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Abstract. We consider a natural restriction of the List Colouring
problem, k-Regular List Colouring, which corresponds to the List
Colouring problem where every list has size exactly k. We give a com-
plete classification of the complexity of k-Regular List Colouring
restricted to planar graphs, planar bipartite graphs, planar triangle-free
graphs and to planar graphs with no 4-cycles and no 5-cycles. We also
give a complete classification of the complexity of this problem and a
number of related colouring problems for graphs with bounded maxi-
mum degree.
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1 Introduction

A colouring of a graph is a labelling of the vertices so that adjacent vertices do not
have the same label. We call these labels colours. Graph colouring problems are
central to the study of combinatorial algorithms and they have many theoretical
and practical applications. A typical problem asks whether a colouring exists
under certain constraints, or how difficult it is to find such a colouring. For
example, in the List Colouring problem, a graph is given where each vertex
has a list of colours and one wants to know if the vertices can be coloured using
only colours in their lists. The Choosability problem asks whether such list
colourings are guaranteed to exist whenever all the lists have a certain size. In
fact, an enormous variety of colouring problems can be defined and there is now
a vast literature on this subject. For longer introductions to the type of problems
we consider we refer to two recent surveys [9,15].

In this paper, we are concerned with the computational complexity of colour-
ing problems. For many such problems, the complexity is well understood in the
case where we allow every graph as input, so it is natural to consider problems
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with restricted inputs. We consider a variant of the List Colouring prob-
lem, closely related to Choosability, and give a complete classification of its
complexity for planar graphs and a number of subclasses of planar graphs by
combining known results with new results. Some of the known results are for
(planar) graphs with bounded degree. We use these results to fill some more
complexity gaps by giving a complete complexity classification of a number of
colouring problems for graphs with bounded maximum degree.

1.1 Terminology

A colouring of a graph G = (V,E) is a function c : V → {1, 2, . . .} such that
c(u) 6= c(v) whenever uv ∈ E. We say that c(u) is the colour of u. For a positive
integer k, if 1 ≤ c(u) ≤ k for all u ∈ V , then c is a k-colouring of G. We say
that G is k-colourable if a k-colouring of G exists. The Colouring problem is to
decide whether a graph G is k-colourable for some given integer k. If k is fixed,
that is, not part of the input, we obtain the k-Colouring problem.

A list assignment of a graph G = (V,E) is a function L with domain V such
that for each vertex u ∈ V , L(u) is a subset of {1, 2, . . . }. This set is called the
list of admissible colours for u. If L(u) ⊆ {1, . . . , k} for each u ∈ V , then L is a
k-list assignment. The size of a list assignment L is the maximum list size |L(u)|
over all vertices u ∈ V . A colouring c respects L if c(u) ∈ L(u) for all u ∈ V .
Given a graph G with a k-list assignment L, the List Colouring problem is
to decide whether G has a colouring that respects L. If k is fixed, then we have
the List k-Colouring problem. Fixing the size of L to be at most ` gives
the `-List Colouring problem. We say that a list assignment L of a graph
G = (V,E) is `-regular if, for all u ∈ V , L(u) contains exactly ` colours. This
gives us the following problem, which is one focus of this paper. It is defined for
each integer ` ≥ 1 (note that ` is fixed; that is, ` is not part of the input).

`-Regular List Colouring
Instance: a graph G with an `-regular list assignment L.
Question: does G have a colouring that respects L?

A k-precolouring of a graph G = (V,E) is a function cW : W → {1, 2, . . . , k} for
some subset W ⊆ V . A k-colouring c of G is an extension of a k-precolouring cW
of G if c(v) = cW (v) for each v ∈W . Given a graph G with a precolouring cW , the
Precolouring Extension problem is to decide whether G has a k-colouring
that extends cW . If k is fixed, we obtain the k-Precolouring Extension
problem.

The relationships amongst the problems introduced are shown in Fig. 1.
For an integer ` ≥ 1, a graph G = (V,E) is `-choosable if, for every `-

regular list assignment L of G, there exists a colouring that respects L. The
corresponding decision problem is the Choosability problem. If ` is fixed, we
obtain the `-Choosability problem.

