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Abstract. Motivated by recent results of Mathieson and Szeider (J.
Comput. Syst. Sci. 78(1): 179–191, 2012), we study two graph modi-
fication problems where the goal is to obtain a graph whose vertices
satisfy certain degree constraints. The Regular Contraction prob-
lem takes as input a graph G and two integers d and k, and the task
is to decide whether G can be modified into a d-regular graph using at
most k edge contractions. The Bounded Degree Contraction prob-
lem is defined similarly, but here the objective is to modify G into a
graph with maximum degree at most d. We observe that both problems
are fixed-parameter tractable when parameterized jointly by k and d.
We show that when only k is chosen as the parameter, Regular Con-
traction becomes W[1]-hard, while Bounded Degree Contraction
becomes W[2]-hard even when restricted to split graphs. We also prove
both problems to be NP-complete for any fixed d ≥ 2. On the positive
side, we show that the problem of deciding whether a graph can be modi-
fied into a cycle using at most k edge contractions, which is equivalent to
Regular Contraction when d = 2, admits an O(k) vertex kernel. This
complements recent results stating that the same holds when the target
is a path, but that the problem admits no polynomial kernel when the
target is a tree, unless NP ⊆ coNP/poly (Heggernes et al., IPEC 2011).

1 Introduction

Graph modification problems play an important role in algorithmic graph theory
due to the fact that they naturally appear in numerous practical and theoretical
settings. Typically, a graph modification problem takes as input a graph G and
an integer k, and the task is to decide whether a graph with certain desirable
structural properties can be obtained from G by applying at most k graph oper-
ations, such as vertex deletions, edge deletions, edge additions, or a combination
of these. The problems Vertex Cover, Feedback Vertex Set, Minimum
Fill-In and Cluster Editing are just a few famous examples of problems
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that fall into this framework. Graph modification problems have received a huge
amount of interest in the literature for many decades, and due to the fact that
the vast majority of such problems turn out to be NP-hard [11, 15], the area has
also been intensively studied from a parameterized complexity point of view.

Moser and Thilikos [14] studied the parameterized complexity of the problem
of deciding, given a graph G and an integer k, whether there is a subset of at
most k vertices in G whose deletion yields an r-regular graph, where r is a fixed
constant. They showed that, for every value of r, this problem is fixed-parameter
tractable when parameterized by k, and admits a kernel of size O(kr(k+r)2). On
the other hand, they showed that the problem becomes W[1]-hard for every fixed
r ≥ 0 with respect to the dual parameter |V (G)|−k. Mathieson and Szeider [13]
showed that the aforementioned positive result by Moser and Thilikos crucially
depends on the fact that r is a fixed constant, as they proved the problem to
be W[1]-hard when r is given as part of the input. This result by Mathieson
and Szeider is a particular case of a much more general result in [13] on graph
modification problems involving degree constraints. We refer to [13] for more
details, and only mention here that the Classification Theorem in [13] shows that
the behavior of the investigated graph modification problems heavily depends
on the graph operations that are allowed.

Motivated by the results of Moser and Thilikos [14] and Mathieson and Szei-
der [13], we study the parameterized complexity of two graph modification prob-
lems involving degree constraints when edge contraction is the only allowed op-
eration. The parameterized study of graph modification problems with respect
to this operation has only recently been initiated, but has already proved to be
very fruitful [7–10]. In general, for every graph class H, the H-Contraction
problem takes as input a graph G and an integer k, and asks whether there
exists a graph H ∈ H such that G is k-contractible to H, i.e., such that H can
be obtained from G by contracting at most k edges. A general result by Asano
and Hirata [1] shows that this problem is NP-complete for many natural graph
classes H. On the positive side, when parameterized by k, the problem is known
to be fixed-parameter tractable when H is the class of paths or trees [9], bipartite
graphs [10, 12], or planar graphs [7]. Interestingly, the problem admits a linear
vertex kernel when H is the class of paths, but does not admit a polynomial
kernel when H is the class of trees, unless NP ⊆ coNP/poly [9].

