Dxk

k´1
to server-nodexk2

k `
2k´1 ` 1 in D

yk

k´1
. This is the linkppyk ´ 1q2k ` 2k´1 ` 1 `

xktk´1, xk2
k ` 2k´1 ` 1 ` yktk´1q.

IV. ROUTING

CCRDNs feature a class of routing algorithms that emerges
naturally from their definition, calleddimensional routing.

A. Dimensional routing

Definition IV.1. LetX “ tXphq : h “ 0, 1, . . .u be a family of
CCRDNs, and letXh be a copy ofXphq, for some fixedh ą 0.
Let Xa

h´1
and Xb

h´1
be disjoint copies ofXph ´ 1q in Xh,

and letsrc anddst be nodes ofXa
h´1

andXb
h´1

, respectively.
SinceXh is completely connected, there is a level-h link in Xh

incident with a nodedst1 in Xa
h´1

and a nodesrc1 in Xb
h´1

.
If h ´ 1 “ 0 then eithersrc “ dst1 or psrc, dst1q is a link,
and otherwise a pathPa from src to dst1 can be recursively
computed inXa

h´1
. This same method provides a pathPb from

src1 to dst in Xb
h´1

. A dimensional routing algorithmonX is
one which computes paths of the formPa ` pdst1, src1q `Pb,
between any source-destination pair of nodes in a member of
X , and is denotedDRX . A dimensional routeis one that can
be computed by a dimensional routing algorithm.

Remarkably (and, perhaps, unfortunately), there are topolo-
gies and source-destination pairs for which no dimensional
routing algorithm computes a shortest path; a notable example
is the family of WK-recursive networks ([15]), for which a
shortest path algorithm is developed in [16].

1) Dimensional routing in (Generalized) DCell and
FiConn: (Generalized) DCell and FiConn are CCRDNs in
which each pair of disjoint copies of DCellk´1,n within
DCellk,n is joined by exactly one edge. As such, there is only

one choice for the edgepdst1, src1q, which is computed by the
connection rule for level-h links. Therefore, the connection
rules in Sections III-A–III-B suffice to describe dimensional
routing for these DCNs.

The dimensional routing algorithms for each of these net-
works serves as a basis for fault-tolerant and load-balancing
routing algorithmsDFR in [5], and TAR in [6], and it is
precisely the algorithm called GeneralizedDCellRouting,
given in [12]. The former two are fault and congestion-tolerant
routing algorithms that compute significantly longer paths, on
average, than the dimensional routing algorithms.

B. Proxy Routing

A general routing algorithmon a family X “ tXphq :

h “ 0, 1, . . .u of CCRDNs is of the following form. LetXh

be a copy ofXphq, for some fixedh ą 0. Let Xc0
h´1

and
X

ct´1

h´1
be disjoint copies ofXph ´ 1q in Xh, with srcc0

and dstct´1
nodes ofXc0

h´1
and X

ct´1

h´1
, respectively. Let

Xc0
h´1

, Xc1
h´1

, . . . , X
ct´1

h´1
be a sequence of copies ofXph´1q,

where:c0 “ a; ct´1 “ b; ci ‰ ci`1, for 0 ď i ă t; andXci
h´1

is disjoint fromX
cj
h´1

wheneverci ‰ cj . Let pdstci , srcci`1
q

be a link fromXci
h´1

to X
ci`1

h´1
, and letPi be paths in each

Xci
h´1

from srcci to dstci .
Every routing algorithm computes a path (we shall as-

sume that there are no repeated nodes) of the formP0 `
pdstc0 , srcc1q ` P1 ` . . . ` pdstct´2

, srcct´1
q ` Pt´1.

A general route of orderT is one in whicht ď T for each
Xphq, with h “ 0, 1, . . . and t “ T for at least one of these.
A proxy route, computed by aproxy routing algorithm, is a
general route of order3 (and a dimensional route is of order
2).