We emphasize that `-Regular List Colouring and `-Choosability are
two fundamentally different problems. For the former we must decide whether
there exists a colouring that respects a particular `-regular list assignment. For
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Fig. 1. Relationships between Colouring and its variants. An arrow from one prob-
lem to another indicates that the latter is (equivalent to) a special case of the former;
k and ` are any two arbitrary integers for which ` ≥ k. For instance, k-Colouring
is a special case of k-Regular List Colouring. This can be seen by giving the list
L(u) = {1, . . . , k} to each vertex u in an instance graph of Colouring. We also ob-
serve that `-Regular List Colouring and k-Regular List Colouring are not
comparable for any k 6= `.

the latter we must decide whether or not every `-regular list assignment has
a colouring that respects it. As we will see later, this difference also becomes
clear from a complexity point of view: for some graph classes `-Regular List
Colouring is computationally easier than `-Choosability, whereas, perhaps
more surprisingly, for other graph classes, the reverse holds.

For two vertex-disjoint graphs G and H and positive integer k, we let G+H
denote the disjoint union (V (G) ∪ V (H), E(G) ∪ E(H)), and kG denote the
disjoint union of k copies of G. If G is a graph containing an edge e or a vertex v
then G − e and G − v denote the graphs obtained from G by deleting e or v,
respectively. If G′ is a subgraph of G then G−G′ denotes the graph with vertex
set V (G) and edge set E(G) \ E(G′). We let Cn, Kn and Pn denote the cycle,
complete graph and path on n vertices, respectively. A wheel is a cycle with
an extra vertex added that is adjacent to all other vertices. The wheel on n
vertices is denoted Wn; note that W4 = K4. A graph on at least three vertices is
2-connected if it is connected and there is no vertex whose removal disconnects
it. A block of a graph is a maximal subgraph that is connected and cannot be
disconnected by the removal of one vertex (so a block is either 2-connected, a K2

or an isolated vertex). A block graph is a connected graph in which every block
is a complete graph. A Gallai tree is a connected graph in which every block
is a complete graph or a cycle. We say that B is a leaf-block of a connected
graph G if B contains exactly one cut vertex u of G and B \ u is a component
of G − u. For a set of graphs H, a graph G is H-free if G contains no induced
subgraph isomorphic to a graph in H, whereas G is H-subgraph-free if it contains



no subgraph isomorphic to a graph in H. The girth of a graph is the length of
its shortest cycle.

1.2 Known Results for Planar Graphs

We start with a classical result observed by Erdős et al. [12] and Vizing [26].

Theorem 1 ([12,26]). 2-List Colouring is polynomial-time solvable.

Garey et al. proved the following result, which is in contrast to the fact that
every planar graph is 4-colourable by the Four Colour Theorem [2].

Theorem 2 ([13]). 3-Colouring is NP-complete for planar graphs of maxi-
mum degree 4.

Next we present results found by several authors on the existence of k-choosable
graphs for various graph classes.

Theorem 3. The following statements hold for k-choosability:

(i) Every planar graph is 5-choosable [24].
(ii) There exists a planar graph that is not 4-choosable [28].

(iii) Every planar triangle-free graph is 4-choosable [19].
(iv) Every planar graph with no 4-cycles is 4-choosable [20].
(v) There exists a planar triangle-free graph that is not 3-choosable [29].

(vi) There exists a planar graph with no 4-cycles, no 5-cycles and no intersect-
ing triangles that is not 3-choosable [23].

(vii) Every planar bipartite graph is 3-choosable [1].

We note that smaller examples of graphs than were used in the original proofs
have been found for Theorems 3.(ii) [17], 3.(v) [22] and 3.(vi) [33] and that
Theorem 3.(vi) strengthens a result of Voigt [30]. We recall that Thomassen [25]
first showed that every planar graph of girth at least 5 is 3-choosable, and that
a number of results have since been obtained on 3-choosability of planar graphs
in which certain cycles are forbidden; see, for example, [7,10,31,32].