Before we formally define the two problems studied in this paper and state
our results, let us mention one more recent paper that formed a direct motiva-
tion for this paper. For any integer d ≥ 1, let H≥d denote the class of graphs
with minimum degree at least d. Golovach et al. [8] studied the Degree Con-
tractibility problem, which takes as input a graph G and two integers d and
k, and asks whether there exists a graph H ∈ H≥d such that G is k-contractible
to H. They proved that this problem is fixed-parameter tractable when parame-
terized jointly by d and k, but becomes W[1]-hard when only k is the parameter.
They also showed that the problem is para-NP-complete when parameterized by
d by proving the problem to be NP-complete for every fixed value of d ≥ 14.
These results by Golovach et al. [8] raise the question what happens to the com-
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plexity of the problem when the objective is not to increase the minimum degree
of the input graph, but to decrease the maximum degree instead.

Our Contribution. For any integer d ≥ 1, let H≤d denote the class of graphs
that have maximum degree at most d, and let H=d denote the class of d-regular
graphs. In this paper, we study the complexity of different parameterizations of
the following two decision problems:

Bounded Degree Contraction
Instance: A graph G and two integers d and k.
Question: Is there a graph H ∈ H≤d such that G is k-contractible to H?

Regular Contraction
Instance: A graph G and two integers d and k.
Question: Is there a graph H ∈ H=d such that G is k-contractible to H?

Throughout the paper, we will use n and m to denote the number of vertices
and edges, respectively, of the input graph G. Moreover, since edge contractions
leave the number of connected components of a graph unchanged, we assume
throughout the paper that the input graph G in each of our problems is con-
nected.

In Section 2, we first observe that both problems can be solved in O((d +
k)2k · (n+m)) time using a simple branching algorithm. This implies that both
problems are fixed-parameter tractable when parameterized jointly by d and k,
and that both problems are in XP when parameterized by k only. This naturally
raises the following two questions:

1. Are the two problems fixed-parameter tractable when parameterized by k?
2. Are the two problems in XP when parameterized by d?

In the remainder of Section 2, we provide strong evidence that the answer
to both these questions is “no”. We first show that Regular Contraction
is W[1]-hard when parameterized by k, before proving that Bounded Degree
Contraction is W[2]-hard with the same parameter, even when restricted to
the class of split graphs. This implies that neither of the two problems is in
FPT, assuming that FPT 6= W[1] and FPT 6= W[2], respectively. The negative
answer to question 2, this time under the assumption that P 6= NP, is given in
Theorem 3, where we show that both problems are NP-complete for every fixed
value of d ≥ 2, and hence para-NP-complete when parameterized by d. Note that
both problems are trivially solvable in polynomial time when d = 1. The results
of Section 2 are summarized in Table 1.

To complement our hardness results, we show in Section 3 that Regular
Contraction admits a kernel with at most 6k+6 vertices when d = 2. Equiva-
lently, we show that the H-Contraction problem admits a linear vertex kernel
whenH is the class of cycles. We point out that this problem is para-NP-complete
with respect to the dual parameter |V (G)| − k, i.e., when parameterized by the
length of the obtained cycle, since the problem of deciding whether or not a
graph can be contracted to the cycle C` is NP-complete for every fixed ` ≥ 4 [2].
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Parameter Regular Contraction Bounded Degree Contraction

d, k FPT FPT

k W[1]-hard W[2]-hard on split graphs

d para-NP-complete para-NP-complete

Table 1. An overview of the results presented in Section 2.

Our kernelization result complements the aforementioned known results stat-
ing that H-Contraction admits a linear vertex kernel when H is the class
of paths, but admits no polynomial kernel when H is the class of trees, unless
NP ⊆ coNP/poly [9].

Preliminaries. All graphs considered in this paper are finite, undirected and
simple. We refer to the textbook by Diestel [4] for graph terminology and nota-
tion not defined below. For a thorough background on parameterized complexity,
we refer to the monographs by Downey and Fellows [5].