1) DFR for DCell and TAR for FiConn: While we do
not provide full details here, we sketch the proxy-routing-like
subroutine that is common toDFR ([5]) and TAR ([6]). Both
DFR andTAR are adaptive routing algorithms which compute
paths in a distributed manner, making decisions on the fly,
based on information that is local to the current location of
the packet being routed.

This subroutine computes a part of a proxy route to replace
a sub-path of the intended route. In particular, a packet may
bypass a levelm link, e, from sub-structureDa

m´1
to Db

m´1

by re-routing through a proxy,Dc
m´1, with a, b, andc distinct.

The decision to bypass is made when the packet arrives ate

(or neare, as determined by a parameter inDFR), and upon
its arrival in Db

m´1, the packet is routed directly to its final
destination.

The algorithmsDFR andTAR produce much longer thanDR,
on average. The simulations in [5] show thatDFR, although
fault-tolerant, computes paths that are over 10% longer than
the shortest paths, on average, even with as little as 2%
failures. The maximum length of a route computed by the
implementation ofTAR in [6] (Theorem 7) is2 ¨3k ´1, whilst
it is 2 ¨ 2k ´ 1 for DR (calledTOR in [6]). This is reflected
in their simulations of random and burst traffic, whereTAR
computes paths that are 15-30% longer, on average, than those
computed byDR.



V. PROXY ROUTING IN DCELL AND FICONN

We propose that proxy routing be used more broadly
than it is in DFR and TAR, and with the primary goal of
efficiently computing short paths, rather than fault-tolerance
and balancing load, by applying it in a fundamentally different
manner: firstly, we seek to compute a proxy route at the outset,
rather than building the route piecemeal; secondly, we use this
pre-planning in order to find a proxy route that offers a high
degree of savings over the dimensional route.

One reason for focusing ont ď 3 is that visiting each
X

cj
m´1

, for 0 ă j ă t ´ 1, has an associated cost, and
whenm is small, as it is when our graphs represent DCNs
with a realistically deployable number of servers, it becomes
less likely that general routes witht ą 3 will be useful.
Furthermore, the methods of searching for a “good” proxy that
we explore here may become impractical fort ą 3, because
the search space of potential (multiple) proxies is much larger.

Henceforth we useG-Cell in place of (Generalized) DCell
and FiConn whenever we make statements or arguments that
apply to all of these.

The following lower bound on the hop-length of a general
route of ordert is obvious.

Lemma V.1. Letsrc anddst be server-nodes in aG-Cellk,n,
with k ą 0, such thatsrc is in Da

k´1
anddst is in Db

k´1
, with

a ‰ b. A general route of ordert has length at least2t ´ 3.
In particular, a dimensional route has length at least1 and a
proxy route has length at least3.

The remainder of our paper is a comparative empirical
analysis of several versions ofPR, given in Algorithm 1.

Algorithm 1 PR for G-Cell returns a proxy route if it finds
one that is shorter than the corresponding dimensional route.
Require: src anddst are server-nodes in aG-Cellk,n.

function PR(src, dst,m)
if m ą 0 and both src and dst are in the same

copy ofG-Cellm´1,n then
return PRpsrc, dst,m ´ 1q

end if
Dc

m´1
Ð GPpsrc, dst,mq.

if Dc
m´1

“ null then
return DRpsrc, dstq.

else
Da

m´1
Ð the G-Cellm´1,n containingsrc.

Db
m´1 Ð the G-Cellm´1,n containingdst.

pac, caq Ð the link fromDa
m´1

to Dc
m´1

.
pcb, bcq Ð the link fromDc

m´1 to Db
m´1.

return

PRpsrc, ac,m ´ 1q ` pac, caq`
PRpca, cb,m ´ 1q ` pcb, bcq`
PRpbc, dst,m ´ 1q.

(1)

end if
end function

A. GP: GetProxy

GP is the subroutine ofPR that computes the proxy used
in Expression (1), if a proxy is to be used. That is,GP
returns either a proxy sub-G-Cell, Dc

m´1
, or it returns

null. Obviously, the performance ofPR (and its success in
producing a shorter route thanDR) depends on the proxy
returned byGP and howGP is implemented.