We will also use the following result of Chleb́ık and Chleb́ıková.

Theorem 4 ([8]). List Colouring is NP-complete for 3-regular planar bipar-
tite graphs that have a list assignment in which each list is one of {1, 2}, {1, 3},
{2, 3}, {1, 2, 3} and all the neighbours of each vertex with three colours in its list
have two colours in their lists.

1.3 New Results for Planar Graphs

Theorems 1–3 have a number of immediate consequences for the complexity of
`-Regular List Colouring when restricted to planar graphs. For instance,
Theorem 2 implies that 3-Regular List Colouring is NP-complete for pla-
nar graphs, whereas Theorem 3.(i) shows that 5-Regular List Colouring is



polynomial-time solvable on this graph class. As such, it is a natural question to
determine the complexity for the missing case ` = 4. In this section we settle this
missing case and also present a number of new hardness results for `-Regular
List Colouring restricted to various subclasses of planar graphs. At the end
of this section we show how to combine the known results with our new ones to
obtain a number of dichotomies (Corollaries 3–6). We deduce some of our new
results from two more general theorems, namely Theorems 5 and 6, which we
state below; see Section 2 for a proof of Theorem 5 (we omitted the proof of
Theorem 6).

Theorem 5. Let H be a finite set of 2-connected planar graphs. Then 4-
Regular List Colouring is NP-complete for planar H-subgraph-free graphs
if there exists a planar H-subgraph-free graph that is not 4-choosable.

Note that the class of H-subgraph-free graphs is contained in the class of
H-free graphs. Hence, whenever a problem is NP-complete for H-subgraph-free
graphs, it is also NP-complete for H-free graphs.

Combining Theorem 5 with Theorem 3.(ii) yields the following result which,
as we will see later, was the only case for which the complexity of k-Regular
List Colouring for planar graphs was not settled.

Corollary 1. 4-Regular List Colouring is NP-complete for planar graphs.

Theorem 5 has more applications. For instance, consider the non-4-choosable
planar graph H from the proof of Theorem 1.7 in [17]. It can be observed that H
is Wp-subgraph-free for all p ≥ 8. Wheels are 2-connected and planar. Hence
if H is any finite set of wheels on at least eight vertices then 4-Regular List
Colouring is NP-complete for planar H-subgraph-free graphs.

Our basic idea for proving Theorem 5 is to pick a minimal counterexample H
with list assignment L (which must exist due to Theorem 3.(ii)). We select an
“appropriate” edge e = uv and consider the graph F ′ = F−e. We reduce from an
appropriate colouring problem restricted to planar graphs and use copies of F ′

as a gadget to ensure that we can enforce a regular list assignment. The proof
of the next theorem also uses this idea.

Theorem 6. Let H be a finite set of 2-connected planar graphs. Then 3-
Regular List Colouring is NP-complete for planar H-subgraph-free graphs
if there exists a planar H-subgraph-free graph that is not 3-choosable.

Theorem 6 has a number of applications. For instance, if we let H = {K3}
then Theorem 6, combined with Theorem 3.(v), leads to the following result.

Corollary 2. 3-Regular List Colouring is NP-complete for planar
triangle-free graphs.

Theorem 6 can also be used for other classes of graphs. For example, let H
be a finite set of graphs, each of which includes a 2-connected graph on at least
five vertices as a subgraph. Let I be the set of these 2-connected graphs. The



graph K4 is a planar I-subgraph-free graph that is not 3-choosable (since it is not
3-colourable). Therefore, Theorem 6 implies that 3-Regular List Colouring
is NP-complete for planar H-subgraph-free graphs. We can obtain more hardness
results by taking some other planar graph that is not 3-choosable, such as a
wheel on an even number of vertices. Also, if we let H = {C4, C5} we can use
Theorem 6 by combining it with Theorem 3.(vi) to find that 3-Regular List
Colouring is NP-complete for planar graphs with no 4-cycles and no 5-cycles.
We strengthen this result as follows (proof omitted).