Let G = (V,E) be a graph and let U be a subset of V . We write G[U ] to
denote the subgraph of G induced by U . We write G−U = G[V \U ], or simply
G − u if U = {u}. We say that two disjoint subsets U ⊆ V and W ⊆ V are
adjacent if there exist two vertices u ∈ U and w ∈ W such that uw ∈ E. The
contraction of edge uv in G removes u and v from G, and replaces them by a
new vertex made adjacent to precisely those vertices that were adjacent to u or
v in G. Instead of speaking of the contraction of edge uv, we sometimes say that
a vertex u is contracted onto v, in which case we use v to denote the new vertex
resulting from the contraction. For a set S ⊆ E, we write G/S to denote the
graph obtained from G by repeatedly contracting an edge from S until no such
edge remains. Note that, by definition, edge contractions create neither self-loops
nor multiple edges.

Let H be a graph. We say that H is a contraction of G if H can be obtained
from G by a sequence of edge contractions. We say that G is k-contractible to
H if H can be obtained from G by at most k edge contractions. An H-witness
structure W is a partition of V (G) into |V (H)| nonempty sets W (x), one for
each x ∈ V (H), called H-witness sets, such that each W (x) induces a connected
subgraph of G, and for all x, y ∈ V (H) with x 6= y, the sets W (x) and W (y)
are adjacent in G if and only if x and y are adjacent in H. Clearly, H is a
contraction of G if and only if G has an H-witness structure; H can be obtained
by contracting each witness set into a single vertex.

2 Contracting to Graphs with Degree Constraints

We start by observing that the problems Bounded Degree Contraction
and Regular Contraction are FPT when parameterized jointly by k and d.

Theorem 1. The problems Bounded Degree Contraction and Regular
Contraction can be solved in time O((d+ k)2k · (n+m)).
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Proof. We first present an algorithm for Bounded Degree Contraction,
and then describe how it can be modified to solve Regular Contraction in
the same running time.

Let (G, d, k) be an instance of Bounded Degree Contraction. We first
check if G has a vertex of degree at least d + k + 1. If so, then (G, d, k) is a
trivial no-instance, since the contraction of any edge in G decreases the degree
of each vertex in G by at most 1. Hence we output “no” in this case. Suppose
every vertex in G has degree at most d + k, but G has a vertex v such that
dG(v) ≥ d+ 1. In order to contract G to a graph of maximum degree at most d,
we must either contract v onto one of its neighbors, or contract all the edges of a
path between two of the neighbors of v. In either case, we must contract an edge
e incident with a neighbor of v. Since ∆(G) ≤ d+ k, there are at most (d+ k)2

such edges e. We branch on each of them, calling our algorithm recursively for
G′ = G/e with parameter k′ = k − 1. Since the parameter decreases by 1 at
every step, this branching algorithm runs in time O((d+ k)2k · (n+m)).

We can also obtain an algorithm for Regular Contraction with same
running time by replacing the branching rule with the following one: if there is
a vertex v with dG(v) 6= d, then we branch over all the edges e that are incident
with a vertex in NG(v). For each branch, we contract the edge e and decrease
k by 1. The correctness of this branching rule follows from the observation that
if we contract any edge e′ that is not incident with a neighbor of v, then the
degree of v before and after the contraction is the same. ut

We now show that Regular Contraction becomes W[1]-hard when only
k is chosen as the parameter. In the proof of Theorem 2 below, we will reduce
from the following problem:

Regular Multicolored Clique
Instance: A regular graph G, an integer k, and a partition X1, . . . , Xk of

V (G) into k independent sets of size p each.
Question: Does G have a clique K ⊆ V (G) such that |K ∩Xi| = 1

for every i ∈ {1, . . . , k}?