Ideally GP would instantly compute a unique proxy sub-G-
Cell Dc

m´1
, if it exists, such that the proxy route through

Dc
m´1

is the shortest one possible. Such an algorithm is
unknown to us.

Our strategy, however, is widely applicable, as regards
different connection rules and path diversity. Every version of
GP that we explore is of the following form. Letpsrc, dst,mq
be the inputs toGP. If m “ 0, GP outputsnull; otherwise,
let m ą 0, so thatsrc is in Da

m´1
and dst is in Db

m´1
,

for somea not equal tob. GP computes a set ofcandidate
proxies, tDc0

m´1
, Dc1

m´1
, . . . , D

cR´1

m´1
u (taken from the set of all

potential proxyG-Cellm´1,ns), and then finds aci for which
the path in Expression (1) is shortest (replacingc by ci), by
constructing the paths explicitly. If the set of candidate proxies
is empty, thenGP returnsnull.

The key observation is that we must minimise the number of
candidateDci

m´1
s in order to reduce the search space. Our goal

is to identify and evaluate general techniques towards thisend,
and not to catalogue all of the ways to tuneGP. Some more
complicated techniques are avoided because there is no room
to discuss them in this paper; for example when routing in aG-
Cellk,n we only applyPR at the top level, whereas slightly
shorter paths can be obtained, on average, by using proxy
routes in the recursive calls toPR at Expression (1). Other
techniques are avoided because they are evidently unprofitable;
for example, a much larger search is encountered ifGP
computes proxy paths for each proxy candidate. We describe
three strategies for generating the candidate proxies below.

1) GP_E as an exhaustive search: A proxy
DCellm´1,n Dc

m´1
can be obtained, naı̈vely, ifGP is

implemented as an exhaustive search; that is, we perform
the steps described in Section V-A for everyc in
t0, 1, . . . , tm´1uzta, bu. Measuring the length of each
proxy route has an associated cost, butGP_E provides the
optimal proxy route with top-level proxies only against which
to test the two strategies given below.

2) GP_I as an intelligent search:We propose a general
method for reducing the proxy search space, based on the
labels ofsrc anddst. In particular, we look at proxiesDc

k´1

whose relationship toDa
k´1

andDb
k´1

is such that at least one
of the routes computed by the recursive calls toPR is confined
to a G-Cellk´2,n (see Fig. 1).

We first give some notation. Henceforth, letDk be an
instance ofG-Cellk,n, and letDR be the dimensional routing
algorithm onG-Cell. For clarity of exposition we describe
a method for selecting a proxyDc

2
when routing in aG-

Cellk,n, with k “ 3, but the notation extends to allk ą 1.
Let src and dst be nodes in aG-Cell3,n, with src “

a3a2a1a0 and dst “ b3b2b1b0, so thatuid3psrcq “ t2a3 `



src

ac ca

cb bc

dst

Da
k´1

(proxy)Dc
k´1

Db
k´1

G-Cellh,ns

ab ba

G-Cellk,n

Fig. 1. Strategy forGP_I, whereh “ k ´ 2, and forGP_0 whereh “ 0:
selectc such that at least one sub-path is contained in aG-Cellh,n. Solid
arcs represent links, and dashed or dotted curves representpaths.

t1a2 ` t0a1 ` a0 and uid3pdstq “ t2b3 ` t1b2 ` t0b1 ` b0.
Let a3 ‰ b3, and note that without loss of generality, we may
assumea3 ă b3.

Our convention for denoting the link between two sub-G-
Cells is as follows: letDα

2
andDβ

2
beG-Cell2,ns and recall

that we may writerα, uid2pvqs for a nodev “ αv2v1v0 in Dα
2 ,

whereuid2pvq “ t1v2 ` t0v1 ` v0. Let prα, αβs, rβ, βαsq be
the link from Dα

2
to D

β
2

, with αβ “ α
β
2
α
β
1
α
β
0
, and similarly

for βα “ βα
2
βα
1
βα
0

.
GP_I builds its set of proxy candidates on the condition

that the source and destination are not near to each other. Let
a “ a3 and let b “ b3. GP_I outputsnull if ra3, abs is a
server-node ofDa2

1
or rb3, bas is a server-node ofDb2

1
. That

is, whena2 “ ab
2

andb2 “ ba
2
.