Theorem 7. 3-Regular List Colouring is NP-complete for planar graphs
with no 4-cycles, no 5-cycles and no intersecting triangles.

Corollaries 1 and 2 and Theorem 7 can be seen as strengthenings of Theo-
rems 3.(ii), 3.(v) and 3.(vi), respectively. Moreover, they complement Theorem 2,
which implies that 3-List Colouring is NP-complete for planar graphs, and a
result of Kratochv́ıl [18] that, for planar bipartite graphs, 3-Precolouring
Extension is NP-complete. Corollaries 1 and 2 also complement results of
Gutner [17] who showed that 3-Choosability and 4-Choosability are Πp

2-
complete for planar triangle-free graphs and planar graphs, respectively. How-
ever, we emphasize that, for special graph classes, it is not necessarily the
case that `-Choosability is computationally harder than `-Regular List
Colouring. For instance, contrast the fact that Choosability is polynomial-
time solvable on 3P1-free graphs [14] with our next result (proof omitted).

Theorem 8. 3-Regular List Colouring is NP-complete for (3P1, P1 +P2)-
free graphs.

Our new results, combined with known results, close a number of complex-
ity gaps for the `-Regular List Colouring problem. Combining Corollary 1
with Theorems 1, 2 and 3.(i) gives us Corollary 3. Combining Theorem 7 with
Theorems 1 and 3.(iv) gives us Corollary 4. Combining Corollary 2 with The-
orems 1 and 3.(iii) gives us Corollary 5, whereas Theorems 1 and 3.(vii) imply
Corollary 6.

Corollary 3. Let ` be a positive integer. Then `-Regular List Colouring,
restricted to planar graphs, is NP-complete if ` ∈ {3, 4} and polynomial-time
solvable otherwise.

Corollary 4. Let ` be a positive integer. Then `-Regular List Colouring,
restricted to planar graphs with no 4-cycles and no 5-cycles and no intersecting
triangles, is NP-complete if ` = 3 and polynomial-time solvable otherwise (even
if we allow intersecting triangles and 5-cycles).

Corollary 5. Let ` be a positive integer. Then `-Regular List Colouring,
restricted to planar triangle-free graphs, is NP-complete if ` = 3 and polynomial-
time solvable otherwise.

Corollary 6. Let ` be a positive integer. Then `-Regular List Colouring,
restricted to planar bipartite graphs, is polynomial-time solvable.



1.4 Known Results for Bounded Degree Graphs

First we present a result of Kratochv́ıl and Tuza [19].

Theorem 9 ([19]). List Colouring is polynomial-time solvable on graphs of
maximum degree at most 2.

Brooks’ Theorem [6] states that every graph G with maximum degree d
has a d-colouring unless G is a complete graph or a cycle with an odd number
of vertices. The next result of Vizing [27] generalizes Brooks’ Theorem to list
colourings.

Theorem 10 ([27]). Let d be a positive integer. Let G = (V,E) be a connected
graph of maximum degree at most d and let L be a d-regular list assignment
for G. If G is not a cycle or a complete graph then G has a colouring that
respects L.

And we need another result of Chleb́ık and Chleb́ıková [8].

Theorem 11 ([8]). Precolouring Extension is polynomial-time solvable
on graphs of maximum degree 3.

1.5 New Results for Bounded Degree Graphs

The following result is obtained by making a connection to Gallai trees (proof
omitted).

Theorem 12. Let k be a positive integer. Then k-Precolouring Extension
is polynomial-time solvable for graphs of maximum degree at most k.

We have the following two classifications. The first one is an observation
obtained by combining only previously known results, whereas the second one
also makes use of our new result.

Corollary 7. Let d be a positive integer. The following two statements hold for
graphs of maximum degree at most d.

(i) List Colouring is NP-complete if d ≥ 3 and polynomial-time solvable if
d ≤ 2.