It is well-known that the Clique problem, asking whether a given graph has a
clique of size k, is W[1]-hard when parameterized by k [5]. Cai [3] proved that this
remains true on regular graphs. Using this fact and the standard parameterized
reduction from Clique to Multicolored Clique due to Fellows et al. [6], we
obtain the following result.

Lemma 1. (F)3 The Regular Multicolored Clique problem is W[1]-hard
when parameterized by k for d-regular graphs when k < d < p.

We now use the above lemma to prove our first hardness result.

Theorem 2. The Regular Contraction problem is W[1]-hard when param-
eterized by k.

3 Proofs marked with a star have been omitted due to page restrictions.
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Proof. We reduce from the restricted version of the Regular Multicolored
Clique problem described in Lemma 1. Let (G, k,X1, . . . , Xk) be an instance of
this problem where G is a d-regular graph, p = |X1| = . . . = |Xk|, and k < d < p.
We construct an instance (G′, d′, k) of Regular Contraction as follows:

– construct a copy of G with the corresponding partition X1, . . . , Xk of the
vertex set;

– for each i ∈ {1, . . . , k}, construct a vertex xi and then make the set Xi∪{xi}
into a clique by adding edges;

– make the set {x1, . . . , xk} into a clique by adding edges.

Let G′ denote the obtained graph, and let d′ = d+ p− 1.
Suppose that G has a clique K = {y1, . . . , yk} such that yi ∈ Xi for i ∈

{1, . . . , k}. It is straightforward to verify that contracting the edges xiyi for
i ∈ {1, . . . , k} in G′ results in a d′-regular graph.

Assume now that (G′, d′, k) is a YES-instance of Regular Contraction,
i.e., there is a set S of at most k edges such that G′/S is a d′-regular graph.
Notice that each xi in G′ has degree p + k − 1 < p + d − 1 = d′. Therefore, for
each i ∈ {1, . . . , k}, S contains at least one edge incident to xi. Suppose that S
contains an edge xixj for 1 ≤ i < j ≤ k. Let G′′ be the graph obtained from G′

by the contraction of xixj , and denote by z the vertex obtained from xi, xj . The
degree of z in G′′ is 2p+k−2 > p+d+k−2 = d′+k−1. It means that we have
to contract at least k edges to obtain a vertex of degree d′ from z. It contradicts
the assumption that |S| ≤ k. Hence, for each i ∈ {1, . . . , k}, S contains an edge
xiyi for yi ∈ Xi. Since |S| ≤ k, S = {x1y1, . . . , xkyk}. We claim that {y1, . . . , yk}
is a clique in G. To see this, assume that some yi, yj are not adjacent in G. Then
yi, yj are not adjacent in G′ but are adjacent in G′/S, and the degree of the
vertex obtained from xi and yi in G′/S is at least d+ p > d′. This contradiction
to the assumption that G′/S is d′-regular completes the proof of Theorem 2. ut

We expect that the arguments in the proof of Theorem 2 can also be used to
show that Bounded Degree Contraction is W[1]-hard when parameterized
by k. However, we obtain a stronger result below by proving that Bounded
Degree Contraction is W[2]-hard when parameterized by k, even when re-
stricted to split graphs. This result will be a corollary of the following lemma.

Lemma 2. The problem of deciding whether the maximum degree of a split
graph can be reduced by at least 1 using at most k edge contractions is W[2]-
hard when parameterized by k.

Proof. We give a reduction from the problem Red-Blue Dominating Set,
which takes as input a bipartite graph G = (R ∪ B,E) and an integer k, and
asks whether there exists a red-blue dominating set of size at most k, i.e., a
subset D ⊆ B of at most k vertices such that every vertex in R has at least one
neighbor in D. This problem, which is equivalent to Set Cover and Hitting
Set, is well-known to be W[2]-complete when parameterized by k [5].