Provided the above condition is avoided, we then select
a proxy Dc

2
to be a candidate, whenc is such that one of

the three sub-paths,PRpsrc, ra, acsq or PRprc, cas, rc, cbsq or
PRprb, bcs, dstq, is short; specifically, if at least one of the three
sub-paths is contained inside a singleG-Cell1,n. That is,c
satisfies at least one of the following three properties (in a
non-trivial way; see discussion below):

src and ra, acs are in the sameD1 : a2 “ ac2 (2)

rc, cas and rc, cbs are in the sameD1 : ca2 “ cb2 (3)

rb, bcs anddst are in the sameD1 : b2 “ bc
2
, (4)

whereac
2

“ ta
c{t1u and similarly forca

2
andbc

2
. Clearly for any

G-Cell we can verify whether a proxy candidateDc
2 satisfies

one (or more) of the Properties (2)–(4), since the numerators
are computed directly from the various connection rules of
eachG-Cell. However, we wish to compute the set of values
c which satisfy Properties (2)–(4) in constant time.

The floor function yields thattac{t1u “ a2 if, and only if,
a2t1 ď ac ă pa2 ` 1qt1. It happens that for our connection
rules (see Sections III),ac is piecewise linear (as a function of
c), and similarly forbc, ca, andcb, with exactly three cases:
namely, c3 ă a3 ă b3; a3 ă c3 ă b3; and, a3 ă b3 ă
c3 (where the caseb3 ă a3 is treated by swappingsrc and

dst). As a result of this, the set of valuesc which satisfy
Properties (2)–(4) can be computed very efficiently for our
connection rules as the union of, at most, a constant number
of intervals (see Table I). Note that for the connection rules
explored in this paper Property (3) is redundant because it
does not narrow the search space; for certain pairspa, bq, all
c satisfy Property (3), while noc satisfies it for other pairs.

For the casek “ 3 and the connection rules for DCell,β-
DCell, and FiConn,GP_I considers a small set with around
t1 or 2t1 candidate proxies. More generally, a close inspection
of Properties (2) and (4) reveals that they each yield exactly
t2 (possibly disjoint) candidate proxies for Generalized DCell
and at mostt1 candidate proxies for FiConn. Due to space
constraints we omit a full discussion of this, but we remark that
a better understanding of this aspect of proxy routes may shed
light on the sophisticated relationship between the connection
rule and various distance metrics onG-Cell.

3) GP_0 level-0 proxy search: We note that for aG-
Cellk,n, with k “ 2, the proxy candidatesDc

1
computed by

GP_I are simply those for whichac is in the same copy ofG-
Cell0,n assrc or bc is in the same copy ofG-Cell0,n asdst
or ca andcb are in the same copy ofG-Cell0,n. GP_0 mimics
GP_I, but computes the set of proxies that satisfy at least one
of the aforementioned properties, in place of Properties (2)–
(4). It is applied only toG-Cellk,n with k ą 2.

4) Implementation notes:The savings in hop-length and the
benefit to load-balancing come at the cost of searching proxy
candidates, whose number is given byp̄ in Fig. 3. For each
proxy candidatec, the lengths of sub-pathsPRpsrc, ra, acsq or
PRprc, cas, rc, cbsq orPRprb, bcs, dstq must be computed; hence
the reason for devisingGP_I and GP_0 with the object of
minimisingc. OnceGP* is “tuned” to suit a certain application
and network size, however, there are several choices for how
it can be implemented. How exactly this is done depends on
the size of the network and the nature of the application, but
we shall remind ourselves of some of the available tools.