(ii) Precolouring Extension and Colouring are NP-complete if d ≥ 4
and polynomial-time solvable if d ≤ 3.

Proof. We first consider (i). If d ≥ 3, we use Theorem 4. If d ≤ 2, we use
Theorem 9. We now consider (ii). If d ≥ 4, we use Theorem 2. If d ≤ 3, we use
Theorem 11. ut

Corollary 8. Let d and k be two positive integers. The following two statements
hold for graphs of maximum degree at most d.



(i) k-List Colouring and List k-Colouring are NP-complete if k ≥ 3 and
d ≥ 3 and polynomial-time solvable otherwise.

(ii) k-Regular List Colouring and k-Precolouring Extension are NP-
complete if k ≥ 3 and d ≥ k + 1 and polynomial-time solvable otherwise.

Proof. We first consider (i). If k ≥ 3 and d ≥ 3, we use Theorem 4. If k ≤ 2 or
d ≤ 2, we use Theorems 1 or 9, respectively.

We now consider (ii). We start with the hardness cases and so let k ≥ 3 and
d ≥ k + 1.

First consider k-Precolouring Extension. Theorem 2 implies that 3-
Colouring is NP-complete for graphs of maximum degree at most d for all
d ≥ 4. The k = 3 case follows immediately from this result. Suppose k ≥ 4 and
d ≥ k + 1. Consider a graph G of maximum degree 4. For each vertex v, we add
k−3 new vertices xv

1, . . . , x
v
k−3 and edges vxv

1, . . . , vx
v
k−3. Let G′ be the resulting

graph. Note that G′ has maximum degree at most 4 + k − 3 = k + 1 ≤ d. We
define a precolouring c on the newly added vertices by assigning colour i + 3 to
each xv

i . Then G′ has a k-colouring extending c if and only if G has a 3-colouring.
Now consider k-Regular List Colouring. The k = 3 case follows imme-

diately from Theorem 2. Suppose k ≥ 4 and d ≥ k + 1. Consider a graph G
of maximum degree 4. We define the list L(v) = {1, . . . , k} for each vertex
v ∈ V (G). For each vertex v, we add k − 3 new vertices xv

1, . . . , x
v
k−3 and edges

vxv
1, . . . , vx

v
k−3. We define the list L(xv

i ) = {i, k+1, k+2, . . . , 2k−1} for each xv
i .

For each vertex xv
i , we also add k new vertices w1(xv

i ), . . . , wk(xv
i ) and edges such

that xv
i , w1(xv

i ), . . . , wk(xv
i ) form a clique (on k + 1 vertices). We define the list

L(wj(x
v
i )) = {k + 1, . . . , 2k} for each wj(x

v
i ). Let G′ be the resulting graph.

Note that G′ has maximum degree at most k + 1 and that the resulting list
assignment L is a k-regular list assignment of G′. Then G′ has a k-colouring
respecting L if and only if G has a 3-colouring.

We continue with the polynomial-time solvable cases. If k ≤ 2, the result
follows from Theorem 1. Suppose that k ≥ 3 and d ≤ k. Then the result for
k-Regular List Colouring follows from Theorems 9 and 10 and the result
for k-Precolouring Extension follows from Theorem 12. ut

Note that Corollary 8 does not contain a dichotomy for k-Colouring re-
stricted to graphs of maximum degree at most d. A full classification of this
problem is open, but a number of results are known. Molloy and Reed [21] clas-
sified the complexity for all pairs (k, d) for sufficiently large d. Emden-Weinert
et al. [11] proved that k-Colouring is NP-complete for graphs of maximum
degree at most k + d

√
ke − 1.

2 The Proof of Theorem 5

We need an additional result (proof omitted).

Theorem 13. For every integer p ≥ 3, 3-List Colouring is NP-complete for
planar graphs of girth at least p that have a list assignment in which each list is
one of {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.



We are now ready to prove Theorem 5, which we restate below.