Let (G, k) be an instance of Red-Blue Dominating Set, where G = (R ∪
B,E) is a bipartite graph with partition classes R and B. We assume that every
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vertex in G has degree at least 1. We create a split graph G′ from G by making
the vertices of R pairwise adjacent, and by adding, for each vertex u ∈ R,
(∆(G) − dG(u)) + k + 2 new vertices that are made adjacent to u only. Let
B′ = V (G′) \ (R∪B) be the set of all vertices of degree 1 that were added to G
this way. Clearly, G′ is a split graph, since its vertex set can be partitioned into
the clique R and the independent set B ∪B′. Observe that each vertex in R has
degree ∆ := ∆(G′) > k + 2.

We claim that G has a red-blue dominating set of size k if and only if G′ can
be contracted to a split graph of maximum degree at most ∆− 1 using at most
k edge contractions.

First, suppose there is a red-blue dominating set D ⊆ B such that |D| ≤ k.
For every v ∈ D, we choose an arbitrary neighbor w of v in R and contract
v onto w. Note that contracting v onto w is equivalent to deleting v from the
graph due to the fact that NG′ [v] ⊆ NG′ [w]. Since every vertex in R is adjacent
to at least one vertex in D, these |D| ≤ k edge contractions decrease the degree
of every vertex in R by at least 1. Since the degree of each vertex in B ∪ B′ in
G′ was already at most ∆(G) ≤ ∆−1, the obtained graph has maximum degree
at most ∆− 1.

For the reverse direction, suppose there exists a set S ⊆ E(G′) of at most k
edges such that G′/S has maximum degree at most ∆−1. We claim that S does
not contain any edge whose endpoints both belong to R. To see this, observe that
contracting any such edge would create a vertex of degree at least ∆+k+1, and
the degree of such a vertex cannot be decreased to ∆ by contracting at most k−1
other edges. Suppose S contains an edge uv such that u ∈ R and v ∈ B′, and let
w be an arbitrary neighbor of u in B. Note that contracting v onto u decreases
the degree of u by 1 but leaves the degrees of all other vertices in R unchanged,
whereas contracting w onto u decreases the degree of every neighbor of w in R,
and of u in particular. Hence we may assume, without loss of generality, that
every edge in S is incident with one vertex of R and one vertex of B′. Since the
degree of every vertex in R decreases by at least 1 when we contract the edges in
S, every vertex in R must be incident with at least one edge in S. This implies
that D := V (S) ∩B is a red-blue dominating set of G, where V (S) denotes the
set of endpoints of the edges in S. The observation that |D| ≤ |S| ≤ k completes
the proof. ut

Since an instance (G, k) of the problem defined in Lemma 2 is a yes-instance
if and only if (G,∆(G)−1, k) is a yes-instance of Bounded Degree Contrac-
tion, we immediately obtain the following result.

Corollary 1. The Bounded Degree Contraction problem is W[2]-hard on
split graphs when parameterized by k.

To conclude this section, we also consider the complexity of our two problems
when we take only d to be the parameter. The following result shows that both
our problems are para-NP-complete with respect to this parameter. Note that
both problems can trivially be solved in polynomial time when d = 1.
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Theorem 3. (F) The problems Regular Contraction and Bounded De-
gree Contraction are NP-complete for any fixed d ≥ 2.

3 A Linear Vertex Kernel

In this section, we show that the problem Regular Contraction admits a
kernel with at most 6k+6 vertices in case d = 2. Since this problem is equivalent
to the H-Contraction problem when H is the class of cycles, we will refer to
the problem as Cycle Contraction throughout this section.

We first introduce some additional terminology. Let G and H be two graphs,
and suppose that there exists an H-witness structure W of G. If a witness set
of W contains more than one vertex of G, then we call it a big witness set; a
witness set consisting of a single vertex of G is called small.

Observation 1 ([9]) If a graph G is k-contractible to a graph H, then any
H-witness structure W of G satisfies the following three properties:

– no witness set of W contains more than k + 1 vertices;
– W has at most k big witness sets;
– all the big witness sets of W together contain at most 2k vertices.