The most naı̈ve method is to compute the route at the
source-node, by computing the candidate paths explicitly,and
measuring their length, however, other methods such as table
look-ups must to be considered.
GP_I, in particular, leverages the fact thatG-Cellk,ns

grow double-exponentially ink in order to find proxy candi-
datesDc

k´1
that are linked to the same copy ofG-Cellk´2,n

as src or dst. This has a secondary benefit; namely,G-
Cellk´2,n (and evenG-Cellk´1,n) is small, relative toG-
Cellk,n, and this makes table look-ups feasible for storing
the lengths of paths within each copy ofG-Cellk´2,n, and
possibly within each copy ofG-Cellk´1,n. The whole table
must be replicated at each server-node to be used this way,
but this is still much smaller than storing everypsrc, dstq-pair.
For example, there are24, 4922 “ 599, 858, 064 such pairs in
DCell3,3, andg3t22 “ 157 ˚ 1562 “ 3, 820, 752 pairs confined
to sub-DCell2,3s, andg3g2t21 “ 157˚13˚122 “ 293, 904 pairs
confined to sub-DCell1,3s (see Table II).

In addition to table look-ups, we also leverage the fact
that paths are computed for flows, rather than packets, and in



route z c c3 ă a3 ă b3 a3 ă c3 ă b3 a3 ă b3 ă c3
a3a2a1a0 to ra, acs tc3{t1u“a2 tc3´1{t1u“a2 tc3´1{t1u“a2

rc, cas to rc, cbs ta3´1{t1u“tb3´1{t1u ta3{t1u“tb3´1{t1u ta3{t1u“tb3{t1u
rb, bcs to b3b2b1b0 tc3{t1u“b2 tc3{t1u“b2 tc3´1{t1u“b2

TABLE I
PROPERTIES(2)–(4)APPLIED TO DCELL3,n .

certain applications may be re-used for multiple flows amonga
set of server-nodes that is small, relative to the entire network.
In addition, each time we compute a proxy path, we may
identify multiple viable proxies (the context of the application
and network size defines what this means), and hence, path
diversity comes at no extra cost. We may choose from several
paths at random, send a probe packet to explore the loads and
possible faults on each path before sending a larger flow, or
remember proxies for common and recent destinations.

VI. EXPERIMENTS

A. Experimental setup

We compare up to five different routing algorithms for
variousG-Cells. They are:DR; shortest paths, computed by
a breadth first search (BFS); PR with GP_E; PR with GP_I;
and, PR with GP_0. Each routing algorithm (for a given
DCN) is tested with the same10, 000 input pairs,psrc, dstq.
The estimated standard error of the mean is computed by
sx̄{?

trials, wheresx̄ is the sample standard deviation and
trials “ 10, 000. For our purposes of surveying the effects
of different instances ofGP, this value is negligible, and we
therefore omit error bars in Figs. 2–3.

For each algorithm we plot100px̄DR ´ x̄q{x̄DR in Fig. 2,
where x̄ is the mean hop-length in the sample of computed
routes. In other words, we plot the percent savings in hop-
length overDR. Note thatGP_0 is implicitly plotted fork “ 2

because it is equivalent toGP_I in this case.
We also plot, in Fig. 3, the mean number of proxies consid-

ered byGP_I andGP_0 denotedp̄_I and p̄_0, respectively,
and the mean number of routesPRpsrc, dstq found to be no
longer thanDRpsrc, dstq, denotedr̄_I and r̄_0, respectively.
Note thatp̄_I “ p̄_0 for k “ 2 and, as such, this value is
implicitly plotted for k “ 2 in Fig. 3.

The two histograms in Fig. 4 show the proportion of links
with a given load (number of flows) inβ-DCell3,3, under1
million one-to-one communications, generated uniformly at
random; one histogram is forDR and the other one is for
PR with GP_I.

The networks we tested are given with their basic properties
in Table II, and the details of each version ofGP˚ are given
in Section V-A.

B. Evaluation

The plots in Fig. 2 show that for manyG-Cell topolo-
gies, significant savings in hop-length can be made over
dimensional routes by using proxy routes, depending on the
connection rule, network size, and the parametersk andn. It is
immediate thatGP_I andGP_0 retain some good proxies, in

relation toGP_E, which tries all of them. Furthermore,GP_E
is comparable toBFS. Fig. 3 tells us how much searching each
of the methodsGP_I andGP_0 must do, and how much path
diversity they create, on average.