Theorem 5 (restated). Let H be a finite set of 2-connected planar graphs.
Then 4-Regular List Colouring is NP-complete for planar H-subgraph-free
graphs if there exists a planar H-subgraph-free graph that is not 4-choosable.

Proof. The problem is readily seen to be in NP. Let F be a planar H-subgraph-
free graph with a 4-regular list assignment L such that F has no colouring
respecting L. We may assume that F is minimal (with respect to the subgraph
relation). In particular, this means that F is connected. Let r be the length
of a longest cycle in any graph of H. We reduce from the problem of 3-List
Colouring restricted to planar graphs of girth at least r + 1 in which each
vertex has list {1, 2}, {1, 3}, {2, 3} or {1, 2, 3}. This problem is NP-complete
by Theorem 13. Let a graph G and list assignment LG be an instance of this
problem. We will construct a planar H-subgraph-free graph G′ with a 4-regular
list assignment L′ such that G has a colouring that respects LG if and only if G′

has a colouring that respects L′.
If every pair of adjacent vertices in F has the same list, then the problem of

finding a colouring that respects L is just the problem of finding a 4-colouring
which, by the Four Colour Theorem [2], we know is possible. Thus we may assume
that, on the contrary, there is an edge e = uv such that |L(u) ∩ L(v)| ≤ 3. Let
F ′ = F − e. Then, by minimality, F ′ has at least one colouring respecting L,
and moreover, for any colouring of F ′ that respects L, u and v are coloured alike
(otherwise we would have a colouring of F that respects L). Let T be the set of
possible colours that can be used on u and v in colourings of F ′ that respect L
and let t = |T |. As T ⊆ L(u) ∩ L(v), we have 1 ≤ t ≤ 3. Up to renaming the
colours in L, we can build copies of F ′ with 4-regular list assignments such that

(i) the set T is any given list of colours of size t, and
(ii) the vertex corresponding to u has any given list of 4 colours containing T .

We will implicitly make use of this several times in the remainder of the proof.
We say that a vertex w in G is a bivertex or trivertex if |LG(w)| is 2 or 3,

respectively. We construct a planar H-subgraph-free graph G′ and 4-regular list
assignment L′ as follows.

First suppose that t = 1. For each bivertex w in G, we do as follows. We add
two copies of F ′ to G, which we label F1(w) and F2(w). The vertex in Fi(w)
corresponding to u is labelled uw

i for i ∈ {1, 2} and we set Uw = {uw
1 , u

w
2 }. We

add the edges wuw
1 and wuw

2 . We give list assignments to the vertices of F1(w)
and F2(w) such that T = {4} for F1 and T = {5} for F2. We let L′(w) =
LG(w)∪{4, 5}. For each trivertex w in G, we do as follows. We add one copy of F ′

to G, which we label F1(w). The vertex in F1(w) corresponding to u is labelled uw
1

and we set Uw = {uw
1 }. We add the edge wuw

1 . We give list assignments to
vertices of F1(w) such that T = {4} for F1. We let L′(w) = LG(w) ∪ {4}. This
completes the construction of G′ and L′ when t = 1.

Now suppose that t = 2. Let s = r if r is even and s = r + 1 if r is odd
(so s is even in both cases). For each bivertex w in G, we do as follows. We



add a copy of F ′ to G, which we label F1(w), and identify the vertex in F1(w)
corresponding to u with w. We give list assignments to vertices of F1(w) such
that T = LG(w) and L′(w) = LG(w) ∪ {4, 5}. For each trivertex w in G, we do
as follows. We add s copies of F ′ to G which we label Fi(w), 1 ≤ i ≤ s. The
vertex in Fi(w) corresponding to u is labelled uw

i . Let Uw = {uw
i | 1 ≤ i ≤ s}.

Add edges such that the union of w and Uw induces a cycle on s+1 vertices. For
all 1 ≤ i ≤ s, we give list assignments to vertices of Fi(w) such that T = {4, 5}.
We let L′(w) = {1, 2, 3, 4}. This completes the construction of G′ and L′ when
t = 2.