Let G be a graph. A cycle C is optimal for G if G can be contracted to
C but cannot be contracted to any cycle longer than C. Note that if G is a
connected graph that is not a tree, then an optimal cycle for G always exists.
The following structural lemma will be used in the correctness proof of our
kernelization algorithm.

Lemma 3. Let (G, k) be a yes-instance of Cycle Contraction, let C be an
optimal cycle for G, and letW be a C-witness structure of G. If G is 2-connected
and G contains two vertices u and v such that dG(u) = dG(v) = 2 and G −
{u, v} has exactly two connected components G1 and G2, then the following three
statements hold:

(i) either {u} and {v} are small witness sets of W, or u and v belong to the
same big witness set of W;

(ii) if u and v belong to the same big witness set W ∈ W, then W contains all
the vertices of G1 or all the vertices of G2;

(iii) if G1 and G2 contain at least k+1 vertices each, then {u} and {v} are small
witness sets of W.

Proof. Suppose G is 2-connected and contains two vertices u and v such that
dG(u) = dG(v) = 2 and G − {u, v} has exactly two connected components G1

and G2. Let p and q denote the two neighbors of u, and let x and y denote
the two neighbors of v. Without loss of generality, suppose p, x ∈ V (G1) and
q, y ∈ V (G2).

To prove statement (i), suppose, for contradiction, that u belongs to a big
witness set W ∈ W and v /∈ W . Let W1 = (W \ {u}) ∩ V (G1) and W2 =
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(W \ {u}) ∩ V (G2). Since u has degree 2 in G and G[W ] is connected by the
definition of a witness set, the graphs G[W1] and G[W2] are connected. Moreover,
by the definition of G1 and G2, there is no edge between W1 and W2 in G. Let
W ′ be the C ′-witness structure of G obtained from W by replacing W with the
sets W1, {u}, and W2. Then C ′ is a cycle that has two more vertices than C.
This contradicts the assumption that C is an optimal cycle for G.

We now prove statement (ii). Suppose u and v both belong to the same
witness set W ∈ W. Note that V (G) \W induces a connected subgraph of G,
and assume, without loss of generality, that (V (G)\W ) ⊆ V (G1). Then we must
have V (G2) ⊆W .

To prove statement (iii), suppose |V (G1)| ≥ k + 1 and |V (G2)| ≥ k + 1.
Suppose, for contradiction, that u and v belong to the same big witness set of
W. Then W contains all the vertices of either G1 or G2 by statement (ii). This
implies that W contains at least k+ 3 vertices, contradicting the fact that every
big witness set of W contains at most k + 1 vertices due to Observation 1. ut

We now describe four reduction rules that will be used in our kernelization
algorithm for Cycle Contraction. Each of the reduction rules below takes
as input an instance (G, k) of Cycle Contraction and outputs a reduced
instance (G′, k′) of the same problem, and the rule is said to be safe if the two
instances (G, k) and (G′, k′) are either both yes-instances or both no-instances.

Rule 1 If G is 3-connected and |V (G)| ≥ 2k + 4, then return a trivial no-
instance.

Lemma 4. Rule 1 is safe.

Proof. LetG be a 3-connected graph on at least 2k+4 vertices. We show thatG is
not k-contractible to a cycle. For contradiction, suppose G is k-contractible to a
cycle C. LetW be a C-witness structure. ThenW has at most three small witness
sets, as otherwise for any two small witness sets {u} and {v} such that u and v
are non-adjacent, the graph G−{u, v} would be disconnected, contradicting the
assumption that G is 3-connected. Since all the big witness sets of W contain at
most 2k vertices in total due to Observation 1, this implies that |V (G)| ≤ 2k+3.
This yields the desired contradiction to the assumption that |V (G)| ≥ 2k+4. ut

Rule 2 If G contains a block B on at least k+ 2 vertices and V (G) \V (B) 6= ∅,
then return a trivial no-instance if |V (G)\V (B)| ≥ k+1, and return the instance
(G′, k − |V (G) \ V (B)|) otherwise, where G′ is the graph obtained from G by
exhaustively contracting a vertex of V (G) \ V (B) onto one of its neighbors.