Note that the means plotted in Figs. 2–3 hide the success
rate ofPR in finding a good proxy path; as a typical example,
PRpsrc, dstq is shorter thanDRpsrc, dstq for approximately
30% of input pairs when usingGP_I in DCell3,6.

We highlight (and explain, where possible) some of the
trends observable in the plot of Fig. 2: In general, proxy
routes are more effective inβ-DCellk,˚ than in DCellk,˚ and
FiConnk,˚ of comparable size, with fixedk, however, even
FiConnk,˚ still sees up to a6–7% improvement.

The apparent weakness ofPR in FiConn is partly explained
by the fact that for givenk and n, there are fewer proxy
FiConnm´1,ns to consider at levelm. On the other hand
we find thatGP_0 considers fewer thang1 “ 6 proxies for
FiConn3,10, while it considers more thang1 “ 7 proxies for
DCell3,6 andβ-DCell3,6. In addition, there are an equal num-
ber of potential proxy candidates inβ-DCellk,n and DCellk,n
in general, yetGP_E, GP_I, andGP_0 invariably consider
more proxy candidates for DCellk,n, only to produce proxy
paths that perform better inβ-DCellk,n. We must conclude
that the connection rule and topology (FiConn vs Generalised
DCell) profoundly impacts the performance of our proxy
routing algorithms. This is somewhat unsurprising, however,
since the connection rule and topology also affect the shortest
paths; for example, the mean distance inβ-DCell3,3 is far
shorter than in DCell3,3 (see also [12]).

Proxy paths in larger networks (when increasingn) are
worse than those in smaller networks, for each DCN with fixed
k; for example DCell3,3 and DCell3,6, and also FiConn3,10 and
FiConn3,16.

A related trend appears to be that for each family of
DCNs, proxy-path-savings increase withk, in every version
of GP*; for example, FiConn3,10 and FiConn4,6. The main
reason for this is that the performance ofBFS, relative to
DR, also increases withk, thus providing a greater margin for
improvement by usingPR.

The difference betweenGP_I andGP_0 grows withk (note
that for k “ 2, they are the same, and henceGP_0 is not
plotted for k “ 2). This is becauseGP_I looks for sub-
paths within a copy ofG-Cellk´2,n, whereasGP_0 looks
for sub-paths within a copy ofG-Cell0,n, and as the gap
between0 and k ´ 2 increases,GP_I considers a larger set
of proxy candidates. Similarly, we explain how the difference
betweenGP_E and GP_I grows with k, but here it is the
double exponential growth ofG-Cell that contributes extra



DCN N N{n |E| d g1 g2 g3
F2,36 117648 3268 161766 7 19 172

F2,48 361200 7525 496650 7 25 301

F3,10 116160 11616 166980 15 6 16 121

F3,16 3553776 222111 5108553 15 9 37 667

F4,6 857472 142912 1259412 31 4 7 22

F4,8 37970240 4746280 55768790 31 5 11 56

D2,18 117306 6517 234612 7 19 343

D2,43 3581556 83292 7163112 7 44 1893

D3,3 24492 8164 61230 15 4 13 157

D3,6 3263442 543907 8158605 15 7 43 1807

TABLE II
PROPERTIES OF THEDCNS IN OUR EXPERIMENTS. WE USEF TO ABBREVIATE FICONN, AND D TO ABBREVIATE (β-)DCELL.

proxy candidates toGP_E, since the search space forGP_I
is proportional togk´1, whereas,GP_E considers exactlygk
proxy candidates (see Table II). Most notably, however, is the
fact that forG-Cell2,˚, the performance ofGP_E is almost
identical to the performance ofGP_I; whereas DCell2,43 has
g1 “ 44, andg2 “ 1893, our results show that optimal proxies
are nevertheless considered byGP_I (and hence,GP_0).