Now suppose that t = 3. For each bivertex w in G, we do as follows. We
add two copies of F ′ to G which we label F1(w) and F2(w), such that for i ∈
{1, 2}, the vertex in Fi(w) corresponding to u is identified with w. We give list
assignments to vertices of F1(w) and F2(w) such that T = LG(w)∪{4} for F1(w),
T = LG(w)∪{5} for F2(w) and L′(w) = LG(w)∪{4, 5}. For each trivertex w in G,
we do as follows. We add a copy of F ′ to G which we label F1(w), such that the
vertex in F1(w) corresponding to u is identified with w. We give list assignments
to the vertices of F1(w) such that T = {1, 2, 3} and L′(w) = {1, 2, 3, 4}. This
completes the construction of G′ and L′ when t = 3.

Note that G′ is planar. Suppose that there is a subgraph H in G′ that is
isomorphic to a graph of H. Since F is H-subgraph-free, and since F ′ is obtained
from F by removing one edge, F ′ is also H-subgraph-free. Therefore for all w,
H is not fully contained in any Fi(w). Since H is 2-connected and since for all w
only one vertex of any Fi(w) has a neighbour outside of Fi(w), we find that H has
at most one vertex in each Fi(w). In particular, H cannot contain any vertex
of any Fi(w) in which the vertex corresponding to u has been attached to w
(as opposed to being identified with w); this includes the case when the union
of w and Uw induces a cycle on s + 1 vertices. Hence we have found that H
is a subgraph of G, which contradicts the fact that G has girth at least r + 1.
Therefore G′ is H-subgraph-free.

Note that in any colouring of G′ that respects L′, each copy of F ′ must be
coloured such that the vertices corresponding to u and v have the same colour,
which must be one of the colours from the corresponding set T . If t = 1 and w is
a trivertex, this means that the unique neighbour of w in Uw must be coloured
with colour 4, so w cannot be coloured with colour 4. Similarly, if t = 1 and w
is a bivertex or t = 2 and w is a trivertex then the two neighbours of w in Uw

must be coloured with colours 4 and 5, so w cannot be coloured with colours 4
or 5. If t = 2 and w is a bivertex or t = 3 and w is a trivertex then w belongs
to a copy of F ′ with T = LG(w), so w cannot have colour 4 or 5. If t = 3 and w
is a bivertex then w belongs to two copies of F ′, one with T = LG(w) ∪ {4}
and one with T = LG(w) ∪ {5}. Therefore, w must be coloured with a colour
from the intersection of these two sets, that is it must be coloured with a colour
from LG(w). Therefore none of the vertices of G can be coloured 4 or 5. Thus the
problem of finding a colouring of G′ that respects L′ is equivalent to the problem
of finding a colouring of G that respects LG. This completes the proof. ut



3 Conclusions

As well as filling the complexity gaps of a number of colouring problems for
graphs with bounded maximum degree, we have given several dichotomies for the
k-Regular List Colouring problem restricted to subclasses of planar graphs.
In particular we showed NP-hardness of the cases k = 3 and k = 4 restricted to
planar H-subgraph-free graphs for several sets H of 2-connected planar graphs.
Our method implies that for such sets H it suffices to find a counterexample to
3-choosability or to 4-choosability, respectively. It is natural to ask whether we
can determine the complexity of 3-Regular List Colouring and 4-Regular
List Colouring for any class of planar H-subgraph-free graphs. However, we
point out that even when restricting H to be a finite set of 2-connected planar
graphs, this would be very hard (and beyond the scope of this paper) as it
would require solving several long-standing conjectures in the literature. For
example, when H = {C4, C5, C6}, Montassier [22] conjectured that every planar
H-subgraph-free graph is 3-choosable.

A drawback of our method is that we need the set of graphs H to be 2-
connected. If we forbid a setH of graphs that are not 2-connected, the distinction
between polynomial-time solvable and NP-complete cases is not clear, and both
cases may occur even if we forbid only one graph.

Acknowledgements. We thank Steven Kelk for helpful comments on an earlier
version of this paper.
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