Lemma 5. Rule 2 is safe.

Proof. Suppose G contains a block B on at least k+2 vertices and V (G)\V (B) 6=
∅. Then G is not 2-connected and contains at least two blocks.

Suppose (G, k) is a yes-instance, and let W be C-witness structure of G,
where C is a cycle to which G is k-contractible. Since |V (B)| ≥ k+2, there must
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be at least two witness sets ofW that contain vertices of B due to Observation 1.
This implies that for every block B′ 6= B of G, all the vertices of B′ must be
contained in one witness set of W, as otherwise there would be two vertex-
disjoint paths in G between vertices of B and B′. For the same reason, every
witness set of W contains at least one vertex of B. Consequently, no vertex of
|V (G) \ V (B)| appears in a small witness set of W.

The above arguments, together with Observation 1, imply that (G, k) is a
no-instance if |V (G) \ V (B)| ≥ k + 1. It also implies that the instances (G, k)
and (G′, k − |V (G) \ V (B)|) are equivalent otherwise. ut

Rule 3 If G contains a block B on at most k+ 1 vertices and |V (G) \ V (B)| ≥
k + 2, then return the instance (G′, k − |V (B)|), where G′ is the graph obtained
from G by exhaustively contracting a vertex of V (B) onto one of its neighbors.

Lemma 6. Rule 3 is safe.

Proof. Let (G, k) be an instance of Cycle Contraction, and suppose G has a
block B on at most k+1 vertices such that |V (G)\V (B)| ≥ k+2. Suppose (G, k)
is a yes-instance, and let W be a C-witness structure of G for some cycle C to
which G is k-contractible. Using arguments similar to the ones in the proof of
Lemma 5, it can be seen that all the vertices of B must be contained in a single
witness set ofW, and this witness set contains at least one vertex of V (G)\V (B).
This shows that the instances (G′, k − |V (B)|) and (G, k) are equivalent. ut

Rule 4 If G is 2-connected and G contains two vertices u and v such that
dG(u) = dG(v) = 2, the two neighbors p and q of u both have degree 2 in G,
and the graph G− {u, v} has exactly two connected components that contain at
least k + 2 vertices each, then return the instance (G′, k), where G′ is the graph
obtained from G by contracting u onto p.

Lemma 7. Rule 4 is safe.

Proof. Let (G, k) be an instance of Cycle Contraction on which Rule 4 can
be applied. Suppose (G, k) is a yes-instance. Let C be an optimal cycle for G,
and let W be a C-witness structure of G. Due to statement (iii) in Lemma 3,
{u} and {v} are small witness sets of W. Then W ′ = W \ {u} is a C ′-witness
structure of G′, where C ′ is a cycle containing one less vertex than C. Since the
big witness sets of W ′ and W coincide, G′ is k-contractible to C ′. Hence (G′, k)
is a yes-instance of Cycle Contraction.

For the reverse direction, suppose (G′, k) is a yes-instance. Let C ′ be an
optimal cycle for G′, and let W ′ be a C ′-witness structure of G′. Consider the
vertices p and v in G′. Note that dG′(p) = dG′(v) = 2, and that G′ − {p, v} has
exactly two connected components G′1 and G′2 that contain at least k+1 vertices
each. Hence {p} and {v} are small witness sets of W ′ due to statement (iii) in
Lemma 3. For similar reasons, considering the pair (q, v) instead of (p, v), we
find that {q} is a small witness set of W ′. In particular, p and q are in separate
small witness sets of W ′. Now let W be the partition of V (G) obtained from W ′

10



by adding the set {u}. Then W clearly is a C-witness structure of G, where C
is a cycle that has one more vertex than C ′. Since the big witness sets of W and
W ′ coincide, we conclude that G is k-contractible to C, and hence (G, k) is a
yes-instance of Cycle Contraction. ut

Theorem 4. The Cycle Contraction problem admits a kernel with at most
6k + 6 vertices.