Although GP* is effective in computing shorter paths and
comes fairly close toBFS (typically over 80% of the savings
are obtained withPR), we can confirm that the shortest paths
for these topologies are not, in general, a proxy route of the
form we are considering in this paper as sometimes (e.g. (β-
)DCell3,3) this difference is considerable. This was expected,
and provides motivation to explore novel general routing
algorithms of order3 and higher in future work.
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Fig. 2. Percent mean hop-length savings overDR.

Another benefit of proxy routing is that it also yields some
path diversity which can be exploited for load balancing and
fault-tolerance purposes. This can be seen in Fig. 3, where
r̄ is the number of distinct (but not necessarily disjoint)
paths considered byPRpsrc, dstq that are no longer than
DRpsrc, dstq. Additional data must be studied, however, to
determine exactly how̄r affects the load-balancing properties
of the network.

We computed histograms that show the proportion of links
with a given load, under1 million one-to-one communications,
plotted in Fig. 4. The histogram forGP_I is shifted left
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Fig. 3. Mean number of candidate proxiesp̄, and mean number of routes
no longer thanDRpsrc, dstq, r̄.

relative to the histogram forDR, meaning that many links carry
less load than in the same scenario forDR. In addition, the
maximum load is reduced (in our sample), suggesting manyG-
Cells have a higher aggregate bottleneck throughput (ABT,
introduced in [10], and closely related to the most heavily
loaded link in the network) withPR than withDR.

Note that our primary focus is to reduce hop-length and
implementation overheads ofGP, and that we could increase
path diversity even more if we were willing to route on longer
paths thanDRpsrc, dstq; we do not do this here, but will
explore this possibility in future research.

C. Significance

Various aspects of routing in a DCN depend heavily on the
availability of short one-to-one paths. For example, minimising
latency and energy usage, and building fault-tolerant and load
balancing routing algorithms.

While there are inherent trade-offs in computing short
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proxy routes, there are also multiple benefits: using shorter
one-to-one paths in a DCN reduces the average latency of
communications, the aggregate load, and thereby the energy
usage; and, we obtain a non-deterministic path diversity atno
extra cost while computing these paths, which can be used both
adaptively or randomly to deal with faults and congestion, in
addition to forming the building blocks of other fault-tolerant
and load balancing routing algorithms (such as the wayDR is
used inDFR and TAR). As such, proxy routes are not only
a good candidate for replacingDR in (Generalized) DCell
and FiConn, they are also effective at performing some of
the functions of the known adaptive routing algorithms for
these networks, namelyDFR andTAR, while simultaneously
producing short paths.

VII. C ONCLUSIONS ANDFUTURE RESEARCH

In this paper we have shown that the topologies of the DCNs
Generalized DCell and FiConn are completely connected
recursively-defined networks. As such, we characterised all
possible routes (with no repeated nodes) on these networks
and then proposed the family of routing algorithmsPR to
compute proxy routes; that is, general routes of order 3. We
detailed three instances of this family,GP_E, GP_I, and
GP_0, where each one considers a number of candidate proxy
sub-structures, and selects the optimal proxy to route through.
We performed an analytical and empirical comparison between
these, shortest paths, and the previously known dimensional
routes, as regards mean hop-length; The main results of our
experiments are that significant savings in hop-length can be
made over dimensional routes by using proxy routes, even
with only a relatively small set of candidate proxies, and that
the amount of savings depends on connection rule, network
size, and the parametersk andn.

In future research we will perform a deeper analysis of
the DCNs in question, with two major goals. The first one,
motivated by the fact thatGP_I sometimes discards the
optimal proxy candidate, calls for a closer inspection of the
topologies. We want to both find the optimal proxy candidates,
and reduce the size of the search space.

Furthermore, whereas this paper is focused on dimensional
and proxy routing, there may be cases where no shortest path
between two server-nodes is a dimensional route or a proxy
route. Note that whilst a given shortest path may be found not
to be a dimensional or proxy route, this does not preclude other
paths with the same terminal nodes from being dimensional
or proxy routes. A deeper mathematical analysis of the DCNs
in question may shed light on (1) whether or not higher-order
routing algorithms are needed, and (2) how to compute optimal
routes of this type efficiently.
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