Proof. We describe a kernelization algorithm for Cycle Contraction. Given
an instance of Cycle Contraction, the algorithm starts by exhaustively ap-
plying the four reduction rules defined above. Let (G, k) be the obtained in-
stance. If G is 3-connected, then |V (G)| ≤ 2k + 3, as otherwise Rule 1 could
be applied. Suppose G is not 2-connected. Since G is connected by assumption,
G has at least two blocks. Let B be any block of G. Then |V (B)| ≤ k + 1, as
otherwise Rule 2 could be applied. Moreover, |V (G) \ V (B)| ≤ k + 1 due to the
assumption that Rule 3 cannot be applied. Hence |V (G)| ≤ 2k+2. Now suppose
G is 2-connected. We then apply a final reduction rule: if |V (G)| ≥ 6k+ 7, then
return a trivial no-instance. Before showing why this final reduction rule is safe,
let us point out that after the application of this final reduction rule, we have
obtained an instance (G′, k′) such that G′ has at most 6k + 6 vertices.

To see why the final reduction rule is safe, suppose, for contradiction, that
(G, k) is a yes-instance of Cycle Contraction such that G is a 2-connected
graph on at least 6k+ 7 vertices. Let C be an optimal cycle for G, and let W be
a C-witness structure of G. By Observation 1, at most 2k vertices of G belong to
big witness sets, which implies that at least 4k+ 7 vertices of G belong to small
witness sets. Since W has at most k big witness sets by Observation 1, there
are at most 2k vertices in small witness sets that have degree more than 2 in G,
namely the ones adjacent to big witness sets. Consequently, there are at least
2k + 7 vertices in small witness sets that have degree exactly 2, and there must
be three small witness sets {p}, {u}, {q} such that dG(p) = dG(u) = dG(q) = 2
and p and q are the two neighbors of u. Let {v} be a small witness set ofW such
that v /∈ {p, u, q} and dG(v) = 2, and such that the two connected components
G1 and G2 of the graph G−{u, v} contain at least k+ 2 small witness sets ofW
each. Since, apart from the vertices p, u, q and v, there are at least 2k+ 3 other
vertices that have degree 2 in G and belong to small witness sets, such a set {v}
exists. This implies that Rule 4 could have been applied on (G, k), yielding the
desired contradiction.

The correctness of our algorithm follows directly from Lemmas 4–7 and from
the above proof that the final reduction rule is safe. It remains to argue that our
kernelization algorithm runs in polynomial time. It is clear that every reduction
rule can be applied in polynomial time. When applying any of the reduction rules,
either the number of vertices in the graph or the parameter strictly decreases.
This implies that we only apply the reduction rules a polynomial number of
times, so the algorithm runs in polynomial time. ut
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4 Concluding Remarks

We showed that Regular Contraction has a linear vertex kernel when d = 2.
We expect that we can use similar arguments to obtain the same result for
Bounded Degree Contraction when d = 2. A more interesting question is
whether both problems admit polynomial kernels when d = 3.
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9. Heggernes, P., van ’t Hof, P., Lévêque, B., Lokshtanov, D., Paul, C.: Contract-

ing graphs to paths and trees. Algorithmica. DOI: 10.1007/s00453-012-9670-2 (to
appear)

10. Heggernes, P., van ’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph
by contracting few edges. In: FSTTCS 2011, LIPIcs, vol. 13, pp. 217–228 (2011)

11. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comp. System Sci. 20, 219–230 (1980)

12. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms (to appear). Manuscript available at
http://www.cs.bme.hu/∼dmarx/papers/marx-tw-reduction-talg.pdf

13. Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: A param-
eterized approach. J. Comput. Syst. Sci. 78, 179–191 (2012)

14. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced
subgraphs. J. Discr. Algorithms 7, 181–190 (2009)

15. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309, (1981)

12


